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Abstract. Classical computing has well-established formalisms for
specifying, refining, composing, proving, and otherwise reasoning
about computations. These formalisms have matured over the past
70 years or so.

Unconventional Computing includes the use novel kinds of sub-
strates – from black holes and quantum effects, through to chem-
icals, biomolecules, even slime moulds – to perform computations
that do not conform to the classical model. Although many of these
substrates can be “tortured” to perform classical computation, this is
not how they “naturally” compute.

Our ability to exploit unconventional computing is partly ham-
pered by a lack of corresponding programming formalisms: we need
models for building, composing, and reasoning about programs that
execute in these substrates. What might, say, a slime mould program-
ming language look like?

Here I outline some of the issues and properties of these uncon-
ventional substrates that need to be addressed to find “natural” ap-
proaches to programming them. Important concepts include embod-
ied real values, processes and dynamical systems, generative systems
and their meta-dynamics, and embodied self-reference.

1 Introduction
Let’s look at the genesis of conventional computing. Turing for-
malised the behaviour of real world “computers” (human clerks car-
rying out calculations [11]) following a finite sequence of discrete,
well-defined rules. This formalisation led to an abstract model: the
Turing Machine (TM) [46].

Turning to the real world, there are many processes we might want
to describe, understand, or exploit computationally: termites build-
ing complex nests following (relatively) simple rules; slime moulds
growing in the topology of road networks; chemical oscillations set
up to perform boolean operations. What are the relevant abstractions?
Are they just the discrete TM again?

At this stage in the development of unconventional (or non-Turing)
computation, I think that this is the wrong question. First, we should
investigate these processes to discover what computations they per-
form “naturally”. I would not trust a slime mould computer to spell-
check my writing, or calculate my tax return. But certain forms of
computers, for example analogue devices, can perform their com-
putations much more “naturally” (for example, much more power-
efficiently [16, p83]) than a digital version. Let’s start from this point,
discover what kinds of computation are natural to a range of systems,
and then abstract from there.

We should not worry that our unconventional computers are
ridiculously primitive compared to our smartphones: classical com-
putation has seventy years of an exponentially growing lead on us.
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Figure 1. Classical computation: the real world inspiration of human
computers led to an abstract model. This was realised in hardware and

exploited in software, and developed for 70 years, into a form
unrecognisable to its early developers.

Figure 2. Unconventional computation: the real world inspiration of
biological and other systems is leading to novel hardware. This must be
abstracted into a computation model, and augmented with appropriate

programming languages an tools. 70 years from now, the technology will be
unrecognisable from today’s ideas.

2 Classical history and unconventional futures

In a sense, classical computation got things backwards: theory be-
fore hardware and applications (figure 1). Unconventional computing
seems to be taking a different route: the real world inspiration is lead-
ing to novel hardware (in some cases, wetware) devices, rather than
directly to a model. Our job as computer scientists is to work out
good underlying computational models and appropriate languages



Figure 3. The wrong model (screenshot partway through a game of Not
Tetris, http://stabyourself.net/nottetris2)

that naturally fit with the hardware, and also to engineer more effi-
cient and flexible hardware (figure 2).

Getting a good abstract model is important. The wrong model (fig-
ure 3), an unnatural model, will mean that our ability to exploit the
unconventional substrates will be compromised.

3 Computational models as abstractions of physics

We know that the classical model of computation captures too lit-
tle of reality: its underlying workings formalise an essentially New-
tonian view of physics. Quantum physics allows multiple symbols
to be superposed in a single tape position [15], and entangled be-
tween positions. General relativity allows the machine’s frame and
the observer’s frame to experience different proper times; in particu-
lar a Malament-Hogarth spacetime allows an observer to experience
finite proper time whilst the machine that they are observing expe-
riences infinite proper time [24]. And these two branches of physics
are themselves a century old. What of quantum gravity computers,
or string-theoretic computers? The Turing model is unphysical.

However, some unconventional computational models capture too
much: like TMs they are unphysical, but in a different way. Analogue
computers usually use continuous physical quantities as analogues of
the value being computed. These continuous physical quantities are
modelled as real numbers. A single real number can encode a count-
ably infinite amount of information. But this does not mean that the
physical quantity that it models can encode an infinite amount of in-
formation. This has nothing to do with quantum limits to continuity.
Well before such limits, even the most accurately measured funda-
mental physical constants are not measured to more than 10 or 12
decimal places [35]. The most accurately measured physical quan-
tity, the rubidium hyperfine frequency, is known to an accuracy of
2.5 × 10−15 [36]. The value of the mathematical constant π to 39
digits can give the volume of the observable universe to the nearest
atom [4, p17]. To measure π to more precision than this, we would
need a measuring device bigger than the size of the universe. De-
spite this, π has been calculated to 10 trillion decimal places [47]:
an impressive computation, but a completely physically unmeasur-
able value. Computational models need to be based on real-world
physics: not only the laws, but also the practical constraints.

What models of computation are suitable for natural physical com-
puters? This includes not only exotic physics, but also biological sys-
tems. We need good abstractions, that not only do not impose un-
physical requirements, but that naturally fit the implementations. So,
for example, if a system is naturally noisy and non-deterministic, it
is better to find a model that can exploit this, rather than engineer the
substrate away from its natural state to one that better matches some
unnatural deterministic model.

4 Inspired by biological modelling
Let’s look at how biology is being conceptualised and modelled, in
order to get some pointers to requirements for computational models
of biological computers. We start with a pair of quotations, about
organism-centric biology.

Organic life exists only so far as it evolves in time. It is
not a thing but a process—a never-resting continuous stream of
events — Cassirer [10, p49, ch.IV]

It must be a biology that asserts the primacy of processes
over events, of relationships over entities, and of development
over structure. — Ingold [25]

A process-centric description is arguably also needed in the context
of emergence [43]. To summarise these ideas: “Life is a verb, not a
noun.” [19, p203, ch.X].

So, the emphasis from these authors is of process, dynamics, de-
velopment (which, despite themselves being nouns, describe verb-
like properties), rather than of entities, states, events. Let’s look
at these three features, how well they are captured by current for-
malisms, and what more is needed.

4.1 Process
“Process” might seem like an easy starting point, as we have pro-
cess algebras and process calculi galore [5, 9, 22, 23, 30–33] in com-
puter science. These describe the interactions between concurrently-
executing processes, and (one of) the semantics of a process is its
trace: a (“never-resting”) stream of events.

Process algebras, with their non-terminating processes, can have
their semantics modelled in non-well-founded set theory [2, 40].
NWF set theory replaces the usual axiom of foundation with the anti-
foundation axiom (AFA); many of the well-known operations of set
theory (such as union, intersection, membership) carry across. The
crucial difference is that, unlike in the better known well-founded
set theory, in NWF set theory we can have perfectly well-defined
systems with infinite chains of membership that do not bottom-out,
. . . ∈ X3 ∈ X2 ∈ X1 ∈ X0, and cycles of membership, such as
X ∈ Y ∈ X and even X ∈ X .

Using NWF set theory gives a very different view of the world.
With well-founded sets, we can start at the bottom (that is what well-
foundedness guarantees exists), with the relevant “atoms”, and con-
struct sets from these atoms, then bigger sets from these sets, induc-
tively. This seems like the natural, maybe the only, way to construct
things. But non-well-foundedness is not like this. There are perfectly
good non-well-founded sets that just cannot be built this way: there
are sets with no “bottom” or “beginning”: it can be “turtles all the
way down” [21, p1]. NWF set theory allows sets that are intrinsi-
cally circular, or self-referential, too. It might be true that “the axiom
of foundation has played almost no role in mathematics outside of set
theory itself” [7, p58], but set theory has had an enormous impact on
the way many scientists model the world. Might it be that the whole
concept of reductionism relies on the (mathematically unnecessary)
axiom of foundation? Process algebras, with their NWF basis, might
well offer a new view on how things can be constructed.

But it is not all good news. Well-founded set theory is taught to
school children; NWF set theory, coalgebra, and coinduction, are cur-
rently found only in quite densely mathematical books and papers.
We need a Coalgebra for Dummies. One of the most accessible in-
troductions currently available is Bart Jacobs’ “two-thirds of a book
in preparation” [26].



More importantly for programming unconventional computers,
most process algebras cannot exploit endogenous novelty. Processes
and communication channels are predefined; no new kinds of pro-
cesses or channels can emerge and then be exploited by the formal
system. This may require a reflective [27] process algebra. Reflection
may be a pre-requisite for describing any system displaying open-
ended novelty [42]. PiLar [12,13] is a reflective process-algebraic ar-
chitecture description language, developed to define software archi-
tectures in terms of patterns of change; reflection allows it to change
itself: to change the patterns of change. The mathematical underpin-
nings need to incorporate such features; NWF set theory, with its
allowance of circular definitions, is suitable for modelling reflective
systems that can model themselves.

4.2 Dynamics

For a formalism underpinning “dynamics”, we could consider dy-
namical systems theory [3, 8, 44]. This is a very general formalism:
a dynamical system is defined by its state space, and a rule deter-
mining its motion through that state space. In a continuous physical
dynamical system, that rule is given by the relevant physical laws.
Classical computation can be described in discrete dynamical sys-
tems terms [41], where the relevant rule is defined by the computer
program. Hence it seems that dynamical systems approach can pro-
vide a route to an unconventional computational view of physical
embodied systems exploiting the natural dynamics of their material
substrates.

Dynamical systems can be understood at a generic level in terms
of the structure of their state space: their attractors, trajectories, pa-
rameterised bifurcations, and the like [3,8,44]. Trajectories may cor-
respond to computations and attractors may correspond to computa-
tional results [41]; new attractors arising from bifurcations may cor-
respond to emergent properties [20, 43].

A dynamical systems view allows us to unify the concepts of pro-
cess and particle (of verb and noun). Everything is process (motion
on a trajectory, from transient behaviour to motion on an attractor),
but if viewed on a long enough timescale, its motion on an attractor
blurs into a particle. “An attractor functions as a symbol when it is
observed . . . by a slow observer” [1]. On this longer timescale the de-
tailed motion is lost, and a stable pattern emerges as an entity in its
own right. This entity can then have a dynamics in a state space of its
own, and so on, allowing multiple levels of emergence.

However, the mathematical underpinnings support none of these
exciting and intuitive descriptions. Classical dynamical systems the-
ory deals with closed systems (no inputs or outputs, no coupling to
the environment) in a static, pre-defined state space.

The closest the state space itself comes to being dynamic is by
being parameterised, where a change in the parameter value can lead
to a change in the attractor structure, including bifurcations. Here the
parameter links a family of dynamical systems. If the parameter can
be linked to a feature of the computational system, then it can be used
to control the shape of the dynamics.

Ideally, the control of the parameter should be internal to the sys-
tem, so that the computation can have some control its own dynam-
ics. Current dynamical systems theory does not have this reflective
component: the parameter is external to the system. A full com-
putational dynamical systems theory would need to include meta-
dynamics, the dynamics of the state space change. Currently meta-
dynamics is handled in an ad hoc fashion, by separating it out into a
slower timescale change [6, 34].

4.3 Development

The requirement for “development”, allowing (the state space of)
systems to “grow”, happens naturally in most classical programming
languages: for example, statements such as malloc(n) or new Obj(p)
allocate new memory for the computation to use, thereby increasing
the dimensionality of the computational state space. However, this
everyday usage is rarely cast in explicit developmental terms.

Explicit development is captured by generative grammars such as
L-systems [38], and by rewriting systems such as P-systems [37] and
other membrane computing systems. These discrete systems can be
cast as special cases of “dynamical systems with dynamical struc-
ture” within the MGS language [17, 18, 29], based on local transfor-
mations of topological collections.

These formalisms capture mainly the growth of discrete spaces.
There is still the interesting question of growing continuous spaces:
how does a new continuous dimension appear in continuous time?
How does a hybrid system containing both discrete and continuous
dimensions grow?

If we are thinking of systems that can exhibit perpetual novelty
and emergence, then we also need a system where the growth rules
can grow. The growing space (new dimensions, new kinds of dimen-
sions) should open up new possibilities of behaviour. One way to
do this is to embed the rules in the space itself, so that as the space
grows, the rules governing how the space grows themselves grow.
This approach can be used to program self-replicating spaces [45].
Now the computation is not a trajectory though a static state space, it
is the trajectory of the growing space itself.

4.4 Self-reference

Although “self-reference” is not one of the features identified from
the biological modelling inspiration, it has come up in the discussions
around each individual feature, and is a crucial feature of classical
computation and biological self-reproduction.

The biologist Robert Rosen claims that there is a sense in which
self-definition is an essential feature of life that cannot be replicated
in a computer [39]. He defines organisms to be “closed to efficient
causation”: Aristotle’s “efficient cause” is the cause that brings some-
thing about; life is self-causing, self-defining, autopoietic [28]. Rosen
claims that “mechanisms”, including computer programs (and hence
simulations of life) cannot be so closed, because they require some-
thing outside the system to define them: they have an arbitrary non-
grounded semantics. That is, there is an arbitrary separation of the
semantics of the program (a virtual machine) and the implementa-
tion (the physical machine); life however has only the one, physical,
semantics.

However, it is not as straightforward as that. Organic life also has
an arbitrary semantics. As Danchin points out [14, p110], there is
a level of indirection in the way organisms represent their function-
ality: the mapping from DNA codons to the amino acids they code
for is essentially arbitrary. So life too may be embodied in a virtual
machine with arbitrary semantics.

What is common to biological and computational self-reference is
that the “data” and “program” are the “same kind of stuff”, so that
programs can modify data that can be interpreted as new programs.
In biology this stuff comprises chemicals: a chemical may be passive
data (uninterpreted DNA that codes for certain proteins); it may be
an executing “program” (some active molecular machinery, possibly
manipulating DNA).

So self-referential, self-modifying code is crucial in biology. It



is achievable in classical computation through reflective interpreted
programs. It is plausible that this capability is also crucial for uncon-
ventional computation executing on the natural embodied dynamics
of physical substrates.

5 Conclusions
Unconventional computers, particularly those embodied in
biological-like substrates, may require novel programming
paradigms. By looking to biology, we see that these paradigms
should include as first class properties the concepts of: process,
dynamics, development, and self-reference.

Some existing formalisms may suggest appropriate starting points,
but much yet remains to be done. This should not be surprising: clas-
sical computation has matured tremendously over the last seventy
years, while unconventional computing is still in its infancy. If over
the next seventy years unconventional computing can make even a
fraction of the advances that classical computing has made in that
time, that new world of computation will be unrecognisably different
from today.
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