
Chapter 18
The Game of Life Rules on Penrose Tilings: Still
Life and Oscillators

Nick Owens and Susan Stepney

John Horton Conway’s Game of Life [1, 4] is a simple two-dimensional, two state
cellular automaton (CA), remarkable for its complex behaviour [1, 13]. That be-
haviour is known to be very sensitive to a change in the CA rules. Here we continue
our investigations [7, 10, 11] into its sensitivity to changes in the lattice, by the use
of an aperiodic Penrose tiling lattice [5, 12].

Section 18.1 describes Penrose tilings; Sect. 18.2 generalises the concepts of
neighbourhood and outer totalistic CA rules (which include the Game of Life) to
aperiodic lattices, and introduces a naming convention for Penrose Life oscillators.
Section 18.3 presents various Penrose lattice still life configurations; Sects. 18.4–
18.7 present various oscillators with periods from 2 to 15. Section 18.8 presents an
algorithm to detect oscillators, and a means to classify them based on their underly-
ing neighbourhood graph.

18.1 Penrose Tiling

18.1.1 Kites and Darts, and Rhombs

Grünbaum & Shephard [6, chapter 10] provide a good introduction to aperiodic
tilings, including Penrose tilings. The two variants of Penrose tiling we consider
here are ‘kites and darts’, and ‘rhombs’.

The kite and dart tile pair are shown in Fig. 18.1a; a large patch of kite and
dart tiling is shown in Fig. 18.11. The thick and thin rhomb tile pair are shown in
Fig. 18.1b; a large patch of rhomb tiling is shown in Fig. 18.13.
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(a) (b)

Fig. 18.1 Penrose tiles: (a) the dart (grey) and kite (white) tiles: the long and short sides are in
the ratio φ : 1, where the golden ratio φ = (1+

√
5)/2 = 2cos(π/5); (b) the thick (white) and thin

(grey) rhomb tiles

(a) (b)

Fig. 18.2 Relationship between rhomb tiles and kites and darts: (a) a thick rhomb comprises a dart
and two half-kites (matching rules, later, forbid a dart and full kite from being joined in this way);
(b) a thin rhomb comprises two half-kites
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Fig. 18.3 Matching rules: (a) kite and dart vertex markings; (b) rhomb vertex marking and edge
orientations plus vertex angle numbering, where interior angles are π/5 times the vertex angle
number (note that vertices labelled 2, and labelled 4, come in two kinds, due to the matching rules:
these are distinguished by overbars)

18.1.2 Matching Rules

The relationship of the rhomb tiles to the kite and dart tiles is shown in Fig. 18.2.
To avoid a kite and dart being joined to form a rhombus (Fig. 18.2a), which would

allow a periodic tiling, there are additional ‘matching rules’ that force the tiling to
be aperiodic: as well as edges of the same length being put together, certain vertices
(given by the dots in Fig. 18.3a) must also be matched [5, 6].

To avoid rhomb tiles being used to form a periodic tiling, and force a periodic
tiling, there are again additional ‘matching rules’: as well as edges of the same length
being put together, the edge orientations (given by the arrows and dots in Fig. 18.3b)
must also be matched [2].
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 sun (S1)            star (S2)            ace (A)            deuce (D)

jack (J)               queen (Q)              king (K) 

Fig. 18.4 The seven valid vertex configurations of a kite and dart tiling [5]

S4 = (1,1,2,2,2,2) S5 = (2,2,2,2,2) Q = (2,4,4) 

S3 = (1,1,2,1,1,2,2)  J = (1,2,1,3,3) K = (2,2,2,4)  D = (3,3,4) 

 S =  (2,2,2,2,2) 

Fig. 18.5 The eight valid vertex configurations of a rhomb tiling [2]

18.1.3 Valid Vertex Configurations

There are many ways to put the tiles together, even with the restriction of the match-
ing rules. However, in a true Penrose tiling (one that can be extended to infinity),
not all of these configurations can exist.

There are only seven valid ways to surround any vertex in a kite and dart tiling
[5] (Fig. 18.4).

There are only eight valid vertices in a rhomb tiling [2] (Fig. 18.5). The names
of these vertices come from the names of the corresponding kite and dart vertices
from which they can be derived [2]. Each vertex can be associated with a list of
vertex angle numbers (after [14, fig.6.8], augmented here with overbars, Fig. 18.3b),
corresponding to the vertex angles of the tiles forming the central vertex. These are
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Fig. 18.6 Disambiguating the 3,3 vertices: the two distinct ways a 3,3 vertex can appear in a valid
rhomb vertex configuration (in the J and D, see Fig. 18.5). This is a context dependent marking
[16]

(a) (b)

Fig. 18.7 Regular grid neighbourhoods: (a) the Moore neighbourhood, the eight cells with which
the central cell shares a vertex; (b) the von Neumann neighbourhood, the four cells with which the
central cell shares an edge

useful for determining how to complete forced vertices (see [10]). Note that there
are two distinct occurrences of the 3,3 vertex configurations (in the J and D); see
Fig. 18.6.

If a patch of tiling exhibits any other vertex configuration, it is not a true Pen-
rose tiling: it will not be possible to extend it to infinity. We use these valid vertex
configurations to analyse valid neighbourhood configurations later.

18.2 The Game of Life on a Penrose Tiling

18.2.1 Regular Game of Life Rules

Classic cellular automata are defined on regular lattices. The update rule depends
on the state of each cell and its neighbourhood (the surrounding cells)1, and the
structure of that neighbourhood is invariant: all places in the lattice look the same,
and the update rule can be applied uniformly across the lattice.

In general, the update rule depends on the particular state of each separate neigh-
bour. For outer totalistic CA rules, like the Game of Life (GoL), the next state of a
cell depends only on its current state, and the total number of neighbourhood cells
in certain states.

In GoL, the neighbourhood of each cell comprises the regular Moore neighbour-
hood (Fig. 18.7a), the eight cells with which it shares a vertex. Each cell has two
states, ‘dead’ and ‘alive’. If a cell is alive at time t, then it stays alive if and only if
it has two or three live neighbours (otherwise it dies of ‘loneliness’ or ‘overcrowd-

1 The standard definition of CA ‘neighbourhood’ includes both the surrounding cells and the up-
dating cell. Here we use slightly different terminology: by ‘neighbourhood’ we mean only the
surrounding cells.
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Fig. 18.8 The generalised von Neumann neighbourhoods of a kite and dart Penrose tiling

Fig. 18.9 The generalised von Neumann neighbourhoods of a rhomb Penrose tiling

ing’). If a cell is dead at time t, then it becomes alive (is ‘born’) if and only if it has
exactly three live neighbours.

For aperiodic lattices such as a Penrose tiling, the detailed structure of the neigh-
bourhood varies at different locations in the lattice. Outer totalistic rules can be
given an interpretation in these aperiodic tiling neighbourhoods.

18.2.2 Generalising the Neighbourhood and the Rules

18.2.2.1 Generalised von Neumann Neighbourhood

The (Penrose) Game of Life rules use a (generalised) Moore neighbourhood. It is
also convenient to define a generalised von Neumann neighbourhood, which we use
later in the analysis of certain simple still lifes and oscillators.

Define the generalised von Neumann neighbourhood of a cell in a Penrose tiling
to be all the cells with which it shares an edge (or, equivalently, two distinct ver-
tices). Hence the size of the neighbourhood equals the number of edges of the cen-
tral cell: four. Figures 18.8 and 18.9 show the distinct generalised von Neumann
neighbourhoods which form valid vertices (established by exhaustive consideration
of the valid vertex configurations, Figs. 18.4 and 18.5). Rotations and mirror images
of these neighbourhoods are not considered to be distinct. de Bruijn [3] identifies the
same rhomb neighbourhoods (but considers mirror images separately), and shows
that a valid Penrose rhomb tiling can be constructed by considering just these neigh-
bourhoods, without the need to use the rhomb matching rules of Fig. 18.3.

In the rectangular lattice none of the four von Neumann neighbourhood cells
themselves share an edge. So if A is a neighbour of B, and B is a neighbour of C,
then A is not a neighbour of C: neighbouring von Neumann neighbourhoods do not
overlap (recall that we do not treat the central site as a member of the neighbour-
hood here). In the Penrose lattice, this is no longer the case: cells in a generalised
von Neumann neighbourhood can share an edge, so neighbouring generalised von
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Fig. 18.10 The generalised Moore neighbourhoods on a kite and dart Penrose tiling, with neigh-
bourhood sizes, and the types of each vertex. Note that an ace vertex appears in every neighbour-
hood

Fig. 18.11 A kite and dart tiling shaded by neighbourhood type. The neighbourhood shading is
uniformly distributed between white and black such that a0 is white and a7 black

Neumann neighbourhoods can overlap. This may affect the communication paths
through the Penrose CA.

18.2.2.2 Generalised Moore Neighbourhood

Define the generalised Moore neighbourhood of a cell in a Penrose tiling to be all
the cells with which it shares a vertex.

Not only do cells have irregular shaped neighbourhoods, with the generalised
Moore neighbourhood, not all cells have the same number of neighbours. The range
of neighbourhood sizes and configurations is limited. Figure 18.10 shows the eight
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Fig. 18.12 The generalised Moore neighbourhoods on a rhomb Penrose tiling, with neighbourhood
sizes, and the types of each vertex. Note that b7 and b8 have the same types of vertices, but in
different orientations: we call b7 the “ortho” form, and b8 the “para” form. Not that the 3 angle in
the fat rhombs is always a J or D vertex. Note that one of the 1 angles in the thin rhomb is always
a J vertex

Fig. 18.13 A rhomb tiling shaded by neighbourhood type. The neighbourhood shading is uni-
formly distributed between white and black such that b0 is white and b10 black. Socolar & Stein-
hardt [16] show that the ratio of thick to thin rhombs in a Penrose tiling is the golden ratio φ : 1

valid neighbourhood configurations in a kite and dart tiling: there are no other valid
ways to surround a kite or a dart (established by exhaustive consideration of the
valid kite and dart vertex configurations, Fig. 18.4). So there is one neighbourhood
configuration of size 8 around a kite, and two around a dart; three of size 9 around a
kite, and one around a dart; and one of size 10, around a dart ([7] incorrectly states
that kite and dart tilings have neighbourhoods of size 8 and 9 only). Figure 18.11
shows an area of kite and dart tilings with colouring to highlight the size of cells’
neighbourhoods.
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Similarly, Fig. 18.12 shows the valid neighbourhood configurations in a rhomb
tiling (established by exhaustive consideration of the valid rhomb vertex configura-
tions, Fig. 18.5). There is a larger range of distinct neighbourhood configurations
for rhomb tilings. Figure 18.13 show an area of rhomb tilings with colouring to
highlight the size of cells’ neighbourhoods.

As can be seen from Figs. 18.11 and 18.13, not all sizes of neighbourhoods ap-
pear with the same frequency. [11] gives the distribution of neighbourhood sizes in
a kite and dart tiling and in a rhomb tiling.

18.2.2.3 Penrose Life Rules

Using our definition of the generalised Moore neighbourhood, the definition of the
Game of Life as given in Sect. 18.2, in terms of the number of live and dead neigh-
bours, can be used unchanged on a Penrose lattice.

Some early investigations are reported in [7]; further investigations are reported
in [10, 11]. We find that the Game of Life rules on Penrose tilings still has complex
behaviour. Both kinds of tiling need to be investigated, because we find that the
Game of Life on the rhomb tiling is statistically significantly different from that
on the kite and dart tiling: it has longer lifetimes to quiescence (the final periodic
activity state), lower ash densities (density of ‘live’ cells at quiescence), higher soup
growth (eventual extent of an initial random patch), significantly fewer oscillators
in the ash, and lower ash period.

Here we continue our Penrose Life investigations, into the variety of oscillators
supported by the tilings.

18.2.3 Identifying Oscillators

18.2.3.1 An Identification Code

GoL patterns are defined in terms of their ‘live’ cells. An oscillator is a pattern that
recurs after a given number of generations, called the period of the oscillator. The
Life Lexicon [15] defines the rotor to be “the cells of an oscillator that change state”
and the stator to be “the cells of an oscillator that are always on”. It also states that
it is “easy to see that any rotor cell must be adjacent to another rotor cell”2.

Following the regular Game of Life, we give some of the oscillators fanciful
names, loosely based on their static appearance at one or more timesteps, or their

2 Proof: Clearly a rotor cell must be adjacent to some other cell in the oscillator, else it would be
dead. Consider an “off” rotor cell adjacent to only stator cells. Since it is a rotor cell, at some point
it changes state to “on”, at which time it has three “on” neighbours. Since these neighbours are
stator cells by assumption, it would always have three “on” neighbours, so could no turn “off”, and
so could not be a rotor cell. We have a contradiction, so such a rotor cell cannot exist.
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dynamic appearance as they oscillate. We generally name a Penrose oscillator after
the isomorphic regular Life oscillator, if one exists.

In regular Life, oscillators are considered to be the same only if they have the
same 2D pattern of cells, up to a rotation. But with the Penrose grid, there are pat-
terns that can look superficially different (using a kite rather than a dart, or a thick
rather than a thin rhomb), but have the same underlying structure. To help in their
identification we give all oscillators a short code, for example, r-p2-8-6. The code
has the following four-part form:

[ l|kd|r - ] pnn - xx [ - yy ] (18.1)

The first part, l|kd|r, identifies the tiling: whether we are talking about a regular
life tiling l, a kite and dart tiling kd, or a rhomb tiling r. If the code is being used to
refer to a pattern on all tilings, or if the tiling is clear from context, this part may be
omitted.

The second part, pnn, identifies the period of the oscillator. For example, p1
means a still life.

The third part, xx, identifies the total number of cells involved in the oscillator.
These are the cells that are “on”, at some timestep. (For still lifes, this is just the
number of cells.)

The fourth part, yy, is the minimum number of cells involved in the oscillator. It
is determined by looking at the number of cells “on” in each timestep, and taking
the minimum of these. (For still lifes, this is the same as the total, and so is omitted.)
This follow the classification used in regular Life catalogues such as [9].

So, for example: p1-4 refers to a still life with four cells, that exists on all tilings
(it may be either a block or a tub, see later); r-p2-8-6 refers to a rhomb period 2
oscillator, with a total of 8 cells live over its period, and a minimum of 6 live cells
in one timestep (a marcher, see later).

Note that the code is not sufficient to uniquely identify an oscillator. Two clearly
different oscillators may share a code; in particular, there are many p1 still lifes
that have the same number of cells, but very different shapes. The third part of
the code gives the number of nodes in the underlying “oscillator graph” (§18.8.2),
which exposes this structure (the underlying topology of cell connections). We use
this graph in addition to the code to identify “essentially similar”, or isomorphic,
oscillators: these have the same code and the same graph.

This scheme also allows us to say that oscillators on different tilings are neverthe-
less isomorphic. So, some regular Life oscillators can also exist on Penrose tilings,
and some oscillators can exist on both forms of Penrose tiling.

18.2.3.2 Variant Forms

Despite the Penrose tiling being aperiodic, it has much underlying structure. Some
isomorphic oscillators are due to this structure, and can be systematically con-
structed from regularities in the underlying tiling.



10 Nick Owens and Susan Stepney

Fig. 18.14 The “Complete star” (SC), found by extending all the “forced” vertices of the Star

Fig. 18.15 The three ways to extend the SC tiling. The top row labels the perimeter vertices with
the vertices used to extend the tiling; the bottom row shows the resulting tilings

The underlying structure is generally captured in terms of “empires”, or tiles
forced to be in certain positions given the existence of particular other tiles (see, for
example, [6, fig.10.6.6]). A forced vertex is one that can be completed in only one
way to give a valid vertex. Completing the tiling around a forced vertex may result
in new forced vertices; that a vertex is forced may be a result of constraints imposed
by several surrounding vertices.

One class of variants is given by the different ways that a completed kite and dart
Star vertex can be extended, described here. Consider a patch of tiling comprising
a Star S2 (Fig. 18.4), formed from five inward-pointing darts. Each of the Star’s
inward pointing vertices is forced to be an ace. Filling in these vertices results in
what we call the “Complete Star”, or SC (Fig. 18.14).

The Complete Star SC has no further forced vertices. However, there are still
constraints on how further tiles can be attached to produce valid tilings. There are
precisely three different ways to extend SC, shown in Fig. 18.15. The different ex-
tensions can support variant forms of a given oscillator: three forms of the kd-p1-
15 ring (Fig. 18.36), the symmetric and asymmetric forms of kd-p2-12-9, the fast
shuffler (Fig. 18.48), the symmetric and asymmetric forms of kd-p4-14-6, the bat
(Fig. 18.71), and three forms of kd-p15-40-8, the dancer (Fig. 18.71).
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Fig. 18.16 The regular Life tub and block still lifes, l-p1-4

18.3 Still Life

A still life is a pattern that remains constant: it can be thought of as a period 1
(p1) oscillator, or an oscillator that has no rotor component. (Strictly, a still life is a
minimal such pattern, where no subset of its cells can be removed and leave a still
life.)

Here we give a preliminary catalogue of Penrose still lifes. These have been dis-
covered by a combination of systematic construction and random search: systematic
construction of the small still lifes possible around certain vertices and neighbour-
hoods; an examination of ash contents from multiple runs of the GoL rules on ran-
dom initial conditions (300,000 runs over a range of initial conditions, for each tiling
[11]); and constructions of large still lifes that extend the structure of smaller ones.
Because of the diversity of tiling patterns, there is no guarantee that the catalogue is
exhaustive, particularly for larger numbers of tiles. Some of these still lifes clearly
have commonalities, and some we classify as isomorphic. We provide a definition
of oscillator isomorphism in §18.8.2.

18.3.1 Blocks and Tubs

The smallest still lifes in regular Life have four cells (see [9] for an enumera-
tion of all small still lifes); they are the tub (or diamond) and the block still lifes
(Fig. 18.16). A tub is four “on” cells forming a chain around an “off” cell; the “on”
cells are precisely the von Neumann neighbourhood of the surrounded “off” cell. A
block is four “on” cells sharing a vertex.

These have isomorphic forms in Penrose Life, occurring in a variety of forms due
to the more variable grid.

18.3.1.1 Tubs

The Penrose Life isomorphic forms of the tub are formed from the generalised von
Neumann neighbourhoods (Figs. 18.8 and 18.9). All the resulting tubs are shown in
Fig. 18.17.
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(a)

(b)

Fig. 18.17 All the tub still lifes, p1-4: a) kite and dart tubs; b) rhomb tubs

(a) (b)

(c) (d)

(e)

Fig. 18.18 All the kite and dart block still lifes, kd-p1-3 and kd-p1-4, classified according to the
valid vertex configurations: (a) the three cell ace small block; (b) the deuce block; the sun block;
the star block; (c) the three jack blocks; (d) the three queen blocks; (e) the three king blocks

18.3.1.2 Kite and Dart Blocks

We can discover the isomorphic forms of blocks by exhaustive examination of the
seven valid kite and dart vertices (Fig. 18.4).

Of these seven valid vertex configurations, one (the ace) has three cells meeting
at the vertex. These three cells comprise a small block still life, Fig. 18.18a. There
are no three cell still lifes in regular Life.

The deuce has four cells meeting at the vertex. These four cells comprise a block
still life, Fig. 18.18bi.

All the other valid vertices have five cells meeting at the vertex; any four of these
chosen to be “live” form a still life. Two of these vertices, the sun and the star, are
symmetric, so have one block form, Fig. 18.18bii and biii. The others (the jack,
queen, and king) each have three block variants (up to a reflection), Fig. 18.18c, d,
and e.

18.3.1.3 Rhomb Blocks

We can discover the isomorphic forms of blocks by exhaustive examination of the
valid rhomb vertices (Fig. 18.5).

Of the eight valid vertex configurations, two (the Q and the D) have three cells
meeting at the vertex. These three cells comprise a small block still life, Fig. 18.19a.
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(a) (b) (c) (d)

(e)

(f)

Fig. 18.19 The rhomb block still lifes, r-p1-3 and r-p1-4: (a) the three cell Q small block and D
small block; (b) the K block; (c) the S block, equivalent to the S5 block; (d) the three J blocks; (e)
the nine S4 blocks; (f) a selection of the several S3 blocks

One valid vertex (the K) has four cells meeting at the vertex. These four cells
comprise a block, Fig. 18.19b.

Three valid vertices (the S5, the S, and the J) have five cells meeting at the vertex;
any four of these chosen to be “live” form a still life. Two of these, the S5 and the
S, are symmetric, so have one block form each (or one between them if vertex ori-
entation is ignored), Fig. 18.19c. The J has three block variants (up to a reflection),
Fig. 18.19d.

One valid vertex (the S4) has six cells meeting at the vertex; again, any four of
these chosen to be “live” form a still life, Fig. 18.19e.

One valid vertex (the S3) has seven cells meeting at the vertex. There are many
ways of choosing four of these to be “live” to form a still life; a selection is shown
in Fig. 18.19f.

18.3.2 Five and More Cell Still Lifes

There is a single regular Life five cell still life [9], the boat (Fig. 18.20). There is
no Penrose life isomorphic to the boat: it is not possible to add a fifth stable cell to
any of the tubs without giving an adjacent dead cell three live neighbours. All the
identified Penrose five cell still lifes form chains (Fig. 18.21). (We call rings of cells,
where every node has precisely two neighbours, chains.)

There are five regular Life six cell still lifes [9], the snake, the ship, the barge, the
beehive, and the carrier (Fig. 18.22). The identified Penrose six cell still lifes form
snakes (Fig. 18.23), chains (Fig. 18.24), or are disconnected (Fig. 18.25).
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Fig. 18.20 The regular Life five cell boat still life, l-p1-5

(a)

(b) (c)

Fig. 18.21 Some five cell still lifes, p1-5: a) kite and dart, from examining the ace and sun vertices;
b) rhomb, from examining the S vertex; c) rhomb, found in the ash. We call the left pattern in b)
an S-chain

Fig. 18.22 All the regular Life six cell still lifes, l-p1-6: the snake, the ship, the barge, the beehive,
and the carrier

(a) (b)

Fig. 18.23 Some six cell Penrose snakes, p1-6: a) kite and dart; b) rhomb

(a)

(b) (c) (d)

Fig. 18.24 Some six cell Penrose still life chains, p1-6: a) kite and dart, from examining the ace
and sun vertices; b) rhomb, found in the ash: note that it forms a chain around a Q vertex; c) rhomb,
constructed by analogy to b, based on a D vertex; d) rhomb, from examining the S and S5 vertices
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(a) (b)

Fig. 18.25 Some six cell disconnected still lifes, p1-6: a) kite and dart; b) rhomb

Fig. 18.26 All the regular Life seven cell still lifes, l-p1-7: the long snake, the fishhook, the long
boat, and the loaf

(a) (b) (c) (d)

Fig. 18.27 Some seven cell still lifes, p1-7: a) kite and dart 7-snake [7], and a rhomb 7-snake; b)
kite and dart rings, from examining the sun vertex; c) rhomb ring, from examining the S5 vertex;
d) rhomb ring

(a) (b)

Fig. 18.28 Some seven cell disconnected still lifes, p1-7: a) kite and dart; b) rhomb

There are four regular Life seven cell still lifes [9], the long snake, the fishhook,
the long boat, and the loaf (Fig. 18.26). The identified Penrose seven cell still lifes
form snakes or rings (Fig. 18.27) or are disconnected (Fig. 18.28).

There are nine regular Life eight cell still lifes [9], the shillelagh, the hook with
tail, the very long snake, the canoe, the long ship, the long barge, the pond, the tub
with tail, and the cigar (Fig. 18.29). The identified Penrose eight cell still lifes form
chains, rings, and snakes (Fig. 18.30).

The number of regular still lifes increases sharply with size (from 10 with nine
cells, 25 with 10 cells, 46 with 11 cells, on up to 112,243 with 20 cells [9]). We have
no reason to believe that the Penrose still lifes do not similarly increase in numbers,
however our ash searches have not revealed these. Our hand constructions are based
on patterns already seen: such still life rings and chains are shown in Figs. 18.31–
18.33. A systematic cataloguing search would need to consider all vertices, and
all valid extensions of those vertices; the large number of block still lifes alone
(Figs. 18.18 and 18.19) indicates this would be a significantly larger job than for
regular Life.
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Fig. 18.29 All the regular Life eight cell still lifes, l-p1-8: the shillelagh, the hook with tail, the
very long snake, the canoe, the long ship, the long barge, the tub with tail, the pond, and the cigar

(a) (b) (c) (d)

Fig. 18.30 Some eight cell still lifes, p1-8: a) kite and dart chain; b) rhomb chain, and ring; c)
another rhomb chain; d) rhomb 8-snake

(a) (b) (c)

Fig. 18.31 Some nine cell still lifes, p1-9: a) kite and dart chain chain; b) rhomb chain; c) rhomb
9-snakes

(a) (b) (c)

Fig. 18.32 Some further still lifes: c) r-p1-10 chain, the S5-chain; d) another r-p1-10 chain; e)
r-p1-11 chain

(a) (b)

Fig. 18.33 Some further still lifes: a) r-p1-16 ring pair from an S5-S combination; b) r-p1-27 ring
triple from an S5-S-S5 combination
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(a) (b) (c)

Fig. 18.34 Some large kite and dart still life chains: (a) kd-p1-20; (b) kd-p1-57; (c) kd-p1-61

(a) (b) (c)

Fig. 18.35 Dart still life rings: (a) kd-p1-15; (b) kd-p1-25; (c) kd-p1-55

Fig. 18.36 The kd-p1-15 ring variant forms, from the three different extensions of the “Complete
Star” SC (Fig. 18.15).

18.3.3 Large Rings

18.3.3.1 Dart Rings

Large rings are not possible in regular Life, as a ring requires a “corner”, which
results in a dead site with three live neighbours. It was noted in [7] that large
ring-shaped kite and dart still lifes can be formed. Some examples are shown in
Fig. 18.34.

Arbitrarily large dart rings can be constructed, in the following way. Pick a dart
that is not part of a Star S2 vertex. Complete the “string” of darts that is formed
from the darts in its generalised Moore neighbourhood (this is always possible, see
Fig. 18.10). This string is a still life ring. Fig. 18.35 show example constructions.
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(a) (b) (c)

(d)

Fig. 18.37 Some large rhomb still life chains: (a) r-p1-10, all thick rhombs; (b) r-p1-10, all thin
rhombs; (c) r-p1-25, all thin rhombs; (d) r-p1-25, thick and thin rhombs. Note that our later classi-
fication in terms of oscillator graphs identifies the chains in (c) and (d) as isomorphic still lifes

Note that the dart ring in Fig. 18.35a occurs on the symmetric extension of the
Complete Star SC (Fig. 18.15). There are variants of this ring, on the other two
extensions, shown in Fig. 18.36.

18.3.3.2 Rhomb Rings

Large still life chains can be formed in the rhomb tiling; some examples are shown
in Fig. 18.37.

Arbitrarily large chains can be constructed, in the following way. Pick a thick
rhomb that is not part of an S or S5 vertex. Complete the “ribbon” of thick rhombs
that is formed from the two thick rhombs adjacent to its edges (all thick rhombs
have precisely two such thick rhomb neighbours, see Fig. 18.9). Fig. 18.38 shows
several such ribbons of thick rhombs.

Each thick rhomb ribbon is edged on the inside and outside by a thin rhomb
ribbon; choose one of these. Delete any S-chains (Fig. 18.21bi). What remains is
a thin rhomb still life chain. Figures 18.39 and 18.40 show two examples of such
constructions, plus some variant forms.
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Fig. 18.38 Some “ribbons” of thick rhombs

(a) (b)

(c) (d)

(e) (f) (g)

Fig. 18.39 Constructing still life chains. (a) a thick rhomb ribbon; (b) the internal thin rhomb
ribbon. (c) the internal ribbon with the S-chains removed: r-p1-10, a still life chain; (d) a variant
r-p1-10, constructed by “folding in” a pair of thin rhombs to become thick rhombs; (e) the external
thin rhomb ribbon: r-p1-30, a still life chain; (f) a modification r-p1-25, constructed by replacing
folding the thin rhomb “elbow” pair into a single thick rhomb, five times (this has similarities to
the relationship between the regular Life pond, Fig. 18.29, and loaf, Fig. 18.26, with two squares
folded into one); (g) a variant r-p1-25, constructed by “folding in” five pairs of thin rhombs to pairs
of thick rhombs. A modification of this “folding” construction can be applied to convert chains into
p2 oscillators (see Fig. 18.61)
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(a) (b)

(c) (d)

(e)

Fig. 18.40 Constructing still life chains. Top row: (a) a thick rhomb ribbon; (b) the external thin
rhomb ribbon. (c) the external ribbon with the S-chains removed: r-p1-60, a still life chain; (d)
r-p1-50, a modification of c; (e) the internal thin rhomb ribbon: r-p1-60, a still life chain
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(a) (b)

Fig. 18.41 kite and dart still life snakes: a) kd-p1-14: a 14-snake; b) kd-p1-25: a 25-snake

(a) (b) (c)

(d)

Fig. 18.42 rhomb still life snakes, constructed from a combination of thin rhomb chains and K
vertex terminators: a) r-p1-11: an 11-snake; b) r-p1-20: a 20-snake; c) r-p1-28: a 28-snake; d)
r-p1-61: a 61-snake

18.3.4 Large Snakes

Long linear kite and dart still lifes can be formed; some examples are shown in
Fig. 18.41. By combining the rhomb chain construction process with the linear still
life termination on a K vertex (Fig. 18.5), long linear rhomb still lifes can also be
constructed, see Fig. 18.42.

There is potential for using long snakes when making larger “machines”. Dis-
rupting a snake at some site, such as one end, causes it to “disintegrate” from that
site, propagating the disruption along the snake, somewhat like a (messy) “fuse”. Or
if some activity were to break a long chain, leaving a terminator on one end, then
a circular fuse would burn, with activity returning to the original point some time
later. By choosing the length of the chain, this could provide a form of timer.
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(a) (b) (c) (d)

Fig. 18.43 The smallest regular life p2 oscillators: (a) the blinker, l-p2-5-3; (b) the beacon, l-p2-
8-6; (c) the toad, l-p2-10-6; (d) the clock, l-p2-10-6

Fig. 18.44 The six distinct kite and dart plinkers: kd-p2-5-3.

Fig. 18.45 The five distinct rhomb plinkers: r-p2-5-3

18.4 Period 2 Oscillators

18.4.1 Blinkers and Plinkers

A regular Life “blinker” is a period 2 oscillator comprising a line of three live cells.
If in generation 0 it is a horizontal line, then in generation 1 it is a vertical line
sharing the same central cell (Fig. 18.43a).

There are isomorphic three cell, p2 plinkers3 in Penrose life. A plinker can exist
at any cell in the tiling4.

3 These particular oscillators were dubbed “plinkers” in [7], and we continue that usage here, as an
exception to our naming convention.
4 Proof: Consider any cell, which will be the ‘central’ cell of the plinker. Consider a pair of opposite
(non-adjacent) edges of this central cell. Consider the two cells adjacent to this pair of edges. Make
these two cells and the central cell alive, and all other cells dead. The result is a plinker, oscillating
between the chosen pair of cells, and the pair of cells adjacent to the other two edges of the central
cell.
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(a) (b) (c)

(d)

Fig. 18.46 Further p2 kite and dart oscillators: (a) kd-p2-8-6, a disconnected oscillator, constructed
from the still life of Fig. 18.25ai by converting the lower 3-block to a plinker; (b) kd-p2-8-6, the
marcher; (c) kd-p2-9-7, the crowned marcher; (d) kd-p2-9-6

Fig. 18.47 kd-p2-10-6: the hollow clock, two isomorphic p2 kite and dart oscillators related to,
but not the same as, the regular Life p2 oscillator the clock (Fig. 18.43d)

Fig. 18.48 kd-p2-12-9: the fast shuffler, which exists in a symmetric and asymmetric variant form,
from the different extensions of the “Complete Star” SC (Fig. 18.15)

The set of generalised von Neumann neighbourhoods (Figs. 18.8 and 18.9) can
be used to enumerate the complete set of distinct plinkers. There are six plinkers for
kites and darts (Fig. 18.44, as noted in [7]), and five for rhombs (Fig. 18.45). Each
plinker has 3 cells alive at any time, and a total of 5 distinct cells used.

18.4.2 Other p2 Oscillators

All six varieties of the kite and dart plinker (Fig. 18.44) were discovered while
exploring the behaviour of the rules in [7]. In our subsequent searches new larger
p2 kite and dart oscillators (Fig. 18.46–18.49) have been discovered.

The rhomb tiling also exhibits its own zoo of oscillators. In addition to the
rhomb plinkers (Fig. 18.45), there are further p2 rhomb oscillators (Figs. 18.50–
18.60). Large p2 rhomb oscillators can be constructed from rhomb chain still lifes
(Figs. 18.61–18.62).
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(a) (b)

Fig. 18.49 Further p2 kite and dart oscillators: (a) kd-p2-10-7; (b) kd-p2-15-10

(a) (b) (c)

Fig. 18.50 p2 rhomb oscillators: (a) r-p2-8-6, a disconnected oscillator, constructed from the still
life of Fig. 18.25bi by converting the lower 3-block to a plinker (the same construction can be
applied to the still life of Fig. 18.28bi, but the resulting 4-block and plinker are each individually
stable, so the result does not count as a disconnected oscillator); (b) r-p2-8-6, the marcher; (c)
r-p2-9-7, the crowned marcher

Fig. 18.51 r-p2-10-6, two isomorphic forms of the hollow clock

Fig. 18.52 r-p2-10-8

(a) (b)

Fig. 18.53 (a) r-p2-11-8; (b) r-p2-11-9.

Fig. 18.54 r-p2-12-9: the big beacon, named by analogy to the regular Life p2 beacon
(Fig. 18.43b), but here with three components instead of two
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(a)

(b)

Fig. 18.55 r-p2-12-10: (a) a ring oscillator; (b) two isomorphic oscillators. The way that (a) is
shown to be different from (b), and that the two forms of (b) are found to be isomorphic, is de-
scribed later

(a) (b)

Fig. 18.56 r-p2-13-11: (a) Note that this is the r-p2-10-8 with three extra cells added; (b) note the
relationship to r-p1-11 of Fig. 18.31d.

Fig. 18.57 r-p2-14-12.

(a) (b)

(c)

Fig. 18.58 (a) r-p2-15-12; (b) r-p2-15-13; (c) r-p2-15-13.
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(a) (b)

Fig. 18.59 (a) r-p2-16-13; (b) r-p2-16-14.

Fig. 18.60 r-p2-17-14.

(a) (b)

Fig. 18.61 Starting from (a) a still life rhomb chain r-p1-10, we can construct (b) a corresponding
p2 rhomb ring oscillator r-p2-12-10 (isomorphic to Fig. 18.55a). This construction can be applied
to all the large rhomb chains of Fig. 18.39.

(a) (b)

Fig. 18.62 The construction of Fig. 18.61 can be applied to more than one site in a chain: (a) a
maximal p2 construction applied to Fig. 18.61a; (b) a maximal construction applied to Fig. 18.37a.
These are both r-p2-20-10; many variants exist.
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(a)

(b)

(c)

(d)

Fig. 18.63 kd-p3-14-8: a) the kite and dart breather; b) an isomorphic variant breather; c) a further
isomorphic variant breather; d) a fourth isomorphic variant breather.

Fig. 18.64 kd-p3-15-10: the wagger.

18.5 Period 3 Oscillators

Four essentially different p3 kite and dart oscillators have been discovered: the
breather with four isomorphic forms (Fig. 18.63), the wagger (Fig. 18.64), a dis-
connected oscillator with two isomorphic forms (Fig. 18.65), and a more irregular
oscillator (Fig. 18.66).

Fewer period three rhomb oscillators have been found. There is a rhomb os-
cillator isomorphic to the kite and dart p3 breather (Fig. 18.67), and a further p3
oscillator (Fig. 18.68).
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(a)

(b)

Fig. 18.65 kd-p3-16-13: a) a disconnected oscillator; b) a variant form.

Fig. 18.66 kd-p3-17-8.

Fig. 18.67 r-p3-14-8: the rhomb breather.

Fig. 18.68 r-p3-14-9.
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Fig. 18.69 kd-p4-12-10: the shuffler. Note the underlying period 2 behaviour, combined with a
reflection.

Fig. 18.70 kd-p4-13-9

(a)

(b)

(c)

(d)

Fig. 18.71 kd-p4-14-6: a) the bat, from [7]; b) the variant asymmetric bat, from a different exten-
sion of the “Complete Star” SC (Fig. 18.15); c) an isomorphic oscillator, not located on a “Complete
Star” SC; d) the bat-to-bat, where the left and right halves are each an asymmetric bat oscillator,
but the bats touch at step two, kd-p4-28-12.

18.6 Period 4 Oscillators

Several kite and dart p4 oscillators are shown in Figs. 18.69–18.72.
The 6 cell kite and dart p4 bat (Fig. 18.71a) was discovered in [7]. Here we also

see variants: a p4 asymmetric bat, a variant form located on a different Complete
Star extension (Fig. 18.71b), and a further isomorphic bat, not located on a Complete
Star vertex extension (Fig. 18.71c). There is also a bat-to-bat oscillator (Fig. 18.71d),
which is two bat oscillators that actually touch at one point.

Period 4 rhomb oscillators are shown in Figs. 18.73–18.77.
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Fig. 18.72 kd-p4-22-8: the hedgehog. Note the underlying period 2 behaviour, combined with a
reflection.

Fig. 18.73 r-p4-12-9: the clown.

Fig. 18.74 r-p4-14-9.

Fig. 18.75 r-p4-15-8: the goldfish. Note the underlying period 2 behaviour, combined with a re-
flection.

Fig. 18.76 r-p4-15-10. Note the underlying period 2 behaviour, combined with a reflection.

Fig. 18.77 r-p4-17-10: the pirate.
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Fig. 18.78 kd-p5-15-8: the ninja. Note the constant pattern undergoing a 4π/5 rotation per
timestep.

Fig. 18.79 kd-p5-16-10, a disconnected oscillator: the drummer.

Fig. 18.80 kd-p6-20-10: the tickler.

18.7 Higher Period Oscillators

18.7.1 Kite and Dart High Period Oscillators

One of the interesting discoveries in [7] was the existence of spatially small, but
relatively long period, oscillators in the kite and dart tiling, relative to the regular
lattice. An p8 oscillator (Fig. 18.81), and the p15 dancer (Fig. 18.84), were discov-
ered while exploring the behaviour of the rules.

In subsequent searches new kite and dart long period oscillators have been
discovered: the p5 ninja (Fig. 18.78) and drummer (Fig. 18.79), the p6 tickler
(Fig. 18.80, the p9 moustaches (Fig. 18.82), and the p11 malformed bat (Fig. 18.83).
Many of these exist in multiple isomorphic forms; we no longer display variant
forms, for reasons of space, but show only the most “symmetric” variant found.

Note that when a period is composite, the oscillator may exhibit subperiods (for
example, the p4 shuffler has a p2 behaviour that is then reflected; the p15 dancer
has a p3 behaviour that undergoes a five-fold rotation), or not (the p6 tickler and the
p9 moustaches have no obvious sub-periodic behaviours).
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Fig. 18.81 kd-p8-12-8, from [7].

Fig. 18.82 kd-p9-36-10: the moustaches.

Fig. 18.83 kd-p11-31-9: the malformed bat. It has similarities to the p4 bat [7].
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Fig. 18.84 kd-p15-40-8: the dancer, from [7]. Note the underlying period 3 behaviour, combined
with a 5-fold rotation. The dancer exists in three variant forms (not shown), from the three different
extensions of the “Complete Star” SC (Fig. 18.15).
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Fig. 18.85 r-p5-14-7, a disconnected p5 rhomb oscillator: the juggler.

Fig. 18.86 r-p5-15-8: the ninja.

Fig. 18.87 r-p5-16-8: the jumper

Fig. 18.88 r-p5-18-11, another disconnected p5 rhomb oscillator.

Fig. 18.89 r-p5-18-14, a further disconnected p5 rhomb oscillator.

18.7.2 Rhomb High Period Oscillators

Higher period rhomb oscillators are shown in Figs. 18.85–18.96. One of these, the
ninja (Fig. 18.86) is isomorphic to the kite and dart ninja (Fig. 18.78).

These high period complex rhomb oscillators help demonstrate that the rhomb-
based CA, whilst having statistically significantly different statistical behaviour
from the kite and dart-based CA under Game of Life rules [11], also exhibits com-
plex and interesting behaviour.
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Fig. 18.90 r-p6-13-9

Fig. 18.91 r-p7-19-7: the hattipper

Fig. 18.92 r-p7-23-8, related to the hattipper.

Fig. 18.93 A disconnected relation of the hattipper.
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Fig. 18.94 A disconnected p10 rhomb oscillator, the long juggler. Note the combination of a pe-
riod 5 behaviour (upper cells of the oscillator, identical to the upper portion of the p5 juggler)
and a period 2 plinker (lower cells). Compare Figs. 18.85 (which shows the underlying p5 jug-
gler and 18.50a (which shows a similar construction of a p2n oscillator from an underlying pn
oscillator).

Fig. 18.95 r-p12-36-8: the reflected bouncer.

Fig. 18.96 r-p12-33-6: fireworks. Note the underlying period 6 behaviour, combined with a reflec-
tion.



18 The Game of Life Rules on Penrose Tilings: Still Life and Oscillators 37

18.8 Oscillator Analysis

Although some of the oscillators presented earlier were constructed manually, many
(particularly the more irregular and long period oscillators) were discovered by ran-
dom search, by examining the ash left from a set of CA runs starting from random
initial conditions. The majority of such runs end with mostly small, low period oscil-
lators (blocks, small rings, and plinkers, and, in the kite and dart case, the occasional
bat or dancer; note that random search will be biassed against finding oscillators
with few or no states leading to them). In order to analyse the large number of runs
needed to find the rarer oscillators, it is necessary to have algorithms to detect the
oscillators, and to identify and classify them. The irregular Penrose tiling makes this
more difficult than for regular Life.

For identification, we have the code name, but this does not uniquely iden-
tify oscillators (although collisions are rare). We would like to classify to oscilla-
tors to identify those that are isomorphic (for example, the plinkers in Figs. 18.44
and 18.45, or the bats in Fig. 18.71), and those that are truly different (for example,
the p1-4 tubs in Fig. 18.17 versus the p1-4 blocks in Figs. 18.18 and 18.19, or the
different r-p2-12-10 oscillators in Fig. 18.55).

We have the general requirement that the algorithms should be efficient. The
computational overheads of our lazy tiling algorithm to define the Penrose grid (de-
scribed in [10]), and of running the CA rules, are reasonable; the more efficiently
we can detect oscillators the better we can explore oscillator space.

Oscillator analysis requires three steps: (i) quiescence detection; (ii) oscillator
detection; (iii) oscillator classification.

Quiescence detection is straightforward: we detect when the behaviour of the CA
becomes periodic (this would not work if ever a propagating structure like a regular
Life glider were to form, but this has never been the case so far). Periodic behaviour
is detected by a comparison between each new state of the CA to every old state5.
Detection and classification algorithms are described in the following sections.

18.8.1 Oscillator Detection

Given a large patch of tiling containing many potential oscillators, we need a way
to identify each individual oscillator, separate from the rest.

5 We have investigated other methods of period detection. Application of Floyd’s algorithm [8, p7]
uses two versions of the CA: the first is updated normally, the second is updated twice for every
update of the first; when they become equal the automaton has cycled. This method offers O(1)
space, and O(n) time, where n = tq + p is the time to quiescence plus the period of the oscillation.
Our method requires O(n) space and O(n2) time (requiring a triangle number of comparisons,
so (n2 + n)/2)). However in practice our method is much faster as the size of the tiling greatly
dominates the lifetimes involved here. The costs of running a second CA, even implemented just
as a second state in each cell, is quite a performance hindrance.
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For the purposes of detection, define an oscillator O with period p as a set of n
pairs, each pair being a cell and its sequence of p states:

O = {(c0,Sp(c0)),(c1,Sp(c1)), . . . ,(cn,Sp(cn)} (18.2)

where Sp(c) = σ0(c),σ1(c), . . . ,σp−1(c) and σt(c) is the state of cell c at time t;
σt(c) = if the cell is alive at time t and σt(c) = � if the cell is dead at time t. We
say c ∈ O to mean cell c is one of the cells in the pairs contained in O. For all cells
c ∈ O, σ0(c) = σp(c).

For example, consider a particular plinker Oπ (one of those in Fig. 18.44
or 18.45). It has five cells, the central one on all the time, and two pairs on and
off in antiphase. Labelling the central cell c0, one pair of cells c1 and c2, and the
other pair c3 and c4, we have

Oπ = {(c0, ),(c1, �),(c2, �),(c3, � ),(c4, � )} (18.3)

Define N(c), the oscillator neighbourhood of cell c, to be the set of cells in the
oscillator, n ∈ O, that are in the generalised Moore neighbourhood of c. For the
plinker Oπ , we have N(c0) = {c0,c1,c2,c3,c4} and N(c1) = {c0,c1,c3,c4}. Note
that the neighbourhood relationship is symmetric: c1 ∈ N(c2)⇔ c2 ∈ N(c1).

Define the live and dead neighbourhoods, Nt (c) and N �
t (c), by:

Ns
t (c) = {n ∈ N(c) | σt(n) = s} (18.4)

where s ∈ {�, }. So N �
t (c) is the set of the oscillator’s dead cells in the neigh-

bourhood of c at time t, and Nt (c) is the set of the oscillator’s live cells. Note that
N(c) = N �

t (c)∪Nt (c), for any t.
For the plinker Oπ , the live and dead neighbourhoods are:

N �
0 (c0) = {c3,c4} ; N0 (c0) = {c0,c1,c2} (18.5)

N �
1 (c0) = {c1,c2} ; N1 (c0) = {c0,c3,c4} (18.6)
N(c0) = N �

0 (c0)∪N0 (c0) = N �
1 (c0)∪N1 (c0) = {c0,c1,c2,c3,c4} (18.7)

We take a minimalist view of an oscillator: a cell is included in an oscillator if its
removal would destroy the oscillator. So when considering the cells of an oscillator
alone, they may have incomplete neighbourhoods, but sufficient neighbourhoods to
allow correct oscillation. When the oscillator is considered as part of a larger tiling
there may be cells bordering the oscillator that must always be dead for the oscillator
to exist; these always dead bordering cells are not considered part of the oscillator,
since, as will become clear, they are not actively influencing the oscillator. This
approach to oscillator detection provides a clean platform to perform the subsequent
oscillator classification.

The oscillator detection is performed on the automaton ash in two stages: (A)
an assignment of cells to potential oscillators; (B) a removal of non-necessary cells
from the potential oscillators.
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1: for t = 0 to p−1 {each automaton state in the ash} do
2: while there is a live cell c that has not been processed yet do
3: if c /∈Ω {c is not contained in any oscillator} then
4: {create a new oscillator O containing just c and its current state}

O := {(c,σt(c))};Ω := Ω ∪{O}
5: else { c is in an oscillator, with (c,S) ∈ O }
6: S := S +σt(c) {update c’s state list with c’s current state}
7: end if
8: for each n ∈ N(c) {each of cell c’s neighbourhood cells} do
9: if σt(n) = {n is alive}

or σt(n) = � and |Nt (n)| ≥ 3
{n is dead and has three or more live cells in its neighbourhood} then

10: O := O∪{(n,σ0(n), . . . ,σt(n))} {add n to O}
11: end if
12: end for
13: if any of the cells n added to O are already a member of another oscillator R then
14: O := O∪R; Ω := Ω −{R} {combine O and R}
15: end if
16: continue recursively processing all neighbourhood cells n added to O
17: end while
18: end for

Fig. 18.97 Detection stage A algorithm

18.8.1.1 Detection Stage A

For each CA ash state, a breadth-first search starting from each live cell is per-
formed, to construct the set of all oscillators, Ω , as described in the algorithm in
Fig. 18.97.

Examination of the two conditions under which dead cells are added to an oscil-
lator (the “or” condition of step 9 of Fig. 18.97) reveals why a second removal stage
(B) is necessary in oscillator detection to remove certain dead cells.

If the dead cell n has exactly three live neighbours, |Nt (n)| = 3, then n will
become alive on the next automaton iteration, and so is added to O. It is added im-
mediately, to guard against the following situation: all three neighbours that caused
n’s birth die in the same iteration, no more neighbours of n are born, and all now
dead neighbours of n fail to satisfy the conditions under which dead cells are added
to an oscillator. So n would not be associated with the correct oscillator if it were not
for the |Nt (n)|= 3 condition. This situation arises in the p12 fireworks (Fig. 18.96).

If the dead cell n has more than three live neighbours, |Nt (n)|> 3, then the cells
of the oscillator are exerting an influence on the dead cell, forcing it to stay dead
(from ‘overcrowding’). Adding it to O allows detection of oscillators with disjoint
sections that interact via a forced dead cell. However, adding it may also add cells
that are forced dead on the interior of the oscillator, or on the boundary but which
may also connect coincidentally to non-interacting static or periodic structures. It
is these cells that must be removed, potentially resulting in a splitting of the can-
didate oscillator. But exactly which cells must be removed is not known until the
completion of stage A, and so a second removal stage B is needed.
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c2 c4

c3 c1

c0

Fig. 18.98 Oscillator graph G(Oπ ).

18.8.1.2 Removal Stage B

The objective of the second stage is to remove cells from the oscillator that are
not required by the oscillator. Given an oscillator, we test any two sub-structures
connected by only a dead cell (for example, cell e in Fig. 18.99). We test for the
existence of a time step in which one of the structures would cause this connecting
dead cell to become live, were it not for presence of the other structure. If there is
such a time step, then the dead cell is necessary to the oscillator; if there is no such
time step, the dead cell should be removed, and the oscillator split in two.

We perform this removal stage by labelling oscillator cells and considering os-
cillator neighbourhood graphs.

Define G(C) to be the (possibly disconnected) graph corresponding to a set of
cells C, which has a node for every c ∈ C and an undirected edge between every
cn,cm ∈C if cn ∈ N(cm). For an oscillator O we take G(O) to be the oscillator graph
of all the cells in O. For example, the plinker Oπ has the oscillator graph shown in
Fig. 18.98.

Define a γ-cell to be a cell c in an oscillator O that remains dead for every
timestep i of the oscillation: ∀t •σt(c) = � .

Define γ(O) to be the set of all γ-cells in O: γ(O) = {c ∈ O | ∀t •σt(c) = �}.
Define the complement, γ̂(O), to be the set of all cells in O that are not γ-cells (the
set of all cells that are alive for at least one timestep): γ̂(O) = {c∈O−γ(O)}. Note
that γ(O) and γ̂(O) partition the cells in O.

So G(γ̂(O)) is the (potentially disconnected) graph of all cells in O that are not
γ-cells (the graph of all cells that are alive for at least one timestep). G(γ̂(O)) will be
a disconnected graph if there are sub-graphs in the oscillator that are disconnected
but for a γ-cell.

Define Gκ(γ̂(O)) to be the set of the disconnected sub-graphs in G(γ̂(O)). So
the size of the set Gκ(γ̂(O)) is the number of sub-graphs in G(γ̂(O)). There are no
neighbouring nodes in different sub-graphs: if g1,g2 ∈ Gκ(γ̂(O)) then g1 6= g2 ⇔
∀c1 ∈ g1,c2 ∈ g2 • c2 /∈ N(c1).

Define an internal γ-cell to be a cγ ∈ γ(O) that is connected to only one sub-
graph in Gκ(γ̂(O)), and so does not connect otherwise disconnected sub-graphs in
G(γ̂(O)).

For example, consider the potential oscillator P (Fig. 18.99) after detection stage
A; Fig. 18.100 shows the oscillator graph G(P). P contains a p2 plinker next to a p1
still life, positioned such that they share a common neighbour, a γ-cell. The plinker
does not require the still life for its p2 oscillation, and the still life does not require
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Fig. 18.99 A potential oscillator P found by detection stage A. It contains a p2 plinker with a close
stable static structure, and the “on” cells are shown for its two timesteps. Cell e is always off and
is the only γ-cell.
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(b)

γ

Fig. 18.100 a) Oscillator graph G(P) marked with cell labels from Fig. 18.99; b) Oscillator graph
G(γ̂(P)); the γ-cell is not in G(γ̂(P)) but is drawn for clarity; the dotted line delineates the two
sub-graphs. There are two disconnected sub-graphs, so |Gκ (γ̂(P))|= 2.

the plinker for its p1 oscillation. From the oscillator graph in Fig. 18.100 it is clear
that removal of the γ-cell would disconnect these two independent structures. This
is the aim of stage B: to remove unwanted γ-cells whilst leaving the needed ones.

There are several examples earlier of oscillators that need γ-cell survival, includ-
ing disconnected still lifes (Figs. 18.25 and 18.28), the juggler (Fig. 18.85), and
the long juggler (Fig. 18.94). In all of these cases, the γ-cell has exactly three live
neighbours in at least one of the subgraphs for at least one timestep. It is stopped
from coming alive in the following timestep by live neighbours in another subgraph
in this timestep. If this other component were not present (if the oscillator were split
into parts), then this cell would become live, and the assumed structure would not
be preserved. Hence each of these oscillators is a true disconnected oscillator, and
not two separate oscillators in close proximity.

Removal stage B works as follows. Internal γ-cells are removed6. Each remaining
γ-cell connects two otherwise disconnected structures, and is checked for a timestep
in which one of the disconnected structures contains exactly three live neighbours
of the γ-cell. If there is such a timestep, then the γ-cell survives, otherwise it is re-
moved. (Since by definition the γ-cell is always dead, then if the γ-cell is connected
to a sub-graph containing three live neighbours, then there must be some other sub-
graph disconnected from the first with at least one live neighbour of the γ-cell that
prevents the γ-cell from coming alive. Hence that γ-cell in needed.) The algorithm

6 Note that internal γ-cells can also be necessary for the survival of an oscillator, in that there may
be three live cells from one part of the oscillator that would cause the γ-cell to come alive, were it
not for more live cells from another, but still connected, part. The “holes” in the oscillator might
need to be “narrow”. However, we ignore this point here because we are using the oscillator graph
simply to classify oscillators, not to discover suitable patches of tilings to support them.
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1: O := O−{internal γ-cells}
2: {any γ-cells still in O connect sub-graphs}
3: for each γ-cell cγ ∈ γ(O) {check for its survival requirement} do
4: for each sub-graph g ∈ Gκ (γ̂(O)) do
5: for each timestep t do
6: if |Nt (cγ )∩{c ∈ g}|= 3 { cγ has three live neighbours at t in g} then
7: mark cγ for survival
8: end if
9: end for

10: end for
11: end for
12: O := O−{all γ-cells not marked for survival}
13: {O now contains only those γ-cells it needs}
14: for each disconnected sub-graph g ∈ Gκ (O) do
15: construct a new oscillator from g
16: end for

Fig. 18.101 Removal stage B algorithm, for potential oscillator O

(a)

γ

(b)

γ

Fig. 18.102 The live neighbours of the single γ-cell e∈ γ(P) at t = 0 (a) and t = 1 (b). Black nodes
are live cells, grey nodes are dead cells. The edges between nodes that are not connected to the cγ

are not shown. There is no timestep at which one of the two sub-graphs has three live neighbours
of the γ-cell e, and so it does not survive. This removal leaves two disconnected sub-graphs, and
hence two resulting oscillators.

for removing unnecessary γ-cells and constructing the true oscillators from a poten-
tial oscillator O is given in Fig. 18.101.

The γ-cell in potential oscillator P does not meet these survival conditions: see
Fig. 18.102.

An oscillator that does require γ-cells is kd-p3-16-13 (Fig. 18.103). After detec-
tion stage A it has seven γ-cells (Fig. 18.104). Three of these are internal γ-cells, and
so are removed (Fig. 18.105a). The remaining four γ-cells connect otherwise discon-
nected sub-graphs (Fig. 18.105b), and must be checked for survival. The checking
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(0) (1) (2)

Fig. 18.103 The example kd-p3-16-13 oscillator (see also Fig. 18.65a), at t = 0,1,2. Every cell
depicted is included in the oscillator after detection stage A.
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Fig. 18.104 The example kd-p3-16-13 oscillator: a) the marked γ-cells; b) graph with marked
γ-cells.
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γ
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γ0
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Fig. 18.105 The example kd-p3-16-13 oscillator: a) the graph with internal γ-cells removed; b)
the disconnected sub-graphs: there are four γ-cells that require checking.

of the survival conditions is shown in Fig. 18.106: all four γ-cells meet the survival
condition.

The fact that all four γ-cells survive, each connecting the same two sub-graphs,
presents interesting issues. For example, one might wish to eliminate three of the
γ-cells from the description, as only one cell is required to connect the two sub-
graphs. Further, one could question whether a tiling variant might produce the same
oscillator sub-graphs with a different number of γ-cells. For the moment we leave
the full set of retained γ-cells in the oscillator description. We discuss these issues
further in §18.8.2.2.
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(2)
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γ1

γ2
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Fig. 18.106 The example kd-p3-16-13 oscillator, depicting γ-cell survival conditions at t = 0,1,2.
Live nodes are black, dead nodes are grey, edges between non-gamma cell nodes are not shown.
For all time steps the survival condition is fulfilled for γ0 and γ1, each with three live neighbours
in the lower sub-graph. For all timesteps the survival condition is fulfilled for γ2 and γ3, each with
three live neighbours in the upper sub-graph. Note that at t = 2 the survival conditions are satisfied
for γ0 with three live neighbours in the sub-graph also.

18.8.2 Oscillator Classification

18.8.2.1 Oscillator Graph Isomorphism

We use the oscillator graph G(O) introduced in §18.8.1.2 in addition to the identi-
fication code defined in §18.2.3.1 as the basis for a classification to group the zoo
of oscillators into isomorphism classes: those with identical neighbourhood graphs
and identical codes.

Define two neighbourhood graphs to be identical if they are isomorphic. If C(O)
denotes the cells of oscillator O, then two oscillators Oa, Ob are isomorphic if
there exists a mapping m : C(Oa) → C(Ob) such that any two cells c1,c2 ∈ Oa
are neighbours, c1 ∈ N(c2), in G(Oa) if and only if m(c1) and m(c2) are neigh-
bours, m(c1) ∈ N(m(c2)), in G(Ob). If two oscillator graphs are isomorphic, we
write G(Oa)∼ G(Ob).

An oscillator graph isomorphism checking algorithm can use the underlying
structure of the neighbourhood graphs, and the limited ways that they can be ex-
tended, to make the checks efficient.

The oscillator graph defines the topology of cells and neighbourhoods involved
in the oscillator (including any γ-cells), but does not define which cells are live at
each timestep of the oscillator. Note that the oscillator graph alone is not sufficient
to uniquely identify an oscillator, although exceptions are rare. Two different oscil-
lators may share a graph; in particular, the p2 fast shuffler (Fig. 18.48) and the p4
shuffler (Fig. 18.69) share a graph, Fig. 18.118c.

We have not (at least thus far) found a case where two clearly different oscil-
lators share the same graph and the same code, and so we use this combination to
identify isomorphic oscillators. If such cases are subsequently discovered, a further
disambiguation marking would be needed.
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(a) (b)
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Fig. 18.107 Constructing the macroscopic graph for D, the kd-p5-16-10 drummer oscillator
(Fig. 18.79): a) the oscillator graph G(D); b) the oscillator sub-graphs Gκ (γ̂(D)) and the γ-cell
sub-graphs γ1,γ2 ∈ Gκ (γ(D)); c) the oscillator sub-graphs Gκ (γ̂(D)), and markers corresponding
to γ1 and γ2; d) the macroscopic graph M(D).

18.8.2.2 Oscillators with γ-Cells: Macroscopic Isomorphism

As noted at the end of §18.8.1.2, there is a potential issue with the classifica-
tion of disconnected still lifes. Two oscillators may have isomorphic sub-graphs
in Gκ(γ̂(O)) that are connected by differing numbers of γ-cells: should these be
considered the same, of different, oscillators?

We define an extra layer of classification, which allows us to say that such os-
cillators are macroscopically isomorphic, but may be microscopically distinct. A
macroscopic or microscopic classification may be appropriate in different contexts.

To define macroscopic isomorphism we first define the macroscopic oscillator
graph of a disconnected oscillator O. Consider the disconnected subgraphs of γ-
cells in O, given by Gκ(γ(O)). Each gγ ∈ Gκ(γ(O)) is a connected graph repre-
senting γ-cells in O. Define M(O), the macroscopic graph of O, to have a node for
every gi ∈ Gκ(γ̂(O)) and an edge for every gγ ∈ Gκ(γ(O)) connecting the relevant
gi (connecting the sub-graphs that the corresponding gamma-cells connect). Note
that M(O) discards the specifics of the γ-cells, and just asserts that there are γ-
cells which connect two otherwise disconnected sub-graphs containing live nodes.
Fig. 18.107 shows the construction of the macroscopic graph for an oscillator with
multiple γ-subgraphs in Gκ(γ(O)).

Define two oscillators Oa and Ob to be macroscopically isomorphic if their
macroscopic graphs are isomorphic, M(Oa) ∼M(Ob), and each pair of sub-graphs
represented by their corresponding nodes are isomorphic.

18.8.2.3 Classifying the Still Lifes

Figures 18.108–18.115 show the oscillator graphs for various still lifes. (Note that
in a still life oscillator graph with no γ-nodes, every node must have precisely 2 or
3 neighbours.)

The blocks have fully connected oscillator graphs (Fig. 18.108a and c). The
graphs serve to distinguish the 4 cell tubs from the 4 cell blocks (Fig. 18.108b and
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(a) (c)(b)

Fig. 18.108 Three and four node graphs, corresponding to the still lifes p1-3 and p1-4: a) three
cell Penrose ace block, Fig. 18.18a, and Q block and D block, Fig. 18.19a; b) regular Life tub,
Fig. 18.16, and Penrose tubs, Fig. 18.17; c) regular Life block, Fig. 18.16, and the remaining four
cell Penrose blocks in Fig. 18.18, and in Fig. 18.19.

(a) (b)

Fig. 18.109 Five cell graphs, corresponding to the still lifes p1-5: a) regular Life boat, Fig. 18.20;
b) five cell kite and dart and rhomb chains, Fig. 18.21.

(a) (b) (c) (d)

Fig. 18.110 Six node graphs, corresponding to the still lifes p1-6: a) regular Life snake, Fig. 18.22a
and the Penrose 6-snakes, Fig. 18.23; b) the ship; c) the barge; d) the beehive, Fig. 18.22d, and the
six cell Penrose chains, Fig. 18.24.

c). This is the case for kite and dart and for rhomb still lifes (and indeed for the
regular Life case), justifying the common terminology.

All the discovered five cell chains in Fig. 18.21 have the same oscillator graph
(Fig. 18.109b). The regular Life five cell boat has a different oscillator graph
(Fig. 18.109a), and so is a distinct structure.

The regular Life snake and Penrose 6-snakes have the same oscillator graph
(Fig. 18.110a). The six cell chains have a circular oscillator graph (Fig. 18.110d), as
does the regular Life beehive.

The discovered six cell disconnected still lifes exhibit several different kinds of
microscopic oscillator graphs (Fig. 18.111a–c). These graphs contain extra nodes
corresponding to γ-cells: cells that are always “dead” but that are necessary to the
oscillator; note that each γ-cell is connected to precisely three nodes in at least
one of the “live” subgraphs. Also note that the graphs in Figs. 18.111b and c have
isomorphic subgraphs (isomorphic patterns of “on” cells) but different numbers of
γ-cells. They all have the same macroscopic graph (Fig. 18.111d).

The regular Life long snake and Penrose 7-snakes have the same oscillator graph
(Fig. 18.112a). All the discovered seven cell rings have the same oscillator graph
(Fig. 18.112d), which does not have a chain structure. Rather, it has a main ring of
six nodes, with the seventh node providing a third neighbour for two nodes in the
main ring. No regular Life still life has this graph; there is a regular Life pattern with
a seven node chain: the loaf (Fig. 18.26d).

There are no seven cell regular Life disconnected still lifes. The discovered seven
cell Penrose disconnected still lifes exhibit several different kinds of microscopic
oscillator graphs (Fig. 18.113a–d). There are two different macroscopic graphs
(Fig. 18.113e and f).
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(a) (b) (c)

(d)

Fig. 18.111 Six node microscopic graphs for disconnected still lifes p1-6: a) the regular Life car-
rier in Fig. 18.22; b) the still lifes in Fig. 18.25a and 18.25bi; c) the still lifes in Fig. 18.25bii and
iii. In the microscopic graphs, edges from γ-cell nodes are shown dotted, and γ-cells are shown as
squares, to help clarify the microscopic structure; d) the macroscopic graph for all three forms of
still life.

(a) (b) (c) (d)

Fig. 18.112 Seven node graphs, corresponding to the still lifes p1-7: a) regular Life long snake and
fishhook, Fig. 18.26, and the Penrose 7-snakes, Fig. 18.27a; b) the long boat; c) the loaf; d) seven
cell Penrose rings, Fig. 18.27b–d.

(a) (b)

(c) (d)

(e) (f)

Fig. 18.113 Seven node microscopic graphs for disconnected still lifes p1-7: a) kd-p1-7,
Fig. 18.28a; b) r-p1-7, Fig. 18.28bi; c) r-p1-7, Fig. 18.28bii; d) r-p1-7, Fig. 18.28biii; e) macro-
scopic graph for a and b; f) macroscopic graph for c and d.
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(a) (b) (c)

(d) (e) (f)

Fig. 18.114 Eight node graphs, corresponding to the still lifes p1-8: a) regular Life shillelagh, hook
with tail, very long snake, and canoe in Fig. 18.29, and the Penrose rhomb 8-snake in Fig. 18.30d;
b) the long ship; c) the long barge; d) the tub with tail; e) the pond, the cigar, and the Penrose
8-chains in Fig. 18.30a, bi, c; f) the Penrose S5 vertex variant in Fig. 18.30bii.

(a) (b)

Fig. 18.115 The graph for the Penrose dart still life rings in a) Fig. 18.35a and Fig. 18.36; b)
Fig. 18.35b.

(a) (b) (c) (d)

Fig. 18.116 Graphs for p2 oscillators a) l-p2-8-6, the beacon, Fig. 18.43b; b) p2-8-6, the marcher,
Fig. 18.46b and Fig. 18.50b; c) p2-9-7, the crowned marcher, Fig. 18.46c and Fig. 18.50c; d)
kd-p2-9-6, Fig. 18.46d;

The discovered eight node Penrose still lifes exhibit three different kinds of os-
cillator graphs: snakes, chains, and rings (Fig. 18.114).

A similar structure to the seven node ring (Fig. 18.112d), but at points all around
the main ring, is seen in the dart ring oscillator graphs (Fig. 18.115).

18.8.2.4 Classifying the Oscillators

Figure 18.98 shows the oscillator graph for all kite and dart and rhomb p2 plinkers,
as well as the regular Life blinker.

Figure 18.116 shows the graphs for the 8 and 9 cell p2 oscillators. The regular
Life beacon (Fig. 18.43b) and the kite and dart marcher (Fig. 18.46b) are both p2-
8-6, but have different underlying graphs (Figs. 18.116a and b), so are different
oscillators. However, the kite and dart marcher (Fig. 18.46b) and the rhomb marcher
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(a) (b) (c)

Fig. 18.117 Graphs for the p2-10-6 oscillators: a) the toad, Fig. 18.43c; b) the clock, Fig. 18.43d;
c) the hollow clock, Figs. 18.47 and 18.51.

(a) (b) (c) (d)

Fig. 18.118 Graphs for further p2 oscillators: a) kd-p2-10-7, Fig. 18.49a; b) r-p2-10-8, Fig. 18.52;
c) kd-p2-12-9, isomorphic fast shufflers, Fig. 18.48; and also the graph for the longer period kd-
p4-12-10, the shuffler, Fig. 18.69; d) r-p2-12-10, isomorphic oscillators from Fig. 18.55b.

(a) (b) (c)

Fig. 18.119 Graphs for p2 oscillators constructed from chains: a) r-p1-10 chain, Fig. 18.61a; b)
r-p2-12-10, Figs. 18.55a and 18.61b; c) r-p2-20-10, Fig. 18.62.

(Fig. 18.50b) have the same underlying graph, and so are isomorphic oscillators.
Similarly, the p2-9-7 crowned marcher (Fig. 18.46c and Fig. 18.50c) are isomorphic.

Figure 18.117 shows the graphs for the p2-10-6 oscillators. The oscillators in
Figs. 18.47 and 18.51 have isomorphic graphs (Fig. 18.117c), and are the isomor-
phic hollow clocks. They have similarities to, but are not identical to, the graph of
the regular Life clock (Fig. 18.117b).

Figure 18.118 shows graphs for further p2 oscillators. Note that kd-p2-12-9, the
fast shuffler, Fig. 18.48 has an isomorphic oscillator graph to the longer period kd-
p4-12-10 shuffler, Fig. 18.69. Here the code is also needed to distinguish them.

Figure 18.119 shows the graphs for the r-p1-10 chain, and the associated os-
cillators constructed from it. It demonstrates that the r-p2-12-10 oscillators in
Figs. 18.55a and 18.61b are isomorphic to each other, but distinct from the r-p2-12-
10 oscillators in Fig. 18.55b, which have a different oscillator graph (Fig. 18.118d).

Figure 18.120 shows the oscillator graphs for the breather, the bat, and the ninja.
These further demonstrate how we are able to identify both variant forms (the var-
ious kite and dart breathers, and the various bats), and how we are able to identify
forms across tilings (the kite and dart breather and the rhomb breather, the kite and
dart ninja and the rhomb ninja): they have isomorphic oscillator graphs.
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(a) (b) (c)

Fig. 18.120 The graph for a) p3-14-8, the breather and all variants, Figs. 18.63 and 18.67; b)
kd-p4-14-6, the bat and all variants, Fig. 18.71a–c. c) p5-15-8, the ninja, Figs. 18.78 and 18.86.

(a) (b)

Fig. 18.121 a) The oscillator graph for kd-p11-31-9, the malformed bat, Fig. 18.83; b) the bat
graph as a subgraph of the malformed bat graph.

Note that kite and dart ninja exists on the a0 neighbourhood (Fig. 18.10) rotated
around the Sun vertex (Fig. 18.4), and the rhomb ninja exists on the b1 neighbour-
hood (Fig. 18.12) rotated about the S vertex (Fig. 18.5). The a0 and b1 neighbour-
hood graphs are isomorphic.

Figure 18.121a shows the oscillator graph for the malformed bat, so named be-
cause a part of it has similarities to the bat oscillator. It has the bat oscillator graph as
a subgraph (Fig. 18.121b). Having another oscillator as a subgraph is not sufficient
to mirror its behaviour, because the graph does not capture which cells are alive at
any one time, and the other cells of the oscillator will have some influence on the
subgraph cells. Also, due to the structure of the tiling, large oscillators will tend to
have subgraphs corresponding to smaller oscillators. Nevertheless, oscillators that
do appear visually related will probably have this subgraph structure; for example,
the graph of the r-p7-19-7 hattipper (Fig. 18.91) appears as a subgraph of the related
r-p7-23-8 oscillator (Fig. 18.92).

18.9 Summary and Conclusions

We have continued our investigations of the Game of Life on Penrose tilings, pro-
ducing a preliminary catalogue of still lifes and oscillators, including comparisons
with similar oscillators on the regular Life tiling. We have catalogued many still
life and periodic oscillators, on both kite and dart and rhomb tilings. We have also
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demonstrated that arbitrarily large snakes and chains can exist. We have found no
propagating features analogous to gliders, but the existence of “fuses” burning along
chains makes us optimistic that such structures may be discovered.

We have introduced an identification code to help refer to different oscillators.
However, it does not completely distinguish different oscillators (although collisions
are rare, except among the still lifes). There are visually variant forms due to changes
in the tiling (for example, the variant oscillators on different SC extensions); these
have the same code. But a few oscillators that are obviously of a different form also
share the same code. We further distinguish these by considering the underlying
oscillator graph, which captures the topology of oscillator cells neighbourhoods.

The oscillator graph by itself is also insufficient to completely distinguish dif-
ferent oscillators (although collisions are again rare). The combination of code and
oscillator graph has, so far, proved sufficient to unify isomorphic forms whilst dis-
criminating different oscillators.

Isomorphic forms can exist on one, two, or all three tilings. For example, sev-
eral variants of the bats and of dancers exist on the kite and dart tiling; marchers,
breathers, and ninjas exist on both kite and dart and rhomb tilings; tubs, blocks,
snakes, and blinkers exist on all three tilings. If an oscillator exists on both the reg-
ular and one of the Penrose tilings, then it tends to exist on the other Penrose tiling,
too. The only exception in this catalogue is that we have not been able to find a
kd-p1-8 snake, despite there being a regular Life form (the very long snake) and a
rhomb form.

Our classification of disconnected oscillators requires the inclusion of γ-cells:
cells that are always dead, but whose removal would destroy the oscillator. We define
a further macroscopic oscillator graph, to provide a form of isomorphism between
disconnected oscillators with different numbers of γ-cells.

Further work includes extending the catalogue. Regular Life has very many small
oscillators; we suspect that our preliminary catalogue of Penrose oscillators has
identified only a small proportion of them; a more systematic search is needed.
Additionally, larger and longer period oscillators are still to be found. Here an evo-
lutionary search might be more appropriate.

Oscillators themselves, although demonstrating that Penrose life is complex, are
not the ultimate goal. That would be to use Penrose life to implement larger com-
putations in a way analogous to regular Life. We have made a start by suggesting
that “fuses” can be used to propagate information, or to implement timers. Many
more such components are needed: a starting place is to look at the structures and
interactions of small oscillators.
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