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Computational devices combining two or more different parts, one controlling the operation of the
other, for example, derive their power from the interaction, in addition to the capabilities of the parts.
Non-classical computation has tended to consider only single computational models: neural, analog,
quantum, chemical, biological, neglecting to account for the contribution from the experimental con-
trols. In this position paper, we propose a framework suitable for analysing combined computational
models, from abstract theory to practical programming tools. Focusing on the simplest example of
one system controlled by another through a sequence of operations in which only one system is active
at a time, the output from one system becomes the input to the other for the next step, andvice versa.
We outline the categorical machinery required for handlingdiverse computational systems in such
combinations, with their interactions explicitly accounted for. Drawing on prior work in refinement
and retrenchment, we suggest an appropriate framework for developing programming tools from
the categorical framework. We place this work in the contextof two contrasting concepts of “effi-
ciency”: theoretical comparisons to determine the relative computational power do not always reflect
the practical comparison of real resources for a finite-sized computational task, especially when the
inputs include (approximations of) real numbers. Finally we outline the limitations of our simple
model, and identify some of the extensions that will be required to treat more complex interacting
computational systems.

1 Introduction

Classical computation theory is epitomised by the Turing machine paradigm. We are concerned with
more diverse models of computation, in particular determined by the physical properties of the system
used as a computer [38]. A broad range of experiments and theory is being developed to investigate the
computational capabilities of chemical [26, 32, 39], biological [2, 3], quantum [36], optical [42, 40], and
various analog [28, 35, 31] computational substrates. Given that we have different types of computational
devices, not necessarily Turing universal, it is natural toask how tocomposethem, and to ask about the
computational power of the composition. We term such composed systemsheterotic computers1.

The computational power of a given physical system is determined not only by the operations avail-
able to manipulate the system, but also by the type of data that can be encoded in the system and the
measurements available to decode the result of the computation. When composing different systems, in-
formation must pass between them, making these data types and measurements relevant throughout the
computation. This is in contrast to classical complexity analysis, which focuses on the operations that

1Heterotic, from the Greekheterosis, a term in genetics meaning “hybrid vigour”.
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perform the computation, and assumes that data input and output are trivial in comparison. More care is
generally taken when using non-standard computational models. For example, in quantum computing,
DiVincenzo’s checklist [19] first identifies a physical system that can represent a qubit, then identifies
a set of operations sufficiently rich to provide universal quantum computation. Output from quantum
systems is also non-trivial, since measurements cannot determine the full quantum state with certainty.
Extra procedures in the algorithm are required to ensure themeasurement gives a useful output with
high probability. However, this analysis still focuses on the quantum processor without giving explicit
account of the role of the classical control systems.

Thus, we need a framework that not only allows different models of computation to be compared
and contrasted, but also allows us to compose different models and determine the resulting computa-
tional power, as motivated in [25]. In this position paper, we provide more details of the categorical
tools required to accomplish this. Together with a refinement/retrenchment approach to support pro-
gram development, these would provide the tools to determine the combined computational power of
the heterotic computer. The paper is organized as follows: In §2 we summarise prior work on several
heterotic systems: measurement-based quantum computing;NMR classical computing; qubus quantum
computing. In§3 we outline the categorical framework, in the context of a simple two-layer compu-
tational architecture, and outline a semantic basis and refinement approach. In§4 we describe how to
create the programming tools from this framework, using a modified refinement based method. In§5 we
summarise and outline the next steps for this work.

2 Heterotic computational systems

The role of the classical controlling system in quantum computation was first noted by Josza [24],
while demonstrating the equivalence of measurement-basedand teleportation-based quantum computing
schemes. In measurement-based quantum computing (MBQC), also known as cluster state, and as one-
way, quantum computing [33], an entangled resource of many qubits is prepared, then the computation
proceeds by measuring the qubits in turn. The outcomes from the measurements feed forward to deter-
mine the type of measurement performed on the next qubits (figure 1a). It was not until 2009 that Anders
and Browne [4] realised that the classical computation required to control and feed forward information
in MBQC is a crucial part of the computational power. Applying measurements without feed-forward
is efficiently classically simulable, as is (trivially) theclassical part of the computation. However, the
combination of the two is equivalent to the quantum circuit model, which is not (efficiently) classically
simulable. Thus the combination of two or more systems, to form a new computational system composed
of several layers, can be in a more powerful computational class than the layers acting separately.

Equivalent examples have been described in the realm of classical unconventional computation. In
experiments using liquid state NMR to perform simple gate logic [34] such as NAND, the instruments
controlling the NMR pass the outputs of one gate through to the inputs of the next (figure 1b). As with
MBQC, these controls play an essential role in the computation, but by themselves do not perform the
gate logic. Using NMR to do classical computing involves choosing a subset of the available parame-
ters suitable for representing classical bits, and restricting the operations to keep the spin ensemble in a
fully determined classical states. In this way, more robustoperations are obtained at the expense of not
exploiting the full capabilities of the physical system. Prior work on computation using NMR mostly
deals with implementations of quantum computations, predominantly based on solution-state NMR ex-
periments [23], with some examples exploiting solid-stateNMR [17]. As a step towards characterizing
the computational power of the NMR system, Bechmann et al [10] have produced a preliminary clas-
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Figure 2. A reduced gate sequence for exp(iασ σ +iβσ σ ) using six

Figure 1: (a) Measurement-based quantum computer. The baselayer is a cluster state. The control layer
performs measurements on the base layer, thereby changing its state; the control layer uses the observed
results of a measurement to decide what measurement to perform next. (b) Classical NMR computer
[34]. The base layer gates are implemented as NMR experiments: inputs are frequenciesω and phase
delaysφ ; outputs are the integrated output signal. The control layer performs “signal transduction”:
taking the integrated output, interpreting it as a 0 or 1, andconverting that to the appropriate physical
input signal. (c) Qubus quantum computer. The base layer is qubits, the control layer is a coherent state,
which can interact with several qubits at the same time, enacting the gates between the qubits. There are
no measurements in this fully quantum example, the qubit state determines the interaction with the bus,
which in turn changes the qubit state according to the externally chosen order in which it interacts with
the qubits.

sification of the experimental NMR parameters for implementing classical logic gates. This work has
been extended to take advantage of the inherently continuous nature of the NMR parameter space of
non-coupled spin species [11] by implementing continuous gates, so the combined system performs an
analog computation. However, the extent to which the control layer contributes to the computational
power of quantum or classical NMR computing has yet to be analysed.

The theory of ancilla-based quantum computation [5] has been abstracted and developed from MBQC,
into a framework where a quantum system (ancilla) controls another quantum system (the qubits), with
or without measurement of the ancilla system during the computation. This framework is capable of
modelling many types of hybrid quantum computing architectures. When the role of the ancilla system
is played by a continuous variable quantum system instead ofa qubit or qudit (d-dimensional quantum
system) further efficiencies become available. The qubus quantum computer uses a coherent state as the
bus, which has two quadratures, which act as two coupled continuous variable quantum systems. This
type of ancilla can interact with many qubits at the same time, allowing savings in the number of basic
operations required for gate operations [14] and for building cluster states [22, 13]. Figure 1c shows a
sequence of six operations that performs four gates, one between each possible pair of the three qubits.
Each gate performed separately would require two operations, thus this sequence saves at least two op-
erations over standard methods, more if the qubits have to beswapped to adjacent positions for direct
gates. Typically, this provides polynomial reductions in the number of elementary operations required
for a computation, when compared with interacting the qubits directly.
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Figure 2: The stepwise interactions between a base computation (stateB, state changeBOp) and a
controller computation (stateC, state changeCOp): the input to one is the output from the other.

3 Towards a categorical heterotic framework

The examples in§2 can all been depicted with the same structure of a base layerand a control layer
(figure 2). This can be generalised to multiple layers, each controlling the layer below, and being con-
trolled by the one above, and to layers with feedback loops that couple non-adjacent layers. Here we
focus on the simplest heterotic model, in which just two computers are coupled, one controlling the
other. For now, we take as given the particular division intolayers: we do not need this to be a unique
decomposition in what follows.

The pattern of computation and communication alternates between the two layers (figure 2). In this
basic model, the state of one layer does not change during thecomputation by the other (for example,
the control layer remains in stateC′ as the base layer evolves fromB′ to B′′). The basic model allows a
physical implementation where the state continues to evolve, if its subsequent computation depends only
on its input (either it is essentially “reset” to the previous state, or the input fully determines what happens
next). This case holds for our motivating examples in figures1a and 1b, although they have not yet been
explicitly cast in the framework. In the qubus example, figure 1c, the layers shown evolve only while
interacting with each other. However, single qubit gates applied directly to the qubits can be inserted
whenever the qubus is not connected to the qubit in question,which would then be an example of two
separate controlling layers doing different tasks. Furthermore, the coherent state (a quantum state) acting
as the bus itself has a classical control layer (not depicted), which determines the parameters (α ,β ) in the
interactions with the qubits. This architecture thus goes beyond our simple starting point of two coupled
computers, and serves to remind us that extensions to the basic model will be required.

One of the goals is a form ofrefinement calculus for heterotic computers, suitable for use by the
working programmer, to enable the full power of such systemsto be exploited. However, producing such
a framework first requires theoretical input. In particular, we need a suitable form of semantics on which
the refinement calculus is based. Such models exist for individual systems, for example, classical analog
computation has been modelled in several ways, from the traditional approaches based on differential
equations, to interval-based analyses relying on domain theory. Classical probabilistic computation can
be modelled via categories of stochastic relations, and non-determinism frequently requires categories
of relations, or constructions based on the power set functor. For heterotic computing, the theoretical
challenge is to give a formal description of how such systemsmay interact in non-trivial ways. Due to
the wide range of heterotic computing systems under consideration, we aim for an abstract categorical
semantics, and seek concrete instantiations where appropriate.

Given two dissimilar systemsA andB, and models of each of these in distinct categoriesCA and
CB, we require a formal setting in which both the joint system, and the non-trivial interactions between
systemsA andB, may be modelled. If we wish to model a joint systemwithoutconsidering interactions,
the product categoryCA×CB is the natural choice; however, for our purposes, it is entirely inappropriate.
The real object of study (and, we claim, source of computational power) is found in the non-trivial
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interactions between the subsystems.
How, then should we describe interactions between computing devices whose models are to be found

in distinct categories? One approach would be to find some larger encompassing category, sufficiently
broad and general to model both devices (similar to the way that both classical probabilities and complex
phases may be combined in the density matrix formalism of quantum mechanics). However, the down-
side of this approach is that, with highly dissimilar devices, the required framework must be excessively
abstract or general. There is also the more philosophical objection that this approach would be trying to
treat our interacting systems as a single system in some moregeneral setting, missing the motivation of
studying theinteractionof distinct systems for its source of computing power.

So instead, to model interactions between systemsA andB, we rely on some structure-preserving map
from models of systemA to models of systemB, and vice versa. These must be functorsΓ : CA → CB

and∆ : CB →CA. The question is, what further categorical properties mustthese be expected to display?
As a motivating example, we consider categorical structures that are at the core of many computing

systems, and consider how they can be either generalised or relaxed, in order to deal with systems based
on interacting distinct systems. In categorical models of logic and computation, the notion of a closed
category – usually monoidal closed – is often fundamental. In logical systems, monoidal closure provides
the structure necessary to model cut-elimination, and given a computational interpretation of logical sys-
tems (commonly via the Curry-Howard isomorphism) this interprets asβ -reduction in lambda calculus
[27]. Other logical or computational interpretations are available, from compositionality in models of
Turing machines [21], to the essential categorical structure of teleportation in quantum computation [1].

A monoidal categoryC , has a functor (themonoidal tensor) ⊗ : C ×C → C , satisfying(A⊗B)⊗
C ∼= A⊗ (B⊗C) together with a unit objectI satisfyingA⊗ I ∼= A ∼= I ⊗A. (The families of arrows
exhibiting these isomorphisms must satisfy additionalcoherenceandnaturality conditions; see [29] for
more details). A monoidal category ismonoidal closedwhen there also exists a functor (theinternal
hom) [ → ] : C op×C → C that satisfies

C (A⊗B,C) ∼= C (B, [A→C]) (1)

This is a canonical example of an adjunction. Further, in thevery special case where the system is
untyped(so all objects ofC , excluding the unit object, are isomorphic), we recover thefamiliar untyped
equationsD ∼= D⊗D ∼= [D → D] providing models ofuniversal computation(e.g. the C-monoids of
[27] or the untyped compact closure of [20]).

For our purposes, monoidal closure, in either its typed or untyped form, is too strong: it describes
situations where the computation is carried out in a single homogeneous system. Further, we do not
expect, or require, universal computation from our heterotic systems. Instead, we take the notion of an
adjunction between two functors as primitive, and expect torecover more familiar models of computation
in the special case where the interacting systems are identical.

The notion of an adjunction is simply a categorification of the concept of a Galois connection, thus
two functorsΓ : CA → CB and∆ : CB → CA form an adjoint pair whenCA(Γ(X),Y) ∼= CB(X,∆(Y)), for
all X ∈ Ob(CA), Y ∈ Ob(CB). The duality provided by such an adjunction allows us to model the mutual
update of systemA by systemB and systemB by systemA, without requiring that systemB is fully able
to simulate the behaviour of systemA, or vice versa. We are thus able to capture the sometimes hidden
symmetries we expect to find within such interactions.

For concrete examples, we expect much more categorical structure; we are not claiming that the
theory of adjunctions in itself will provide enough structure to give categorical semantics of heterotic
systems. However, we take the existence of a suitable adjunction, between categories modelling dissimi-
lar systems, as the basic defining characteristic of a heterotic system. Each concrete example will depend
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(a) (b)

Figure 3: (a) A simulation, used to prove refinement; (b) Physical and computational layer relationship

on the specific details of the two interacting systems. An illustrative example is available in the categor-
ical semantics approach of Abramsky and Coecke [1], where anadjunction (via its characterisation as
unit/co-unit maps in a 2-category setting) is used to describe creation of quantum systems from classical
data, and measurement of quantum systems (resulting in classical information).

Thus, it appears that relatively simple category theory provides ready-made abstract conditions suit-
able for describing the mutual update of distinct systems inheterotic computing, along with real concrete
examples of how this works in certain settings.

4 A heterotic refinement framework

Given some suitable semantic framework, such as the one outlined above, it is necessary to cast it in a
form suitable for enabling the working programmer to analyse and develop novel heterotic systems in
(relatively) familiar ways. We suggest that a classical refinement framework is more appropriate than,
say, a process algebra approach, since this is more accessible and familiar to the working programmer.

State-and-operation refinement is the classical computational approach to program development. It
takes an abstract, possibly non-deterministic, specification of a stateA evolving under a sequence of
operationsAOp, and refinesit (reducing non-determinism, changing data types) into a more concrete
implementation with stateC and operationsCOp, with the abstract stateA retrievedfrom the concrete
stateC through the retrieve relationR (figure 3a). We have the refinement correctness requirement
(ignoring non-determinism here for simplicity) that the diagramcommute(we get the same value forC′

either way round):
R′(AOp(A)) =COp(R(A)) (2)

Usually the process of refinement stops at a computational level suitably concrete to allow implemen-
tation, such as a mid-level programming language. It can in principle be carried further. Here we need
to consider it all the way down to the physical implementation, since we are interested in non-classical
execution models. So we continue refining fromC down to the physical level, with a stateX, that evolves
under the laws of physics,Φ. The physical state variables inX are again retrieved through relationRCX

as computational state variables inC (figure 3b). Refinement reduces non-determinism until we reach
a completely deterministic implementation. We classically think of the resolution of non-determinism
being under the control of the programmer, but when we reach the physical layer we may be left with
intrinsic non-determinism. In the case of quantum computation, while unitary quantum evolution is de-
terministic, measurement of quantum systems in general is not. The programmer can either arrange for
the algorithm to present a final state with a deterministic measurement outcome (derandomization), or,
accept that the computation may need to be repeated to increase the probability of obtaining the required
outcome. Note that the induced computationCOpdepends on both the physical systemΦ and the view-
ing interpretationRCX. We would like this diagram to commute (to get the same value for X′ either way
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round), but there will be errors (measurement, noise)2. So we can at best require the inexact commutation

RCX
′(COp(C)) = Φ(RCX(C))± ε (3)

Retrenchment [6, 7, 8, 9] is a form of inexact refinement. It allows deviations from exact refinements
by use of various forms ofconcedesclauses; analysis of the retrenchment concessions provides insight
into the way an implementation deviates from a pure refinement. In particular, retrenchment has been
applied to developing discrete implementations of real number specifications [8], and to finite imple-
mentations of unbounded natural number specifications, which are necessarily inexact. Also, it has been
suggested as a laboratory for analysing and understanding emergent behaviour of complex systems [6].

Retrenchment has its critics in the purist refinement community, but we have argued elsewhere [7]
that these criticisms are invalid in the context of real world engineering developments, even in the classi-
cal computing model. Here we claim that (some suitably posedform of) retrenchment is appropriate for
casting non-exact computations in unconventional substrates in a refinement-like framework. It would
be used to analyse the size, nature, and propagation of errors.

The usual classical refinement correctness rules allow inputs to and outputs from the operations, but
require these to be the same at the abstract and concrete levels. In previous work [16], we have gener-
alised these rules to allow refinement of i/o, too. This necessitated the introduction of afinalisationstep,
that can be interpreted as the definition of the observation made on the system. There is aninitialisation
step, that we have extended to interpret inputs analogously. The finalisation of the most abstract level is
usually the identity (we see the “naked” abstract i/o); moreconcrete implementations have more sophis-
ticated finalisations (eg, we see a bit stream, but view it, finalise it, as an integer) [15]. The correctness
rule (again, ignoring non-determinism) is

AFin(A) =CFin(R(A)) (4)

This work has also been extended to the retrenchment arena.
A form of i/o refinement is necessary to move between physicali/o variables and computational

i/o variables. For example, in the case of the NMR adder [34]:the physical level is the NMR; the
computational level is the NAND gate; the initialisation isinterpreting a frequency and a phase delay as
a bit; the finalisation is observing an integrated signal as abit. For this form of initialisation/finalisation
to work in the analysis, it has to be possiblein principle to provide all the inputs at the start of the
computation, and to observe (a record of) all the outputs at the end. This cannot be done for the individual
layers of the heterotic computation, where the output from one layer becomes the input to the other (it is
closer to a Wegner interaction machine architecture [41]) but can for the overall computation, so we need
to be careful about how we set up the analysis, and precisely what we define as i/o. This step is crucial
in our heterotic framework, since, as stated earlier, the encoding and decoding processes (formalised as
initialisation and finalisation) are non-trivial in general.

We have an additional step in the NMR example [34], where the physical inputs and outputs are
of different types, but the output from one step becomes the input to the next. We perform asignal
transductionstep here (integrals over Fourier transforms transduced tophases, that preserves the initial-
isation/finalisation interpretations). This does not havean analogue in the refinement scenario, because
that does not include any link between the outputs of one operation and the inputs of the next. This is
important in the context of heterotic computing, as there ispotentially significant computation applied to
outputs to produce the next inputs. This computation is performed by the other part of the computer.

2Classical digital hardware is extremely engineered to ensure an exact boolean implementation; this exactness cannot nec-
essarily be assumed in the more general case.
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The base and controller levels can be implemented (refined) separately. For example, in the quantum
cluster state and the classical controller (figure 1a), the state is set up initially, and the only operation
performed in the base layer is measurement; which measurement to perform is determined in the classical
controller level based on previous measurement results. The measurement itself changes the state, which
is part of the computation. In NMR (figure 1b), where the base level is the NMR gates; the controller
level is mere signal transduction – this shows that there is no sharp separation between the i/o refinement
and the computation (in this case it can be done in either).

These concrete models can be used as the basis for developinga suitable form of refinement calcu-
lus. Possibly the closest pre-existing work relating to this is the use of weakest precondition semantics
to study Grover’s algorithm developed by d’Hondt and Panagaden [18] — in particular, the way that
a hybrid quantum/probabilistic setting is modelled by the density matrix formalism. This gives a spe-
cific case of the type of underlying logical rules that need tobe preserved by the refinement calculus,
by analogy with the way that traditional program refinement preserves the Hoare logic. However, in
each concrete setting, the behaviour/logic preserved by the refinement process will be different, and the
formal calculus produced in each case will be heavily dependent on the underlying categorical models.
Moreover, for non-discretised systems, this relevant refinement calculus would need to be extended to a
retrenchment approach to allow a well-defined and principled form of inexact refinement. This would
include analysis of propagation of errors [12] (due to noise, and to drift), and techniques for correction
and control of these errors.

5 Discussion and conclusions

We have described a novel computational framework, heterotic computation, that can be used to combine
computational systems from different implementation paradigms in a principled and controlled manner,
to produce a computational system qualitatively differentfrom either in isolation. We have outlined a
semantic and refinement framework that could be used to support such an approach.

One goal of such a framework is to analysise the efficiency of acomputational system. Here we
take a broad view of “efficiency”: it covers both the traditional scaling and complexity classes, and also
covers issues of real-time performance on real world scale problems. Both views are important, and
they do not necessarily coincide, especially in combinations of disparate physical systems each being
exploited for its own particular computational capabilities. As an example, the quantum community
is developing “hybrid computing” [37, 36, 30], to create practical quantum systems that can compute
something non-trivial before errors come to dominate. There efficiency gains from the theoretical com-
plexity point of view are considered later, only once the abstract theory is tackled (for example, MBQC
vs ancilla-driven quantum computation). The heterotic framework, in both its categorical semantics and
its refinement/retrenchment calculus, allows for a range ofefficiency considerations, because it allows
analysis of the computational processes and error propagation in all the relevant parts of the system: the
individual layers, their interactions, and the overall system. From this, both the complexity theoretic
efficiency and the practical efficiency can be derived.

This is only the first step in such heterotic computation. We have mentioned several areas that would
need enhancement to the simple framework we have started with: where the base layer continues its
computation whilst the controlling layer is working, and where there is more than one layer. A range
of dynamical systems will contain continuously evolving layers; one of the things the controlling layer
will need to decide is when to probe/perturb the base layer, to exploit its dynamics. Additionally, further
forms of parallelism also need to be added to the framework.
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We believe the heterotic approach is needed to ensure that the many forms of unconventional com-
putation can be exploited fully. Each individual paradigm no longer need be distorted to achieve Turing-
completeness. Instead, different components can be combined to form a more powerful system, with
each component doing what it does naturally, and best.
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