
Emergent Properties Do Not Refine

Fiona Polack, Susan Stepney1,2

Department of Computer Science
University of York

Heslington, York, YO10 5DD, UK.

Abstract

Refinement is conventionally used to effect a demonstrably-correct development from an abstract
specification. Emergent systems present an interesting challenge in terms of demonstrably-correct
development, because there is a discontinuity between the global and local system descriptions.
This is a position paper, exploring some aspects of the challenge in relation to the traditional
model of refinement.

Keywords: Emergence, Refinement, Systems Engineering.

1 Introduction

Our interest in the refinement of emergent systems relates to research into
the engineering and predictability of emergence. From a specification of the
desired system (displaying emergent properties), we want to determine a set of
similarly-specified low-level components that can reliably generate the desired
system.

In this position paper, we explore how the development of emergent sys-
tems might relate to the classical notion of refinement. The engineering of
emergent systems is likely, ultimately, to be inexact, requiring probabilistic
and argumentation techniques as well as conventional incremental develop-
ment. These issues are not covered here.

1 Email: fiona@cs.york.ac.uk, susan@cs.york.ac.uk
2 This work is part of the TUNA feasibility study, EPSRC grant EP/C516966/1.

Electronic Notes in Theoretical Computer Science 137 (2005) 163–181

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.04.030

mailto:fiona@cs.york.ac.uk
mailto:susan@cs.york.ac.uk
http://www.elsevier.com/locate/entcs


We use the example of a cellular automaton (CA) producing gliders. A CA
is perhaps the simplest of the commonly-studied emergent systems, in that
its operational environment is completely determined by its representation
and a single update rule. This provides a starting point for consideration of
development issues, from which our position can be developed.

The paper starts with a brief review of classical refinement. We then de-
scribe a model of emergence, illustrated by a CA; we highlight issues relating to
the specification of emergent systems. On this basis, we examine meanings of
refinement for emergent systems, before exploring reasons for the mismatches
between classical refinement and emergent systems development. This allows
us to examine how emergent systems development might proceed, and where
it might exploit at least some of the ideas of classical refinement.

2 The Conventional Model of Refinement

The conventional, or relational, model of refinement is a formal expression
of one incremental step in a development. The relational refinement is cast
in terms of a many-many relation between an initial and final global state.
Refinement is a relationship between an abstract program expressed in some
abstract world that captures this initial-to-final relation, and an equivalent
concrete program expressed in the concrete world [7]. Conventionally, the
proof of such a refinement is discharged using a “simulation”; this reduces
the global proof obligation (expressed over general sequences of operations) to
proofs of the refinements of the initialisation, finalisation, and single system
operations, making use of a retrieve relation, figure 1. The refinement proof
demonstrates that functional properties in the abstract model are preserved
in the concrete model. Non-functional properties such as security [9] are not
necessarily preserved by such refinement.

G G’

A’AA

C’CC

A

C

R R

Fig. 1. The relational model of refinement, with simulations

For the purposes of this paper, we highlight a number of implicit conven-
tions in the relational refinement model.

The language in which the model elements are written comprises concepts
that are common to all levels and steps; the abstract specification uses the

F. Polack, S. Stepney / Electronic Notes in Theoretical Computer Science 137 (2005) 163–181164



same base language concepts as the concrete specification and the retrieve
relations. Note that, we are not referring here to a particular description
language (such as Z), but rather to a common set of concepts needed to express
the desired properties of the specification, such as sets or sequences of states.

The refinement is proved using a simulation, captured in a (relatively sim-
ple) retrieve relation. The simplicity is a pragmatic constraint, to enhance
provability. If the refinement requires a more complicated retrieve, the proof
process can be simplified by breaking the refinement into a sequence of steps
with intermediate specifications linked by simpler retrieves (as in [15,16]). Ul-
timately, the steps can be made so small that they are captured in a refinement
calculus (eg [11]). A combination of “backward” and “forward” simulations is
sufficient to prove any such refinement expressed in these terms [7].

The initialisation and the finalisation of the system are similarly simple
relations between the global state and the respective abstract and concrete
states (including the inputs and outputs of the operations).

3 A Model of Emergence

An emergent system is a system the ultimate behaviour of which is discon-
tinuous with the behaviour observed at lower levels. Often-cited examples
of emergent systems include network navigation by ants (real or simulated),
construction by termites, swarming and flocking, for example by birds or their
simulated equivalent, boids, and CAs.

In describing a system, low level component agents have behaviours and
interactions expressed in some language C ; the high level global behaviour
is expressed in some language A. The system displays emergence if there is a
fundamental discontinuity between the languages A and C (a similar definition
is made by eg. [13]). For example, each agent in a flock might be described as
moving towards a locally perceived centroid, whereas the global behaviour of
interest is the velocity and size of the entire flock [12]. It is this discontinuity
of description language that offers a challenge to conventional refinement.

3.1 Cellular Automata

One of the simplest emergent systems to study is a CA. In this paper, we
model a CA in separate components, namely a cell (with a state, update rules
and a set of neighbours) and the representation of the collection of cells. This
has the advantage of moving the CA closer to other forms of emergent system,
in which the representation (of a 2 or 3 dimensional space of various form and
content) is clearly separable from the active entities (ants, termites, boids).

F. Polack, S. Stepney / Electronic Notes in Theoretical Computer Science 137 (2005) 163–181 165



A CA cell is a finite state automaton; its update rule determines the next
state of the cell from the current states of the cell and some collection of other
cells, referred to as its neighbours. Such a cell can be programmed very easily,
and is utterly uninteresting; the value of the state fluctuates, and at some
point may stop fluctuating.

The cell becomes part of a CA (a cellular array of finite state automata)
when it and its neighbours are located in some discretised space. Convention-
ally, the state of each cell is represented by colour or shading. At this point,
some visual patterns may be apparent, but nothing is happening.

The emergent features appear only when the update program for the cells,
located in space, is allowed to run repeatedly over a period of time, such that
the visual representation of the cell states forms moving patterns 3 .

The criticality of the space and time elements can be demonstrated, for
CAs, by setting up equivalent cell models on different spatial representations.
For example, [8] takes the same neighbourhood definition and update rule,
and applies these to a 2-D regular grid and a Penrose kite-and-dart grid;
they find that most characteristics of the observed CA behaviour are quite
different on the two representations. Equally, the same specification starting
from different initial states produces wildly different patterns. Furthermore,
some CA configurations are fleeting, with all cells reaching quiescence in a
small number of time steps, whilst others engage in seemingly complicated
interactions over prolonged time periods. (For discussion and classification of
CAs, including other representations and forms of CA, see eg. [18,19,20].)

3.2 Specification Requirements

If we were specifying and refining an emergent system, we would want to be
able to specify the characteristics of the final system, then deduce some low-
level components. We would then wish to prove (at some confidence level)
that the emergent properties are established by the low-level components.

In the CA context, we might, for example, specify a requirement for some
gliders, as in figure 2. We would expect the system to produce at least this
pattern of behaviour reliably and predictably.

It is conventional to design and program a CA as a grid of cells, and
then to observe the behaviour of the CA over a series of synchronised update
steps. However, when starting from an abstract specification of the desired
behaviour, this could make an unjustifiable assumption about the implemen-

3 It is hard to demonstrate a CA adequately on a static sheet of paper: there are many
online CA demonstrations, such as the simulation of Conway’s Game of Life automaton at
http://www.math.com/students/wonders/life/life.html

F. Polack, S. Stepney / Electronic Notes in Theoretical Computer Science 137 (2005) 163–181166



The system shall comprise a region, across which a small
repeated pattern, or “glider”, passes.
When two gliders meet they shall produce a single glider
moving in the direction of one of the incident gliders.

Fig. 2. The glider requirement specification

tation. The specification says nothing about grids; motion across a region
such as a screen window simply requires some point of relative reference (eg.
a boundary). The representation, as well as the state designation and update
rules, are areas requiring analysis and refinement.

4 Comparing Features of Refinable and Emergent Sys-
tems

In this section, we examine some common meanings of classical refinement
to illuminate why it does not naturally encompass development of emergent
systems.

The specification of the glider requirement in figure 2 is quite precise. It is
non-deterministic in that we have left open the choice of representation (for-
mat, state designation, time steps etc) — indeed, it does not even state that
the system must be built using a CA. In common with a classical refinement,
we need to clarify these aspects of the implementation through a systematic,
verifiable development process.

As in a classical refinement, we wish to represent the specification formally,
in a way that allows refinement, according to what we know about the system
and the target medium. Thus, we might start by deciding that CAs make a
sensible target medium for this system. A naive development plan based on
our knowledge of classical refinement is,

• to express the specification in a suitable formalism;

• to express the CA in a suitable formalism;

• to express a retrieve relation that maps between the two formalisms.

To express the specification, we need to define the glider (which has an
area and a movement vector), the conditions for a collision of two gliders, and
the effect of the collision.

To express the CA, we need to formalise the cell (its state, update rule
and set of neighbours), and then formalise the representation of the collection
of cells and the synchronised firing of all the update rules.

F. Polack, S. Stepney / Electronic Notes in Theoretical Computer Science 137 (2005) 163–181 167



4.1 Refining to Reduce Non-Determinism

A refinement from abstract to concrete reduces non-determinism.

The non-determinism of the glider specification is reduced by refining the
region in a way that facilitates representation of movement, ie by introducing
something relative to which motion would be perceived. A common approach
is to use a discretised spatial representation that allows quantification of loca-
tion. For example, a regular or irregular grid allows some form of co-ordinates
to be used to record the shapes and relative motion of gliders.

Having determined the representation for the glider in its window, we now
explore how this relates to the cell and cell-collection model. We observe that,
rather than finding a more deterministic implementation goal, the cell models
appear to be less deterministic than the discretised spatial representation:

• the model of the cell alone merely requires a fixed number of related (neigh-
bour) states, in order to calculate the next state of the cell;

• the model of the collection of cells has tied down the identity of neighbour-
hood to a specific group of cells from which a particular cell will always
calculate its next state — some non-determinism has been removed;

• now, we need to tie down the neighbourhood to a specific spatial layout, so
that neighbourliness is equated (in some way to be determined) to spatial
contiguousness — more non-determinism has been removed.

The intermediate level to which the retrieves takes us appears to be at a
lower abstraction level than both the target medium and the original glider
specification — in contrast to the classical refinement, where an intermediate
level is at an intermediate abstraction level.

4.2 Data and Operation Refinement

A simple, abstract datum can be systematically refined to a more elaborate
structure. The abstract datum can always be extracted via the retrieve rela-
tion, which is necessary for the developer to demonstrate that the output of
the system (suitably filtered at the interface, or finalised) is the same as that
specified abstractly. Similarly, an abstract operation can be refined, essen-
tially by any transformations on the internals of the operation that maintains
the interface of the operation unchanged (again, suitably filtered).

When refining the glider specification, represented as an emergent result
of a CA, the first problem is to determine what abstract data could be refined.
The second problem is determining what abstract operations could be refined.

The data in the glider requirement, figure 2 would seem to be window and
glider. We have already noted that we could reduce the non-determinism by

F. Polack, S. Stepney / Electronic Notes in Theoretical Computer Science 137 (2005) 163–181168



using a discretised spatial representation; in data refinement terms, we could
refine window and glider in terms of this representation.

Refining a window to a representation of a grid (even an irregular or, within
limits, a multidimensional one) seems conventional enough. However, a brief
study of known gliders reveals that they cannot be refined to a spatial defini-
tion alone. Furthermore, the proposed reduction of non-determinism requires
introduction of a time element as well as the discretised spatial representation.

For example, Conway’s Game of Life [6] on a 2-D regular grid produces
a well-known glider (figure 3) that can be detected only over five time steps
(the period of the glider) across a space which is one (specific) row and column
greater than the neighbourhood of the central cell of the initial configuration 4 .
Moreover, the initial configuration is critical: there must be “clear space”
(here, unshaded grid locations) “ahead” of the glider, and the “on cells” (here,
shaded) must exactly match one of the four phases. No other initial configu-
ration can produce this glider’s behaviour.

Fig. 3. A complete cycle of the simple Game of Life glider

The operations in the glider specification might be identified as glider
movement, glider collision, glider resolution. In the abstract, these are simple
operations. However, even at the level of the refined representation, it is
hard to express these operations. Glider movement can be represented as the
movement of a bounding box on a group of grid locations with a particular
representation, but even this is non-intuitive: we are looking to produce vector
movement, but it is only the cumulative movement of a glider that defines this
vector — over four time steps, the bounding box of the Game of Life glider (1)
moves one location in one direction, (2) does not move, (3) moves one location
in the orthogonal direction, (4) does not move. Collision and resolution are
no easier.

Indeed, trying to refine the glider movement into a concrete operation is
misguided, since the movement, and the consequent collision and resolution,
are emergent properties of the CA, not things that we wish to program into
the solution. This is the key point. In an emergent system, the “abstract”
operations do not have any corresponding “concrete” operations. There is no

4 If we allow general transformations, the glider is detectable in three steps, since steps
three and four are reflections of steps one and two, and the movement space is suitably
symmetric.

F. Polack, S. Stepney / Electronic Notes in Theoretical Computer Science 137 (2005) 163–181 169



simple relationship between the abstract and concrete that can be captured
in a refinements proof statement.

5 Refinement Concepts Re-examined

In section 2, we make various observations on the classical relational refine-
ment. We now revisit these observations in the context of emergent systems.

5.1 Language

Two aspects of language are considered here: the form of the language and
the extent of the language.

The components of the classical refinement are all expressed in a common
form of language. The concrete language names refined data structures, but
the concepts that the names represent are expressible in terms of the abstract
language — that is why the retrieve relation is formally expressible; it converts
one model of named components into another model of named components by
transformations in the common language of the two models.

In the emergent system, there is a different language for describing the ab-
stract (emergent) system and the concrete system. As shown in the discussion
of refinement possibilities, the glider specification, figure 2, uses a language
of relative motion — passing across a region implies concepts of spatially and
temporally extended existence and velocity. The specification of a cell, fig-
ure 4, by contrast, refers to state and operation — a vocabulary typical of
computer systems and computer programming. So, in developing emergent
systems, we are trying to relate a specification in the language of relative
motion (gliders), to a specification in the language of computation (cells).

The cell shall comprise a state, and an update operation.
The update operation shall calculate the next state of the
cell, based on the values of its (fixed) set of neighbours.

Fig. 4. The CA cell specification

If we turn to the representational aspect, and extend the cell specification
to that of a collection of cells (figure 5), we find a vocabulary that makes more
explicit the notion of state from the cell specification (that state-values have
distinct representation). The notion of neighbour is also made more explicit,
but this requires a change of vocabulary to that of spatial layout. This is
reminiscent of the vocabulary of the glider specification. The collection spec-
ification also has explicit reference to time-steps, a concept that was implicit

F. Polack, S. Stepney / Electronic Notes in Theoretical Computer Science 137 (2005) 163–181170



in the glider specification. However, there is nothing in the cell or collection
specifications that could relate to the key concept of the glider specification,
motion. Cells of a CA quite definitely do not move.

A cellular automaton shall be a representation of a col-
lection of cells. The representation shall represent each
cell according to its internal state. For every cell, its
neighbouring cells shall be a fixed pattern of contiguous
cells. The cellular automaton system shall represent the
synchronous update of all cells by replacing the represen-
tation of all current cell states with the representation of
the next state of all cells.

Fig. 5. The specification of a CA as a collection of cells

Turning to the extent of the language, we observe that a classical refine-
ment relates two specific computations. The fact that we could refine the ab-
stract system in many ways is irrelevant; the refinement relation determines
one specific concrete transformation of the abstract specification. Indeed, even
the part of the language used to express the abstract state is restricted — in Z,
we omit all concurrent and temporal aspects of systems; in CSP we omit much
of the detail of the state of the system; in Circus, we ignore non-functional
aspects such as system performance and security.

In emergence, as if the language discontinuity were not sufficient problem,
we find that many CAs are Turing Complete languages in themselves (see
[14,3]). The language of the abstract system is also of much wider scope than
the formal languages used in classical refinement; in particular, the specifica-
tion of any emergent system is likely to require the physical concepts of time,
space, and relative motion as well as the notion of detectable patterns across
time and space. Even if there is a path to a common language definition, the
potential for refinement in it must be seriously jeopardised by the size of the
search space.

5.2 Refinement Relation

In the classical case, there is typically a single refinement relation (it may
be composed of several steps). Even large industrial refinements such as the
Mondex smart-card development [15,16] have been possible using refinement
via only a single intermediate state.

In emergent systems, the consideration of refinement language suggests
that there would rarely be a refinement that could be represented as one
step. Even in this very simple case, the language of the glider, cell and cell

F. Polack, S. Stepney / Electronic Notes in Theoretical Computer Science 137 (2005) 163–181 171



GLIDER
SPECIFICATION

Revised GLIDER
SPECIFICATION

REPRESENTATION
SPECIFICATION

CELL
SPECIFICATION

SPECIFICATION
NEIGHBOURHOOD

CELL

SYSTEM
SPECIFICATION

REPRESENTATION
LANGUAGE

CELL
LANGUAGE

GLIDER
LANGUAGE

Fig. 6. Suggested elements in the development of the glider system

collection suggests that the refinement of this system would have a number of
steps some of which have partial intersections of concepts. The inter-related
elements might be sketched as in figure 6. Some possibilities are apparent —
we may be able to refine the cell to a cell on a representation, and the glider
to a glider on the same representation, and then use the physics of state and
motion to link the specifications. However, it is clear that there is no single
refinement relation.

5.3 Initialisation

In the classical refinable systems, initialisation assigns each element of the
system state a starting value that conforms to the state invariants. Formalists
invariably seek a simple initialisation, typically setting each set to empty and
each numerical value to 0 whenever this is a legal state of the system. It
is supposed that the system state can then be constructed via the system
operations (though the reachability of any system state from its initialisation
is rarely considered). In refinable systems, the abstract system initialisation
is refined just as any other operation (figure 1).

Initialisation of the emergent system is not so straightforward; we have
a problem with what to initialise. The most abstract state (the glider re-
quirements) could be initialised in a system where the movement of discrete
elements could be expressed. For example, the specification of gliders in gen-

F. Polack, S. Stepney / Electronic Notes in Theoretical Computer Science 137 (2005) 163–181172



eral might be realised on a billiard table, where the initialisation is the setting
in motion of one or more billiard balls. However, an abstract (implementation
independent) initialisation is difficult to imagine, since the definition of the
glider operations is dependent on the definition of the chosen representation.

For the CA, the specification permits a conventional initialisation of the
states of a cell and its neighbours; the representation is initialised when the
cell and its neighbours are translated to the representation, their initialisations
determining the initial shading. Alternatively, the representation could be
initialised with a particular pattern of shading, and the cells initialised from
this when they are located on the representation.

This initialisation does not, of itself, guarantee the emergence of even one
glider. The only way we can guarantee to initialise the collection of cells to
produce a glider is by “rigging” the initialisation to one of the phase-layouts
of a known glider for the particular representation, and ensuring that there
is “enough clear space” around the glider for it to persist “long enough” for
whatever detects gliders to register its presence.

We need some way of initialising the whole system (the cells, the collection,
and the discretised spatial representation of the collection), because the CA
behaviour is critically determined by the starting state. However, neither the
specification of the CA, nor the specification of the glider system, gives any
way of finding this starting state from the components identified here.

5.4 Finalisation

In a classical system, finalisation determines what is (or should be) observed
as output from the system. Finalisation strips away the additional structure
of the concrete data, so that the system returns just the data required in the
global specification. (See [4] for discussion of finalisation and its limitations
in describing what is observable, even in the classical case.)

Finalisation is the end-state of the system. An emergent system is, in
general, a non-halting system, for which finalisation is not conventionally de-
fined. However, where a series of outputs is non-interfering, finalisation could
be taken as the “limit” of a sequence of outputs of a non-halting system.

There are a number of terminating sub-computations within the continuous
emergent system. Taking an interpretation that sees finalisation as the mecha-
nism that provides something from a component to the whole (by analogy with
classical subsystems), finalisation can be applied to each sub-computation. For
example, a cell updates at a time step. The finalisation ensures that the new
state is passed to the representation. The finalisation of the representation
at the completion of one (collective) update ensures that the whole changed
representation is revealed instantaneously.

F. Polack, S. Stepney / Electronic Notes in Theoretical Computer Science 137 (2005) 163–181 173



These appear to be acceptable instances of finalisation, particularly if the
cell, cell collection, and representation specifications are linkable by a classical-
style refinement. However, this finalisation is incapable of revealing whether
the system has produced the required high level behaviour, namely the pro-
duction and interaction of gliders.

The nearest thing to a finalisation of the whole glider system would be
an observation of the representational aspect of the system over a sufficient
spatial and temporal duration that the required glider behaviour could be
observed. The single abstract glider operation (movement) is thus detected as
the result of a series of concrete glider operations (movement steps).

Considering system “finalisation” as a specific observation of the system
leads us to another element that is needed to realise the whole emergent sys-
tem. The movement that is fundamental to the glider must be detectable by
some monitoring operation. The detection of the required gliders requires:

• a monitor that can identify the spatio-temporal signature of any glider

• a monitor that can identify the spatio-temporal convergence of two gliders;
a side effect (not necessarily revealed to the observer) must be to establish
the direction and velocity of the two converging gliders

• a monitor that looks for the emergence of a single glider from a collision,
and identifies that it is indeed incident with one of its progenitors

The monitor in the emergent system can be thought of as a finalisation (a
perspective of observation) with duration. Note that none of the observations
does anything except monitor the spatio-temporal characteristics of the rep-
resentation. Even the side-effects of the second monitor do not affect the CA
or its representation; the rules of the individual cells determine what happens
in the time-step following the first “collision interaction”.

5.5 Observations on the Nature of Levels in CAs

In expressing the components of a CA, we note that each level (system, repre-
sentation, cell) expresses, in some sense, a derivative of the next. Thus, a cell
is one-dimensional; the representation introduces a multi-dimensional space;
and the system introduces the time dimension. In the representation, each
cell gains a location; in the system, blocks of cells appear to have velocity.

In changing the language of the levels of a CA, furthermore, we observe
different identities emerging:

• a cell is simply an atom; it is distinguishable from any other cell only by
measuring its state; there may be many cells with the same state; there is
no sense of identity

F. Polack, S. Stepney / Electronic Notes in Theoretical Computer Science 137 (2005) 163–181174



• in order to link the cell and its neighbours to the representation, the cells
acquire identity; the identity is (or can be derived from) the discrete lo-
cation of the cell on the representation; it is this identity that allows the
neighbourhood of one cell to become the cell neighbourhood for the CA

• when the system runs, the observer (the watcher of the simulation, or, as
above, the monitoring finalisation operations) identifies groups of cells with
the same state designation on the representation — in the glider system,
the monitor is seeking the characteristic vector movements of gliders, over
extended time periods; monitoring, and thus recognition of emergence, is
crucially related to the identification of groups of “state” that persist, with
some periodicity and possibly some change of location.

The last point is the key for recognition of emergence (here, patterns in
space that persist over time). Some CAs produce dramatic amounts of activity
over many time steps — short-lived gliders, oscillators, and other CA struc-
tures, become momentarily visible and are then absorbed by less-coherent
structures; sometimes, wave patterns, or Brownian motions, appear in the
CA, perhaps resolving to a few oscillating residuals. How groups of cells are
identified and monitored over time is crucial to the recognition of a required
emergent feature of the CA. Recognition may not be achievable at the level of
the representation — to detect the smoothed movements of the system over
time, the monitor may need to be external, at yet another discontinuous level
(like movement tracking in video).

5.6 A Reality Check

The specifications explored here are for one of the clearest emergent properties
of one of the simplest of all computer simulations of emergence. CAs are used
for computation; applications include conceptual work on massively-parallel
computation, simulation of gas diffusion, ferromagnetism, percolation, crys-
tallisation, forest fire propagation and urban development, as well as graphics
generation. Toffoli uses a CA as an alternative to differential equation 5 . In
such cases, CA requirements are significantly more complicated. We might,
for example, require a glider gun, a key component of a CA-based model of
conventional computer circuits. A possible specification is given in figure 7.

Figure 8 shows an initial state of a Game of Life glider gun on a 2-D regular
grid, that is, one of the phases of the gun itself, before production of a glider;
the CA behaviour comprises a complex pattern of movement that oscillates
between the pair of four-cell “blocks” at either side of the grid. Figure 9 shows

5 From http://www.rennard.org/alife/english/acintrogb02.html, accessed 17/12/04

F. Polack, S. Stepney / Electronic Notes in Theoretical Computer Science 137 (2005) 163–181 175



A glider gun shall emit a stream of gliders which travel
on the same path at a regular separation. The glider
gun shall produce a such gliders until terminated by an
external event; there should be no internal interruption
to emission.

Fig. 7. The specification of a single glider gun

a different phase of the gun (the two marginal blocks are as before), with one
emerging glider and three already-fired gliders.

Fig. 8. Game of Life Glider Gun: the initial set-up

Fig. 9. Game of Life Glider Gun: snapshot with four gliders

We leave the development by refinement of such a system as an exercise
for the ambitious reader.

6 Designing Emergent Systems

Currently, emergent systems are discovered by accident or by trial and error.
Systematic development is possible using genetic algorithms (GAs) to “breed”
the right rule set and initial conditions for a particular representation, using
the closeness to the desired outcome (or emergent property) as the fitness

F. Polack, S. Stepney / Electronic Notes in Theoretical Computer Science 137 (2005) 163–181176



criterion for breeding ([10] reviews work in this area). However, there is no
engineering guidance for GAs, either — GA development of CAs relies on
trial-and-error on, for example, the measure of closeness of representation.

The main research in making CA design more rigorous starts from known
CA patterns, rather than refining down from (emergent) system specifications.
For example, [5] builds on a range of work on the categorisation of CA and
emergent systems, developing a computational mechanics of CAs to focus
the evolution of a GA. Whilst the work is mathematically interesting, for
systems development it seems to equate to working out how to characterise
all possible computer programs in a particular paradigm, in order to find out
how to implement the solution to a particular problem.

The sole advantage of evolving CAs over accident and human trial-and-
error is that it stands a better chance of converging automatically on an ac-
ceptable solution in an acceptable amount of time.

However, classical refinement is also a process of trial and error (though
some formalists try to convince us otherwise). Despite neat published illustra-
tions, the reality is an iterated guess-work, guided crucially by the experience
of the guessers. Text books are notorious for tweaking the abstract specifica-
tion so that refinement is clean. Retrenchment [2] acknowledge that in reality
clean refinement is rarely possible, whilst forward-and-backward refinement
to an invented intermediate state provides a trial-and-error approach when
there is no easy direct route from the (real) abstract specification to the re-
quired concrete model. The authors have also investigated (to various levels)
refinement patterns [17], template-based refinement [1], and evolutionary ap-
proaches to proof and refinement.

The guesswork of classical refinement appears so much less problematic
than that of emergent systems development, because the scope for guessing is
constrained by the language of specification, and by the (relative) simplicity
of the problems tackled. Can we devise similar ways to constrain the dis-
tinct languages of the abstract and concrete descriptions of emergent systems,
without losing the power to express the system concepts?

6.1 Some Tentative Design Guidelines for Emergent Systems

¿From the analysis above, a number of guidelines emerge. These give pointers
to (a) how the languages of emergent system specification might be constrained
or organised to support development and (b) the extent to which conventional
refinement might be applicable.

In considering what refinement means for an emergent system, section 5,
we arrived at a conceptual breakdown of the CA under consideration. It
would seem that CA systems are simpler than other forms of emergent system

F. Polack, S. Stepney / Electronic Notes in Theoretical Computer Science 137 (2005) 163–181 177



COMPONENT
LANGUAGE

SYSTEM SPECIFICATION
LANGUAGE

SYSTEM
SPECIFICATION

SPECIFICATION
for ENVIRONMENT

INTEGRATION
ENVIRONMENT

INTEGRATED
SPECIFICATION

INTEGRATION ENVIRONMENT
LANGUAGE

ENVIRONMENT
COMPONENT for

FUNCTIONAL
COMPONENT

SPECIFICATION

Fig. 10. A generalisation of figure 6

because of, firstly, the simplicity of cell state and operations, and, secondly, the
simplicity of the environment in which cells interact, as a visual representation
that has no direct influence on the operations performed by the cells.

This model generalises, as shown in figure 10. We propose that certain
links (dual-headed arrows) might generally have the potential for classical (or
at least rigorous) refinement. Single-headed arrows bridge the linguistic dis-
continuities of the system elements. Such an element-wise decomposition has
the potential to minimise the effect and scope of the linguistic discontinuities.

So our first two guidelines are to identify the three key elements of the
emergent system — required system specification, the functional component
(or instance) specification, and the specification of the integration representa-
tion; and to identify elements with common vocabulary. Following on
from these, identify intermediate elements — elaborations, possibly re-
finements, of the abstract system specification and the functional component
specification, in terms of the integration environment.

Insight into achieving the non-refinable links of figure 10 comes from the
consideration of finalisation in section 5. We propose the guideline, establish
how emergence is detected. That requires the developer to consider how
the emergent system will be monitored and what behaviours must be detected.
We have not studied this part of the problem, but the initial impression is that,
because emergence depends on a change in the frame of reference from the

F. Polack, S. Stepney / Electronic Notes in Theoretical Computer Science 137 (2005) 163–181178



system to the observer, it is likely to be difficult to specify and refine monitors;
monitoring perhaps captures the problem of linguistic discontinuity between
elements and the whole system.

The only guideline relating to the initialisation of an emergent system is
identical to that for a refinable system — establish the initial state of each
component of the system. Some components in most systems are easy to
initialise (because they are simple operational components). However, some
components (eg the start state of the CA) can not be generalised; a start state
known to produce the desired goal must be imposed. Emergent systems which
have negative feedback or construction rules, may be easier to initialise, since
the required behaviour occurs in the dominant (or sole) basin of attraction,
to which the system converges from any starting state. However, it is also
likely that the more precise the requirement for the system behaviour is, the
harder the initialisation is to achieve. Thus, any boid simulation might flock,
but only certain start states will create flocks of a particular size, direction
and speed.

In reality, the situation is bad; there is strong evidence from biology that
a complex system cannot be “initialised” in a state that results in a desired
form, but has to be “grown”. For example, it is rarely possible to construct a
complex ecosystem by simply dropping in a bunch of species. It would seem
that the part of the phase space occupied by “stable” emergent systems is so
vanishingly small that these are unlikely to be discovered by chance, or by
mathematical refinement.

7 Conclusion

We present a position on the development of emergent systems, using insights
gained from classical refinement. We tentatively develop our position from
an analysis of a system specification that can be realised by a CA. Our work
is at an early stage, but seems to be producing a generalisable approach to
the “architectural” refinement of emergent systems, that takes account of
the linguistic discontinuities and variations of abstraction level among the
elements of such systems.

Our approach differs from other attempts to determine the development of
emergent systems because, rather than build up emergent systems from known
components, we start from the specification of the required system, and then
try to systematically determine a component and integration environment that
is capable of forming the required properties as emergent effects.

It is likely that all attempts to design for emergence will rely on “rigging”
somewhere; we anticipate catalogues of patterns of systems that can produce

F. Polack, S. Stepney / Electronic Notes in Theoretical Computer Science 137 (2005) 163–181 179



particular emergent behaviours; the linguistic discontinuity gaps in the de-
velopment would be bridged by instantiating appropriate patterns. We need
to minimise the gap so that the required patterns are as nearly determined
by the form of the gap as possible, thereby avoiding the specialisms of, for
example CA computation approaches.

References

[1] N. Amálio, S. Stepney, and F. Polack. Modular UML semantics: Interpretations in Z based on
templates and generics. In Workshop on Formal Aspects of Component Software, FME2003,
Pisa, Italy, 2003.

[2] R. Banach and M. Poppleton. Retrenchment, refinement and simulation. In ZB2000, volume
1878 of LNCS, pages 304–323. Springer, 2000.

[3] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for Your Mathematical Plays.
Volume 2: games in particular, chapter 25. Academic Press, 1982.

[4] J. A. Clark, S. Stepney, and H. Chivers. Breaking the model: finalisation and a taxonomy of
security attacks. Technical Report YCS-2004-371, Dept of Computer Science, University of
York, 2004. To appear in Refine’05, ENTCS.

[5] J. P. Crutchfield, M. Mitchell, and R. Das. The evolutionary design of collective computation
in cellular automata. In J. P. Crutchfield and P. K. Schuster, editors, Evolutionary Dynamics.
Exploring the Interplay of Selection, Neutrality, Accident, and Function. Oxford University
Press, 2002.

[6] M. Gardner. Mathematical games: The fantastic combinations of John Conway’s new solitaire
game “life”. Scientific American, 223:120–123, 1970.

[7] Jifeng He, C. A. R. Hoare, and J. W. Sanders. Data refinement refined (resumé). In ESOP’86,
volume 213 of LNCS, pages 187–196. Springer, 1986.

[8] M. Hill, S. Stepney, and F. Wan. The Game of Life on irregular topologies. in preparation,
2005.

[9] J. Jacob. Basic theorems about security. Journal of Computer Security, 1(4):385–411, 1992.

[10] M. Mitchell, J. P. Crutchfield, and R. Das. Evolving cellular automata with genetic algorithms:
A review of recent work. In EvCA’96. Russian Academy of Sciences, 1996.

[11] C. Morgan. Programming from Specifications. Prentice Hall, 2nd edition, 1994.

[12] C. W. Reynolds. Flocks, herds, and schools: A distributed behavioral model (SIGGRAPH
’87). Computer Graphics, 21(4):25–34, 1987.

[13] E. M. A. Ronald, M. Sipper, and M. S. Capcarrère. Design, observation, surprise! a test of
emergence. Artificial Life, 5(3):225–239, 1999.

[14] A. R. Smith. Simple computation-universal cellular spaces. Journal of the ACM, 18(3):339–
353, 1971.

[15] S. Stepney and D. Cooper. Formal methods for industrial products. In ZB2000, volume 1878
of LNCS, pages 374–393. Springer, 2000.

[16] S. Stepney, D. Cooper, and J. C. P. Woodcock. An electronic purse: Specification, refinement,
and proof. Technical Monograph PRG-126, Oxford University Computing Laboratory, 2000.

[17] S. Stepney, F. Polack, and I. Toyn. An outline pattern language for Z: five illustrations and
two tables. In ZB2003, volume 2651 of LNCS, pages 2–19. Springer, 2003.

F. Polack, S. Stepney / Electronic Notes in Theoretical Computer Science 137 (2005) 163–181180



[18] S. Wolfram. Statistical mechanics of cellular automata. Reviews of Modern Physics, 55:601–
644, 1983.

[19] S. Wolfram. Computation theory of cellular automata. Communications in Mathematical
Physics, 96:15–57, 1984.

[20] A. Wuensche. Classifying cellular automata automatically: Finding gliders, filtering, and
relating space-time patterns, attractor basins, and the z parameter. Complexity, 4(3):47–66,
1999.

F. Polack, S. Stepney / Electronic Notes in Theoretical Computer Science 137 (2005) 163–181 181


	Introduction
	The Conventional Model of Refinement
	A Model of Emergence
	Cellular Automata
	Specification Requirements

	Comparing Features of Refinable and Emergent Systems
	Refining to Reduce Non-Determinism
	Data and Operation Refinement

	Refinement Concepts Re-examined
	Language
	Refinement Relation
	Initialisation
	Finalisation
	Observations on the Nature of Levels in CAs
	A Reality Check

	Designing Emergent Systems
	Some Tentative Design Guidelines for Emergent Systems

	Conclusion
	References



