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Abstract

In this position paper, we introduce the concept of neutral emer-
gence (defined by analogy to an information theoretic view of neutral
evolution), and discuss how it might be used in the engineering of
robust emergent systems.

1 Introduction

We are interested in engineering emergent systems. That is, given a specifi-
cation of a property, how can we implement a system such that this property
emerges? Furthermore, how can we make this property robust, and how can
we argue that the system is suitably implemented (for example, for certifica-
tion purposes)?

In this position paper, we introduce the concept of neutral emergence
(defined by analogy to an information theoretic view of neutral evolution),
and discuss how it might be a potential component of such an engineering
process.

Section 2 summarises background material on neutral evolution, and its
formulation in information theoretic terms. Section 3 summarises back-
ground material on emergence. In section 4 we cast emergence in information
theoretic terms, by analogy to information theoretic evolution. In section 5
we introduce the concept of neutral emergence, show how it is related to
system robustness, and describe our plans to investigate this further.
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2 Background: evolution

2.1 Neutral evolution

The mapping from genotype (DNA) to phenotype (organism) is complex, and
there is significant redundancy in both. Different genotypes can map to the
same phenotype; for example, different codons (DNA nucleotide triplets) can
code for the same amino acid. Hence the genotype can change (a nucleotide
can mutate) without changing the phenotype. Similarly, the same genotype
can result in different phenotypes, due to different environmental conditions
during development.

Neutral evolution is a well recognised phenomenon in evolutionary biol-
ogy [Stearns & Hoekstra 2000, Ridley 2004]. It involves a change in the
genotype without a significant change in the fitness of the phenotype; that
is, it involves a change that is selectively neutral. Such changes allow the
phenotypic population to explore their fitness landscape, by drifting along
contours of equal fitness, to regions where they may subsequently find fitter
solutions not directly accessible from their original position in the landscape.

2.2 Information theoretic evolution

[Adami 1998, Adami & Cerf 2000, Adami 2002] gives a description of evo-
lution in information-theoretic terms, by considering the information in the
genome in the context of its environment.

[Adami 1998] classifies a (digital) genome into ‘hot’ and ‘cold’ bits. The
cold bits are ones strongly conserved in the population, whereas the hot
bits vary between population members, and are therefore (presumably) not
significantly contributing to the fitness. So, in general, mutations of hot bits
are neutral, but occasionally might be beneficial, at which point they become
‘frozen in’ to the population, and conserved.

These fitter organisms are exploiting their environment better, and so
must contain more information about the environment [Adami 1998, p115].
In information theoretic evolution, the genome is seen as some kind of repre-
sentation of the environment: the cold bits are strongly correlated with the
environment, whereas the hot bits are not. The more correlated bits there
are, the higher the mutual information between the organism’s genome and
the environment:
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Figure 1: Evolution increasing the mutual information between the genome
S and the environment E. (Adapted from [Adami 1998, fig.5.7].)

I(S : E) = H(S) − H(S|E) (1)

The mutual information, or correlation, between the system S and its envi-
ronment E, I(S : E), is the entropy of the system, H(S), less the conditional
entropy of the system in the context of the environment, H(S|E). This con-
ditional entropy H(S|E) can be thought of as the amount of information in
the system that cannot be explained by (correlations with) its environment.

Evolution (increasing fitness) is then increasing mutual information: in-
creasing the shared information, or correlations, between the genome and
the environment. So “natural selection can be viewed as a filter . . . that lets
information flow into the genome, but prevents it from flowing out” [Adami
2002]. See figure 1. (For simplicity, the figure shows the total information in
S as not changing, hence the conditional information decreases as the mutual
information increases. This is not necessarily the case: a neutral evolutionary
step could change the amount of conditional information H(S|E) by increas-
ing the size of the uncorrelated part of the genome [Adami 2002]. This could
happen, for example, by mutating a redundant part of the correlated genome
such as could have resulted from a gene duplication event.)

[Adami 1998] allows bits to ‘freeze’ individually, with monotonic increase
in fitness. In reality, things are more complicated, as bits are correlated
within a genome [Adami 2002]. Evolutionary search is a complex combina-
torial problem, so when some bits go cold it is necessary for other bits to
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become hot again: there is no guarantee that the mutual information will in-
crease monotonically. This can affect evolutionary trajectories, as it may not
be possible ‘to get there from here’ by the moves permitted by evolutionary
operators [Kauffman 1993]. However, this does not undermine the principle
of the information-theoretic approach.

2.3 Neutral evolution in information theoretic terms

The mutual information, I, is independent of the hot bits in S; it depends
only on the cold bits correlated with the environment E. These random hot
bits can change without affecting the mutual, or shared, information. Hence,
in this context, neutral evolution is a change in the genome that does not
affect the mutual information of the genome and its environment, I(S : E).
This means that S is robust to these kind of genomic changes.

As noted earlier, the conditional information H(S|E) may increase with-
out decreasing the fitness if, for example, a mutation occurs in a redundant
part of the genome. [Soule 2003] discusses genome growth as a strategy for
increasing robustness (to perturbations from the genetic operators).

A similar argument means that parts of the environment E that are not
correlated with S can also change neutrally (from the point of view of S):
can change without the organism “noticing”. So S is robust to these kind of
environmental changes, too.

When using an artificial fitness function in an evolutionary algorithm, it
is important to take these ideas into account to get a robust solution. [Branke
1998] notes that “this means that not only the solution should be good, but
also that the (phenotypic) neighbourhood of the solution should have a high
average quality. Looking at the fitness landscape, a solution on a high plateau
should be preferred over a solution on a thin peak: if the environment changes
slightly . . . the solution on the plateau will yield much better expected quality
than the solution on the peak.” This can be achieved by adding noise to the
fitness function, thereby increasing H(E|S).

2.4 Information theoretic measures

As [Adami 1998, Adami 2002] points out, what is important is the mutual
information between the system and its environment: the amount of infor-
mation stored in the system about its environment. [Adami & Cerf 2000]
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dub this mutual information the physical complexity (a relative measure; as
opposed to the mathematical, or intrinsic, complexity).

Calculating this requires the use of some information theoretic measure
(as seen in equation 1). In this paper, we are deliberately vague about the
precise form of measure to be used, as the details depend on the particular
measure, but the concepts are not so sensitive to it. Some measures are
summarised in appendix A.

3 Background: Emergence

3.1 Definitions

[Stepney et al. 2006] provide a review of opinion on emergence, and sum up
its characteristics as follows.

• The whole (system) is greater than, and different from, the sum of its
parts (in terms of behaviour and other qualities) [Aristotle 350 BC,
Anderson 1972].

• Emergence can, in various senses, be equated to novelty [Crutchfield
1994, Ronald et al. 1999, Bickhard & Campbell 2000] (but not to ‘sur-
prise’; see later).

• A process view, in which particles are merely expressions of stable pro-
cesses, is more useful than a substance view [Bickhard & Campbell
2000, Campbell & Bickhard 2001, Abbott 2006], especially when con-
sidering emergence in non-equilibrium dynamical systems.

• Levels are essential: emergence occurs at a higher level [Emmeche et al.
1997, Hordijk et al. 1998, Bickhard & Campbell 2000] or longer time
scale than that on which basic processes occur [Campbell 1974, Burns
et al. 2005].

• Emergence is a characteristic that is expressed at the high level, caused
by the low level [Bedau 1997, Abbott 2006], yet emergent systems may
exhibit a form of ‘downward’ causality, where the high level emergence
influences subsequent low-level activity [Campbell 1974, O’Conner 1994,
Faith 1998, Bickhard & Campbell 2000, Campbell & Bickhard 2001].
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• Emergence is related to the attractors of dynamical systems [Kauffman
1993, Newman 1996, Goldstein 1999].

[Bar-Yam 2004] argues that strong emergence is a consequence of global con-
straints on the system (as opposed to constraints on its components). As a
subsystem cannot be understood in isolation from the system, so a system
cannot be understood in isolation from its environment.

Our starting point is (an adaptation of) [Ronald et al. 1999]’s definition
of emergence. They say “The language of design L1 and the language of
observation L2 are distinct, and the causal link between the elementary inter-
actions programmed in L1 and the behaviors observed in L2 is non-obvious
to the observer—who therefore experiences surprise.” In [Stepney et al. 2006]
we explain why we do not like the use of ‘surprise’ as a criterion for emer-
gence: it is subjective, and wears out with repetition. However, we do follow
[Ronald et al. 1999]’s use of two languages of description, which here we call
L for the ‘microscopic’ local level of implementation substrate, and S for
the ‘macroscopic’ global level of the model or specification (we are interested
both in observing and modelling natural emergent systems, and in specifying
and implementing engineered ones).

3.2 Existence of ‘natural’ levels

[Israeli & Goldenfeld 2006] note that there is an emergent natural length scale
for CA coarse graining (see appendix B). Other such processes also have an
associated natural scale. For example, the process of “reconstructing the
attractor” from time-lagged observations [Takens 1981] is a form of coarse-
graining that does not lose the underlying dynamics, and the correct time
lag to use can be found using mutual information [Ray 2004].

Hence emergence is not an arbitrary feature, dependent merely on the
chosen coarse graining or level of observation. There are some levels that
are ‘better’ than others (for example, coarse grainings that better describing
the underlying dynamics), which form a natural level for discovering, or
designing, emergent properties.

4 Emergence in information theoretic terms

By direct analogy to the information theoretic description of evolution, we
can define an information theoretic quantity of emergence:
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Figure 2: Modelling, or incremental system development, as increasing the
mutual information between the system specification S and the implementa-
tion L.

I(S : L) = H(S) − H(S|L) (2)

The amount of emergence I(S : L) is the mutual information, or correlation,
between the specified system S and its implementation in substrate level L.
This is the entropy of the specified system, H(S), less the conditional entropy
of the system in the context of the implementation substrate, H(S|L). This
conditional entropy H(S|L) can be thought of as the amount of information
in the system specification that has not been captured by (correlations with)
its implementation.

Modelling, or incremental system development, can be viewed as increas-
ing mutual information: increasing the shared information, or correlations,
between the system specification and its implementation (figure 2).

If one were trying to explain (model) an observed system S in terms of
L, the conditional information H(S|L) might be considered to be ‘surprise’:
behaviours or properties of S not explained by L. (It might just be noise.)
If one were trying to implement a specified system S in an implementation
substrate L, this conditional information is the part of the specification that
has yet to be captured by the proposed implementation L: more development
work is required.

The conditional information H(L|S) (the information in the implemen-
tation not correlated with the system specification) might be considered as
‘surprising’ properties of L, properties unnecessary for the realisation of S.
Of course, these additional properties might well be invisible if the system
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is viewed through high level observation ‘glasses’ [Clark et al. 2005] that see
only system-level properties (multiple distinct microstates nevertheless re-
sulting in the same observed macrostate). We see (later) that these extra
properties can nevertheless be exploited to get robust implementations of S.

This suggests an approach to incremental system development: use the
mutual information I as a fitness function to search for good models (system
descriptions) S of an existing L (such as a given CA or agent system), or to
search for good low level implementations L (such as the required rules and
states for a CA or agent system) of a system specification S.

5 Neutral Emergence

5.1 Definition

An emergent property exhibits neutral emergence when a change in the mi-
crostate L does not change the macrostate S, or vice versa. It is a change
that does not affect the mutual information I(S : L).

5.2 Robustness

So the system S is robust to changes in either itself, or in L, that do not
change the mutual information. In particular, it can be robust to many
changes in its implementation, including, possibly, the effect of errors.

It is often stated that emergent systems (often modelled on natural pro-
cesses) exhibit robustness: here we see why (and where) this may be the case.
The excess information in L (a large H(L|S)) is necessary for emergent sys-
tems to be robust in this manner.

As argued earlier, an engineering development process can be seen as im-
plementing specification S by finding an L with a high mutual information
I(S : L). Here we see that, at the same time, the process can also seek to
maximise robustness, by searching for a system that is insensitive to (un-
correlated with) certain failure modes or other possible changes in L. If a
system were stressed during development (exposed to a range of stresses and
implementation errors), its implementation could be encouraged towards re-
gions that are insensitive (robust) to such events. (Compare this to the
development of formally proven systems: they do not guarantee any level
of performance with even the smallest change.) By analogy to evolutionary

8



fitness landscapes, we want to find systems that lie in gently sloping plains
and plateaux, rather than on narrow peaks or steep cliffs.

5.3 Speculations on ‘the edge of emergence’

Experiments with CAs [Langton 1991] and Random Boolean Networks [Kauff-
man 1993, Kauffman 1995] indicate that a phase transition takes place be-
tween a ‘solid’ ordered regime and a ‘gaseous’ chaotic state, and that the
narrow ‘liquid’ region perched on the boundary between these regimes is
capable of supporting the most complex behaviour, including universal com-
putation. (Note that the details of Langton’s results have been questioned
by [Mitchell et al. 1994].)

Compare this with our mutual information measure of emergence: a sys-
tem exhibits minimal emergence when everything is a surprise (zero mutual
information). Clearly a model like this that knows nothing about what it is
modelling is useless, but equally (as argued above) some degree of surprise
(some conditional information, or less than maximal mutual information) in
the system may prove advantageous. Thus there should be a level of emer-
gence with the maximum utility, a position at which the model has freedom
to explore but is held within a constrained region of the search space. While
it is tempting to label this the ‘emergence liquid region’, substantive experi-
mental data should obtained before making such a claim.

That said, consideration of the analogy raises some interesting questions.
Does a phase transition occur between the ‘solid’ (system specification or
model effectively duplicating the implementation) and ‘gaseous’ (little in
common) regimes? Is the region a narrow one? If so, is this why creating
effective emergent systems manually has proved difficult? Will automatic
emergent systems evolve towards this liquid boundary as Kauffman suggests
life did?

5.4 Next Steps

Our next steps are to investigate the properties of neutral emergence and
associated robustness in several classes of systems: Game of Life, flocking,
and simple substitution ciphers.

We are starting from the CA coarse-graining ideas of [Israeli & Goldenfeld
2006] (appendix B), recasting them in the information theoretic emergent
framework sketched above, and applying them to make predictions about
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glider behaviour in Conway’s Game of Life CA [Berlekamp et al. 1982]. In
particular, we are investigating coarse graining defined over only some CA
states, thereby allowing the information content of those states to be ex-
ploited, in addition to the information content of the CA rules. (Compare
the case in physical emergent systems, where the emergent properties oc-
cur only over some restricted set of all possible states, such as a restricted
temperature range.)

We will then move to continuous systems, and apply the ideas to design
robust emergent flocking behaviours.

We are also investigating various cryptographic attacks on simple trans-
positions ciphers (such as described in [Matthews 1993, Russell et al. 2003]),
in order to explore the use of ideas of conditional entropy to maximise ro-
bustness: in this case, robustness of the cracking mechanism to changes in
the fitness function of bigram and trigram frequency distributions.

Eventually, we want to examine emergence in the context of an environ-
ment (combining some of the ideas of evolution and emergence mentioned
herein), both for defining emergent properties, and for achieving robustness
of that emergence.

6 Conclusions

We have cast emergence in information theoretic terms, by direct analogy to
evolutionary processes, and shown how this can be used to derive a fitness
function for developing models of emergent systems, or emergent implemen-
tations of system specifications. We have introduced the concept of neutral
emergence, and shown its relationship to robust emergence.

Our eventual aim is to incorporate neutral emergence as a component in
a robust emergent engineering process.
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A Information theoretic measures

The information (Shannon) entropy [Shannon 1948] is defined over an ensem-
ble (representative collection, or population) of systems, in terms of proba-
bility pi of being in each of the possible system states i ∈ I, the probabilities
defined over the ensemble.

H(S) = −
∑
i∈I

pi log2 pi (3)

[Adami 1998]’s concept of ‘hot’ and ‘cold’ bits are defined over an ensemble.
Kolmogorov (or Kolmogorov-Chaitin) complexity [Kolmogorov 1965] can

be used to capture the complexity, or compressibility, of a single string (as
opposed to an ensemble of strings), in terms of the shortest program that can
generate that string. Averaging the Kolmogorov complexity of an ensemble
of strings (in the limit of infinitely long strings) yields the information entropy
[Adami & Cerf 2000].

These conventional information measures assign minimal values to com-
pletely ordered systems, and maximum values to completely random systems.
[Crutchfield 1992] defines statistical complexity, which assigns a low complex-
ity value to both complete order and complete randomness. This measure is
defined in terms of the smallest finite probabilistic automaton that can sim-
ulate the statistical properties of the system: “There will be somewhere in
the Chomsky hierarchy an optimal representation which is finitely expressed
in the language of the least powerful class” [Crutchfield 1992]. So complete
randomness, for example, is simulated by a trivial ‘coin tossing’ automaton.
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There is a relationship here to ideas from Machine Learning, in the trade-
off between classifier size and complexity, and their generalisation capabilities
(see, for example, [Schmidhuber 1997]).

B Coarse graining

B.1 Dynamical systems view

Insight arises when emergence is considered as a characteristic of dynamical
systems. In a dynamical systems view, everything is process, or a motion
towards or on an attractor. However, when the system is monitored at a
suitable (suitably large) timescale, it is observed to behave like a particle,
because the “slow” observer sees only the average of a series of states [Abra-
ham 1987, Goldstein 1999], not the detailed motion. [Stepney et al. 2006]
note that, “if everything is process, then things can be independent of the
details of the underlying substrate (composition of the underlying levels): the
same processes could be supported by different substrates. This gives us some
hope of a science of emergence that is (relatively) independent of the details
of specific implementations, and depends just on their dynamical properties
(attractor structures).”

Considerations of emergence in terms of mutual information also lead to
independence from certain details of the underlying substrate (section 5.2).

B.2 Symbolic dynamics

Symbolic dynamics is the discipline of recasting a continuous (space and time)
dynamical system into a discrete (space and time) one. The phase space of
the continuous system is partitioned into a finite number of sets, each labelled
with a unique element from a finite alphabet. The system is observed at
discretised time intervals, and the label of the set it occupies noted. This
process results in a sequence of symbols, and the dynamics of sequences
can be analysed. (See, for example, [Badii & Politi 1997, ch.4].) Under
suitable partitionings, the dynamics of the sequences is a good indicator of
the dynamics of the underlying system.

Symbolic dynamics is a form of coarse graining: the underlying points in
the continuous phase space are the microstates, and the partitioning defines
macrostates. Discrete systems can be similarly coarse-grained.
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B.3 Coarse graining and emergence

[Ryan 2006] argues that emergent properties are simply a difference between
global and local structure, rather than anything to do with ‘levels’. He
defines emergence in terms of scope (what is inside or outside the system
boundary), resolution (fine or coarse-grained spatial and temporal distinc-
tions; finer grained often implies narrower scope), and state (the information
that distinguishes system configurations, at the given resolution). Fine grain
and narrow scope are properties of microstates, coarser grains and wider
scope of macrostates. He states that: A property is emergent iff it is present
in a macrostate and it is not present in the microstate. He argues that this
cannot be achieved by a change of resolution alone: it requires a change of
scope. (Much of his argument compares scope and resolution, ignoring the
state aspect.)

In our approach L can be considered to be finer-grained resolution mi-
crostates; S the coarser-grained macrostate. However, our main requirement
is for a change of language between the levels (which may relate to [Ryan
2006]’s state information).

[Shalizi & Moore 2006] define “a relation of ‘emergence’ between two sets
of causal variables if (1) one is a coarse-graining of the other and (2) the
coarse-grained variables can be predicted more efficiently”. Thermodynam-
ics as a coarse graining of statistical mechanics is a classic example of this
approach.

B.4 Example: coarse graining CAs

[Israeli & Goldenfeld 2006] give an example of coarse-graining cellular au-
tomata (CAs). The idea of the coarse graining is to capture the dynamics
of a CA rule with another rule, expressed over a coarser grain in space and
time, that preserves the underlying dynamics (although it will lose ‘irrelevant’
detail).

From one point of view, this might not seem to be an example of emer-
gence: the two languages L and S are the same: that of CA rules. How-
ever, from another point of view, it can be considered to be emergence:
the languages are different, in that they are different CA rules (except in a
few cases) and they lose information (in that low-level fine-grained detail is
washed out). Interestingly, the figures illustrating coarse grainings in [Israeli
& Goldenfeld 2006] seem to highlight some of the underlying L structure (for
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example, various propagating ‘signals’), maybe because they have smoothed
out other, irrelevant, structure.

The higher level rule S may be a lower complexity CA rule than the
lower level L: because “the system (the update rule, not the cell lattice)
does not contain enough information to be complex at large scales” [Israeli
& Goldenfeld 2006]. This complexity-reducing kind of coarse graining (of
‘relevant degrees of freedom’) removes information that is relevant to the
dynamics at L, but is redundant under the coarse graining at S: it does not
capture all of the microscopic dynamics.

The coarse-graining provides an exact fit over all possible states: it loses
information, but the systems never differ in their predictions. It is a form of
information compression, not approximation.
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