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Abstract

Many novel forms of computational material have been suggested, from using slime moulds to solve graph searching
problems, to using packaging foam to solve differential equations. I argue that attempting to force such novel ap-
proaches into the conventional Universal Turing computational framework will provide neither insights into theoreti-
cal questions of computation, nor more powerful computational machines. Instead, we should be investigating matter
from the perspective of its natural computational capabilities. I also argue that we should investigate non-biological
substrates, since these are less complex in that they have not been tuned by evolution to have their particular prop-
erties. Only then we will understand both aspects of computation (logical and physical) required to understand the
computation occurring in biological systems.

1. Introduction

Today’s computing, classical computing, is an ex-
traordinary success story. However, there is a grow-
ing appreciation that it encompasses an extremely
small subset of all computational possibilities. A va-
riety of paradigms encompass classical computing,
and their assumptions need to be carefully scru-
tinised. The UKCRC’s Grand Challenge exercise
[1] includes the Grand Challenge of Non-Classical
Computation (GC-7) [1–4], whose task it is to chal-
lenge and move beyond the various classical compu-
tational paradigms, thereby broadening and enrich-
ing the subject area.

GC-7 identifies and challenges the classical
paradigms [3], of which the Turing paradigm is
arguably the most prominent one. The Turing ma-
chine model assumes that computation is a logical
or mathematical property, and that the computa-
tional substrate is merely an implementation detail.
As Deutsch [5] neatly sums it up:

“Turing hoped that his abstracted-paper-tape model was

so simple, so transparent and well defined, that it would
not depend on any assumptions about physics that could

conceivably be falsified, and therefore that it could become
the basis of an abstract theory of computation that was

independent of the underlying physics.”

Deutsch goes on to argue that Turing’s model is in
fact falsified with respect to quantum physics. Other
assumptions of the Turing model can be questioned
[6] and modified, in particular considering the effect
of interacting with a physical real-time environment
[7].

The Turing model, relevant to computers as they
are conventionally engineered, is a designed logico-
mathematical computational model. People also see
computation occurring naturally. Neural networks,
immune systems, evolving populations, ecosystems,
termites building massive and complex homeostatic
mounds, ant colonies finding shortest paths to food,
bacteria swimming up concentration gradients to-
wards nutrients, and more: all these biological sys-
tems are said to compute.

But what does it mean, from this classical Tur-
ing perspective, to say that biological systems com-
pute? Turing computation, designed computation,
is about halting, computability and universality; it
is symbolic, discrete, and closed (pre-defined); it
is deterministic and sequential (in the sense that
probabilistic or parallel variants provide no addi-
tional computational power); it finds many interest-
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ing problems infeasible to compute in general; its
calculations are exceedingly fragile to small changes
or errors. On the other hand, biological computa-
tion, found computation, is about not halting (halt-
ing equates to system death); it is (mostly) non-
symbolic, continuous, and open (constantly adapt-
ing and evolving due to the continual flow of mat-
ter, energy, and information through the system);
it is essentially stochastic and massively parallel; it
finds feasible near-optimal solutions to many classes
of classically infeasible problems; and it is robust to
many classes of errors. (Indeed, it is these properties
of near-optimal solutions and robustness [8] that at-
tract many to the domain of bio-inspired comput-
ing.) So, how can biological systems, with properties
so different from classical Turing computation, be
considered to be computing? And if these systems
are computing, what is giving them these properties
not seen in classical computational systems?

These questions arise because half the picture is
missing. Biological systems are different from the
logico-mathematical Turing view of computation:
they directly exploit their material substrate to
perform their own style of computation. This con-
trasts with the case of classical computation, which
is deliberately abstracted away from the imple-
mentation substrate precisely to make it substrate-
independent. The classical computational virtual
machine can be implemented on any suitable sub-
strate, no matter how ‘unnatural’ that implemen-
tation may be for the substrate (for example, ana-
logue transistors being run saturated to make them
act as digital switches).

In this paper, I argue that we need to consider the
physical, material aspect of computation before we
can understand biological computation. To do this,
we should not start with biological substrates, since
these have been finely tuned by evolution to have
their particular properties. Instead, we should inves-
tigate various non-biological substrates, and exam-
ine their essential computational capabilities.

2. The effect of the substrate

2.1. The constraints of the substrate

The Turing model abstracts away from the de-
tails of the physical substrate. Nevertheless, a real-
isation of a computation must occur in some phys-
ical device. Any physical structure labours under
the physical constraints of the material from which

it is constituted. These constraints include the gen-
eral constraints affecting all materials arising from
the basic laws of physics, which involves consider-
ation of: the speed of light; conservation of energy;
entropy; energy and mass density; quantum lim-
its; the size of the observable universe. These pro-
vide ultimate physical limits to computation [9–13],
general limits that can be considered the physical
analogue of computability constraints in classical
computation. (There are also some philosophical ar-
guments whereby some logico-mathematical com-
putability constraints maybe also appear as physi-
cal constraints in the form of fundamental physical
laws.)

From the point of view of a biological system, or
any other open system interacting with its environ-
ment, there are constraints due to natural length
scales and timescales governing the interaction dy-
namics.

More interestingly, from the point of view of this
paper at least, there are also specific physical proper-
ties local to the substrate, such as its strength, plas-
ticity, elasticity, electrical and thermal resistance,
and so on. These provide problem and substrate lim-
its to computation, specific limits that can be consid-
ered the physical analogue of feasibility constraints
in classical computation.

2.2. The power of the substrate

Constraints are not always a disadvantage, how-
ever. The state space is constrained to a smaller re-
gion, and the computation to particular trajectories.
If those regions and trajectories are desired ones, the
constraints can help the performance of computa-
tion. For example, elasticity may enable some form
of return to equilibrium, or ‘reset’, to occur without
further specific implementation [14].

Additionally, the physical properties are not
merely constraints. Certain physical properties may
enable certain computational aspects to happen
“for free”, compared to implementing them in a
classical computer: the computational system may
be able to transfer some of its computational bur-
den (be it memory or processing) to the substrate.
Exploitation of the specific substrate may allow
new problems to be solved in new ways; physically
rich substrates may exhibit vast, if specific, compu-
tational power. Indeed, this is one of the claimed
advantages of the whole field of analogue computa-
tion: the underlying physical substrate implements
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the required computation directly, rather than via
levels of ‘virtual machine’ that abstract away from
the substrate and implement the logical computa-
tional model. When there is a good match between
the physical properties and the desired computa-
tion, then very efficient results may be obtained.
For example: the spaghetti sorting computer [15];
constructing Steiner minimal trees [16] using the
surface tension properties of a soap film as a surface
area minimiser [17]; performing 2D Fourier trans-
forms directly using the optical properties of lenses.
(It should be noted that one of the drawbacks to
these analogue methods often glossed over is that
they do not scale: for example, there is often a loss
of precision with large problems. However, analogue
computers have been very widely used: the slide
rule was ubiquitous for over a century.)

2.3. Simulating the substrate

Exploiting the power of the substrate should
be contrasted with the sub-discipline of “nature-
inspired computing”, where a physical, chemical
or biological process is interpreted as computation,
abstracted from the substrate, and implemented by
analogy in a classical manner. For example, sim-
ulated annealing [18], various artificial chemistries
[19], generic algorithms [20], ant colony optimi-
sation [21], to name but a few, have all been ab-
stracted from the underlying substrate and imple-
mented in classical terms. These have proved highly
successful in their new abstract domain, but have
lost something in the translation. For example,
there are often discussions on how to implement
the constraints, such as conservation of mass in ar-
tificial chemistries, or decay of pheromones in ant
systems. When one is working with the substrate,
the substrate does such implementation “for free”.
(Of course, one of the advantages of abstracted al-
gorithms is that one can then implement different
physical laws, unphysical laws, if so desired.)

3. Example substrates

3.1. Biological substrates

There is active research in the use of biological
substrates to perform “wet” unconventional compu-
tation. Possibly the best recognised, and best devel-
oped, is DNA computing [22], exploiting the molec-
ular properties of base-pair complementarity, orig-

inally to build a Hamiltonian path finding device.
Another relatively well-developed application of a
bio-molecule is the use of the bacteriorhodopsin pro-
tein as a three dimensional optical storage memory
[23,24]. There is also active research in exploiting
whole biological cells as components in computa-
tional devices, from leech neurons [25] to bacteria
and slime moulds [26].

This research is interesting and productive, but
does it tell us anything deeper about computation?
I would submit not. There are two main reasons
for this. Firstly, the applications chosen are usually
classical and digital, and not naturally suited to the
analogue substrates. Secondly, and more profoundly,
the biological substrate is extremely complex and
complicated, having evolved over billions of years to
exploit specific properties. In some sense, biological
substrate is as far (or further!) removed from a prim-
itive substrate as are our own designed abstract dig-
ital computational media. This makes it extremely
difficult to develop any abstract models of biologi-
cal material computation, or any concepts of how to
exploit (program) such material.

Hence, in order to understand, develop and ex-
ploit computation in materio [27], we need to move
to simple (that is, unevolved) materials: move out
of the domain of biology, and into that of chemistry
and physics.

3.2. Known physical substrates

Turing introduced reaction-diffusion systems as
a hypothesised morphogenic mechanism underly-
ing animal coat patterns [28]. Reaction-diffusion
systems comprise chemicals that react with each
other locally, and diffuse spatially at different rates
through the system. This complicated non-linear
process can lead to waves and spots of activity
throughout the substrate. This activity can be mod-
ulated by applying spots of chemicals, or illuminat-
ing the substrate with spatially varying patterns of
light. Reaction-diffusion systems are now consid-
ered more generally to be computational systems
[29]. For example, a 2D chemical substrate can be
prepared to solve a 2D Voronoi diagram problem
(given a set of pn points in space, divide the space
into n regions, one per point, such that every point
in a region i is closer to pi than it is to any other pj).
Put a spot of chemical at each point pi; the chem-
ical diffuses out; at the boundaries of the Voronoi
regions diffusing waves meet and react, leaving a
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chemical trace marking the boundaries. RD systems
can also be used to implement logic gates (see for
example [30]) and hence Turing machines.

Mills [31] implements (approximations to)
Rubel’s extended analogue computer, using a va-
riety of materials as the computational substrate:
conductive surfaces and solids including conduc-
tive plastic foam, and gelatin doped with sodium
chloride (that is, salted jelly 1 ).

3.3. Novel physical substrates

These are known substrates being exploited.
Where should we look to novel substrates that
might tell us something about computation? The
idea that the ‘edge of chaos’ [32] is connected with
maximal complexity and computational power is
at least suggestive (despite its details having been
questioned [33]). This idea is that maximal compu-
tational power occurs near a phase transition (in
some parameter of the system) [34], from a ‘solid’
form (where the system has structure/memory, but
no dynamics/processing) to a ‘fluid’ form (where it
has plenty of dynamics, but no structure). In other
words, to get interesting computational properties,
we want to look for phases of matter with both
complex dynamics and complex structure over a
wide range of time scales and length scales. It is
also helpful to look at cases where we could exploit
existing commercial laboratory technology [35].

Consider liquid crystals, a form of matter that lies
on the boundary between solids and fluids (some-
times called ‘the fourth phase of matter’). A liquid
crystal has both dynamics (the molecules can flow
and rotate) and structure (the molecules are ordered
on length scales much bigger than their individual
sizes). Can such materials perform computation?
The answer is a definite yes. Harding and Miller
have demonstrated that a liquid crystal chip can
be programmed to act as a tone discriminator and
as a robot controller [36–38]. It is currently unclear
precisely how the material performs these computa-
tions: in these cases the matter was programmed us-
ing an evolutionary algorithm. One reason these re-
searchers chose to experiment with liquid crystals in
the first place was the commercial availability of de-
vices conveniently packaged with electrical contacts:
liquid crystal displays. Liquid crystals are just one
form of “soft (condensed) matter”. The whole field

1 Or ‘salted Jello’, depending on your side of the Atlantic.

appears to be ripe for computational exploration,
all the more so because one end of the spectrum of
this complex form of matter includes bio-materials.

Consider nuclear spins, which are manipulated by
magnetic and radio frequency fields in the discipline
of nuclear magnetic resonance (NMR) and magnetic
resonance imaging (MRI). Materials manipulated in
this was have complex structure and dynamics in
terms of the interacting spin states, which may be
analysed in computational terms [39], and has the
advantage of commercially available spectrometers
sitting in many university Chemistry departments.
(This is different from the existing field of NMR
quantum computing, which exploits spin entangle-
ment in single molecules, rather than complex prop-
erties of bulk matter.)

Consider plasmas (ionised gases, also sometimes
called ‘the fourth phase of matter’), especially as
they occur in experimental fusion reactor plasmas.
This matter certainly has dynamics (much of the
research is dedicated to controlling this dynamics),
and turbulent structure over many length scales.
The performance of a fusion reactor depends on
the pressure gradient that can be sustained in the
plasma, which is determined by the rate at which
energy leaks out of the plasma due to turbulence.
These fine-scale turbulent processes can generate a
large scale sheared flow, which feeds back to sup-
press the turbulence, influencing the pressure gradi-
ent in a complicated way. This non-linear system can
yield experimentally observable phenomena such as
bifurcations, depending on the choice of parameters.
For example, one might model the pressure gradi-
ent as a pile of sand, with the plasma heating at
its core analogous to adding grains of sand to the
top of the pile. Instabilities in the plasma can be
triggered when the pressure gradient exceeds a cer-
tain value. The resulting redistribution of pressure
destabilises another region, and then another, lead-
ing to an avalanche process affecting the system over
a much larger length scale than the initial pertur-
bation at the unstable region. So the fusion plasma
has structure and dynamics, and can be analysed as
a complex system. Can it be analysed as a computa-
tional system? What are the natural computational
modes for such a system?
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4. From substrate to computer

4.1. Programmability

There are many forms of matter that have com-
plex structure and dynamics. Each could be anal-
ysed as a computational system, relating its compu-
tational properties and power to physical properties
of the material substrate. What is also required is a
more unified theory of various computational mod-
els of matter with structure and dynamics. This will
tell us something fundamental about the very con-
cept of computation, and how we could exploit the
different natural computational properties of differ-
ent kinds of material substrates.

Computation implies more than simply allowing
matter to slosh around in a complex manner, how-
ever. It requires programmability: we want to make
the matter compute for us, to solve our problems,
not (just) its own.

Any matter used to implement a computer needs
to be programmable on at least two levels: firstly
to implement the model of computation, secondly
to implement a particular program (including input
and output).

4.2. Resist the lure of Universality

A curious compulsion overcomes many re-
searchers in unconventional computation: no mat-
ter how inappropriate their substrate, they seem
compelled to use it to implement logic gates, and
thereby demonstrate that it can perform Turing
universal computation.

Whilst it might be intellectually interesting to re-
alise just how many weird ways there are to imple-
ment extremely inefficient Turing machines, what
does this teach us about computation that is new? I
would submit that, while using a reaction-diffusion
computer to generate Voronoi diagrams in a natural
manner suited to the medium is interesting, using
it to implement unnatural and glacially slow logic
gates is rather less so.

This compulsion seems to stem from a fear that
conventional digital colleagues will disparage non-
universal devices; however, a long history of success-
ful non-universal analogue computation would not
seem to support this fear. We should be exploiting
novel materials for what they can naturally do well,
not restricting them to do what other materials can
do so much better.

Zauner and Conrad [40] argue strongly for con-
sideration of the advantages of “anti-universal” ma-
chines, that can solve only a certain class of prob-
lems. The argument partly reduces to how much
of the “program” resides in the logical state (soft-
ware), and how much in the physical state (hard-
ware), of the machine. When is physical reconfigu-
ration to be considered as building a different com-
puter, and when is it merely reprogrammming the
hardware? The boundary here is blurring even in
the case of classical digital hardware, with the grow-
ing used of “programmable hardware” such as Field
Programmable Gate Arrays (FPGAs), and will blur
even more as we use other complex matter as a com-
putational substrate.

Zauner and Conrad [40] further argue that it may
even be advantageous to consider one-shot “instance
machines”, that can solve only a single instance of a
problem. By avoiding the requirement for resetting a
machine to its initial configuration, the computation
can irreversibly alter the state of the system (often a
consequence of using a complex biological substrate,
for example).

As we extend our notion of what is a computa-
tional device away from the requirement for uni-
versality, we will need to consider more dimensions
in complexity and cost analysis [41], especially the
setup time (initialising the logical and physical
state), and the material cost (which may no longer
be able to be amortised over multiple uses).

4.3. Implementing the computational model

Abstract mathematical models of computation
need to be implemented in physical devices that
have been engineered to behave in a manner iso-
morphic to those models. That engineering can be
extremely intricate, since there is no reason to be-
lieve a priori that physical material will behave in
accordance to some independent, unrelated abstract
model.

For example, Charles Babbage implemented
abstract mathematical laws of arithmetic using
exquisitely designed and arranged collections of tens
of thousands of brass gears and other parts. (Al-
though Babbage himself never actually completed
his Difference Engine, Swade and colleagues at the
Science Museum built a working implementation,
completed in 1991, to Babbage’s original design and
within the engineering tolerances of the time [42].)

Similarly, implementation of a Turing machine re-

5



quires implementation of the “moving parts” that
represent the current state, the state machine tran-
sitions, the moving head, the tape, and the tape
symbol reading, writing and erasing mechanisms.
Although one could do this (micro-)mechanically
[43,44], the usual implementation is the classical dig-
ital electronic computer. This requires exquisitely
designed and arranged collections of many millions
of transistors and other parts.

The raison d’être of computation in materio, how-
ever, is to be able to forego this implementation step.
Rather than start with some abstract mathematical
model, and then delicately engineer the substrate
to implement it, one starts with the computation
that the substrate does naturally. So there is little or
(ideally) no engineering required to implement the
model of computation itself. One is instead comput-
ing “close to the physics”, doing what comes natu-
rally, and therefore (hopefully) efficiently. This does
not mean, however, that there is no engineering re-
quired at all: one still has to be able to program the
device, else it is just a block of material.

4.4. Ballistic programming

The Turing machine model is a “ballistic” style of
computation: that is, the program is loaded, the ini-
tial configuration (input) is set up, then the compu-
tation “fires off” and proceeds with no further input
from the external world. If and when the machine
eventually halts, the final state (output) can be read
from the tape. The Turing model implements a black
box (partial) function evaluator.

An in materio ballistic analogue would require its
initial condition of the material to be set in a partic-
ular input state, then the material would be left to
compute, and the final state of the material would
contain (an encoding of) the output. Different initial
conditions, corresponding to different inputs, would
yield correspondingly different outputs. But what of
the “program”?

At the simplest level, the “program” is just the
laws of physics, as realised in matter with complex
structure and dynamics. The substrate follows these
natural laws, in a complex manner from its given ini-
tial conditions. To change the program, one cannot
change the laws of physics, however, so one changes
the structure and dynamics of the substrate.

One could do this by changing the substrate it-
self for one with different structure and dynamics;
essentially, changing to a different computer.

One could design the path of the computation
itself to affect the material, and hence its future
behaviour, through feedback, including: tempera-
ture and other physical changes; chemical composi-
tion changes; biological growth processes. Depend-
ing on how resettable such changes were, this form of
programmability might imply a one-shot “instance
machine”. (One of the current problems with us-
ing biological substrates is that they are extremely
more difficult to “program” in this manner than non-
biological substrates, due to them having evolved
intricate structure and dynamics for their own pur-
poses.)

Or one could directly modulate the substrate’s
behaviour by application of some form of external
field (for example, electrical potentials [36], mag-
netic fields [39], incident light). Since one would
probably wish to alter the modulation depending on
the current state of the computation, this final op-
tion fits in with an interactive style of programming,
where the modulation might also be chosen depend-
ing on the current state of the environment.

4.5. Interactive programming

Computational models such as CSP [45] and π-
calculus [46] are less concerned with halting, and
more concerned with ongoing interaction with an
environment. Wegner [47] discusses interaction ma-
chines, “Turing machines extended by addition of
input and output actions that support dynamic in-
teraction with an external environment” (and claims
that they are more powerful than Turing machines).
Interaction machines are therefore more akin to a
“guided missile” than a “ballistic” metaphor. They
provide a more natural way of describing and rea-
soning about certain forms of computation: real-
time, embedded, embodied, interactive applications
that need to repond to their changing environment,
which itself may be changing in response to interme-
diate outputs from the computation, in some closely
coupled feedback loop [7]. This style of computation
has rather different requirements from classical dis-
crete “payroll processing” style applications (which
are well-suited to classical computation).

For example, the computation should match the
timescales and precision of the environment with
which it is interacting, and be tolerant of stochas-
tic noisy analogue input. A material system that
operates on the same timescales and precision as
the environment, and which is itself also stochas-
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tic, noisy and analogue, may well be more naturally
suited than a high-precision digital system. The in-
teractive style of computation furthermore allows
continual minor corrections “in flight”, rather than
requiring exquisitely precise initial set-up (which
is furthermore impossible even in principle in an
unpredicatably changing environment). One would
wish to work with the natural dynamics of the sub-
strate, so that minor perturbations due to noise nat-
urally return to the original computational trajec-
tory, and that environmental (including program-
matic) inputs naturally move the system into other
trajectories. In other words, one is working with,
rather than against, the natural dynamics of the
substrate. One can even exploit the noise as a com-
putational resource in its own right [48].

The means of programming an interactive in ma-
terio machine would naturally be by modulating ex-
ternally imposed fields, which could well be inte-
grated with environmental input mechanisms (via
suitable transducers).

4.6. The programming model

A natural question arises: how to chose the right
field modulations to achieve the desired compu-
tation? In other words: what is the programming
model? Harding et al. [38] argue that material sub-
strates are so complicated and their dynamics so ill-
understood that the best approach is to treat each
substrate as a “black box”, and use an genetic algo-
rithm approach to evolve the desired programmed
inputs. They use this technique successfully to pro-
gram their liquid crystal applications [36,37].

There are two objections to their proposal, how-
ever. Firstly, they use fixed inputs for a computa-
tional run, and it is not clear that their approach
scales to more sophisticated time-varying inputs.
Secondly, and more importantly, although such an
approach suits their application-oriented emphasis,
it would not yield any new insights into the nature of
computation itself. Miller [private communication]
has suggested that an evolutionary approach could
be adapted to investigate the computational prop-
erties, in a more white-box approach: this seems en-
tirely plausible.

As for the argument that the dynamics are too
complicated: although the detailed microscopic
properties probably are too complicated to model or
simulate to any fine degree, it might be hoped that a
computational abstraction would be more amenable

to analysis. In the same way that it is possible to
abstract the detailed semiconductor physics of a
transistor into a model of a switch (albeit because
the implementation was designed to support that
very abstraction), it might be possible to abstract
the detailed dynamics of the substrate into higher
level trajectories through phase space and attractor
basins, and thence to form the basis of a computa-
tional, and ultimately, a programming, model. For
more classical computational examples: DNA com-
puting exploits only a small subset of the attributes
of the system (specific pairing of the complemen-
tary bases), so the detailed chemical processes do
not need to be considered from the perspective of
the computational model; a computational model
of a biological regulatory network may consider it
to be a logical switching network, abstracting from
its underlying biological and chemical complexity.

4.7. Gradients and flux

A computer, like any non-equilibrium device,
requires a flow of matter, energy, or information
through it to function. Classical digital computers
ingest electricity and excrete waste heat.

Material computers also require such a gradient
and flow: slime moulds require nutrients; chemical
reaction diffusion systems require influx of fresh
chemicals and removal of waste products; packaged
liquid crystal displays run on electrical power; and
so on. Applying and controlling a suitable gradient
(for example, extracting specific waste chemical
products, or controlling environmental fluctuations
such as temperature changes) might be quite chal-
lenging.

Biological organisms have evolved to exploit in-
formation gradients. A full computational theory of
biological systems should be able to explain and ex-
ploit the roles of both material and information gra-
dients.

4.8. An architecture

Figure 1 sketches an architecture for a pro-
grammable in materio computer. The main compo-
nent is the material substrate, with complex struc-
ture and dynamics behaving according to the laws
of physics. Through this substrate run pervasive
programmable fields, to modulate the substrate’s
structure and dynamics. (The precise nature of
these fields will be determined by the requirement
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program steps (modulated fields)

output 
(sub)state

controlling
choices made

in silico
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complex structure 

and dynamics

field 
gradients

Fig. 1. An architecture for a programmable in materio com-

puter.

for programmability, and by the specific details of
the material: electromagnetic fields are one obvious
candidate.) Environmental inputs, and program
instructions, are provided via these fields. Informa-
tion from the substrate can be read out, by natural
emissions, or by modulation of pervasive fields. A
programmable device (possibly a classical digital
computer) controls the pervasive fields, thereby
providing program instructions. The precise in-
structions provided may depend on details of the
output from the substrate. Hence the structure and
dynamics of the substrate are modulated by envi-
ronmental inputs and program instructions, which
in turn may be modulated by the material’s state,
in a closely coupled feedback loop.

Simpler special purpose “ballistic” in materio
computers may not require all these components,
in particular not the hybrid classical computer to
control the programming.

If one wants to shoehorn this architecture into a
classical Turing-like model, one might think of the
in materio component as an (interactive) “oracle”.
However, this relegation of most of the interesting
computation into a mysterious black box seems to
lose much of the power and interest of considering
the material to be implementing a (non-classical)
computational model in its own right.

5. Biological substrates

The kinds of lightly-engineered bulk matter men-
tioned here all implement what might be called “dif-
fusion communication” mechanisms: all interactions
are with local, neighbouring material, and so infor-
mation can only diffuse through the substrate. Dif-

fusion is slow.
Wires (pipes, nerves) are a means to implement

non-local communication: information can move in
larger leaps through the substrate, resulting in faster
communication, and more complex dynamics. As we
begin to build models of the computational capabil-
ities natural to materials, we should be in a position
to consider the effect of varying degrees of inhomo-
geneity in the materials, including the capability for
long range interactions.

The ultimate in inhomogeneous natural compu-
tation material is biological material. It is easy to be
mislead by cartoon pictures of cells with a blob of
nucleus floating in some thin liquid. Yet cells are in-
tricately structured, with nested compartmentalisa-
tion providing gating and control of bulk diffusion,
and highly dynamic, with cytoskeletal dynamical in-
frastructure supporting system-wide migration, self-
assembly and self-reproduction. The cartoon should
look more like minestrone soup than salt water; in-
side the nucleus is more complicated still. Moreover,
there are many emergent levels of structure and dy-
namics between basic physical or chemical processes
and a fully functioning biological cell.

This is why starting at biology in an attempt to
get computational models other than Turing ma-
chines seems too great a first step. A route that
first starts with understanding the computational
properties of (relatively) simple materials, in terms
of their complex structure and dynamics, and then
moves towards more complicated materials, ulti-
mately to materials evolved to exploit information
gradients, seems more likely to succeed. (I am by
no means saying that researchers should stop work-
ing on biological computation from an applications
perspective: that has a different goal.)

6. Summary and Conclusions

Figure 2 shows the “classical informatics” pillar
of computation, the subject matter of conventional
computer science. It also shows the neglected pil-
lar of material computation, the computation that
physical matter performs “naturally”. The overarch-
ing subject of biological computation rests on both
these pillars: evolved material exploiting an infor-
mation gradient. I have argued that only by fully un-
derstanding both pillars will we be able to produce
a theory of biological computation. And on the way
up the material pillar, we will discover fascinating
and powerful new models of material computation.
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