Chapter 22
Reservoir Computing as a Model
for In-Materio Computing

Matthew Dale, Julian F. Miller and Susan Stepney

Abstract Research in substrate-based computing has shown that materials contain
rich properties that can be exploited to solve computational problems. One such
technique known as Evolution-in-materio uses evolutionary algorithms to manipu-
late material substrates for computation. However, in general, modelling the com-
putational processes occurring in such systems is a difficult task and understanding
what part of the embodied system is doing the computation is still fairly ill-defined.
This chapter discusses the prospects of using Reservoir Computing as a model for
in-materio computing, introducing new training techniques (taken from Reservoir
Computing) that could overcome training difficulties found in the current Evolution-
in-Materio technique.

22.1 Introduction

Biological organisms vastly outperform classical/conventional computing paradigms
in many respects, from possessing inherent fault-tolerance to constructing highly
parallel machines. Much of this is achieved by exploiting physicality and by sharing
and distributing computational effort throughout the spatial system. As such, they
exploit physical interactions through feedback with the real-world, utilising features
such as their own morphology.

Many of these systems comprise relatively simple elements that emerge and coa-
lesce into more complex, but robust, structural layers across different scales. Such

M. Dale (X)) - S. Stepney
Department of Computer Science, University of York, York, UK
e-mail: md596 @york.ac.uk

J.E. Miller
Department of Electronics, University of York, York, UK
e-mail: julian.miller@york.ac.uk

S. Stepney
York Centre for Complex Systems Analysis, University of York, York, UK
e-mail: susan.stepney @york.ac.uk

© Springer International Publishing Switzerland 2017 533
A. Adamatzky (ed.), Advances in Unconventional Computing,

Emergence, Complexity and Computation 22,

DOI 10.1007/978-3-319-33924-5_22

534 M. Dale et al.

grounding properties (and many more) have enabled these complex systems to thrive
and evolve, adapting and co-evolving in real-time with their local ecosystem.

The conventional von Neumann computing architecture, although expertly refined
over time, poses some fundamental inefficiencies. For example, classical comput-
ers require the transformation between high-level languages to low-level machine
code, a process that requires layers of conversion through a compiler stack, making it
computationally costly, slow, and highly susceptible to faults and errors. These sys-
tems typically succumb to many issues in speed, from both an inability to deal with
concurrent computations and the bottleneck created by the transfer of data between
separate memory and processing entities. Because of these architectural weaknesses
other intertwined discrepancies arise, such as an increase in power consumption,
system size, and top-down design complexity.

Unconventional computing tries to address some of these limitations by attempting
to provide alternative architectures and systems that typically exploit the underlying
physics and many-scale interactions of the real-world. Many forms of unconventional
systems have been explored in recent years. For example, quantum computing is one
such system, where two-state quantum bits, typically described by electron or photon
spin/polarisation, can be exploited to perform large numbers of parallel computations
(i.e. 2"-ofqubits) This is achieved through the principles of superposition, enabling a
qubit to be in both states simultaneously (see [104] for a review). Another example is
reaction-diffusion computing [2], which performs computation through local chem-
ical reactions and diffusion. By using chemical processes, the system can execute
highly parallel computations, performed by the complex interactions of propagated
waves of information caused by local disturbances. Physarum polycephalum (slime
mould) is currently under investigation as an excitable, reaction-diffusion medium
that could form the basis of a programmable amorphous biological computer [3,
123].

For the purpose of this chapter we discuss research into configurable in-materio
systems (typically on the nanoscale), with the intention of identifying a computational
model that could suit and conform to many in-materio systems.

This chapter begins with an introduction to the concepts of material computa-
tion with a brief mention of the criticality hypothesis (Sect.22.2). Next, the field of
Evolution-in-materio as a current investigation into the theory of material computa-
tion is reviewed, discussing its methodology and current research (Sect. 22.3). Reser-
voir Computing and its potential as an in-materio model is examined in Sects.22.4
and 22.5. To further aid in identifying “good” reservoirs some evaluation tech-
niques are highlighted in Sect.22.6. Lastly, an argument is made in Sect.22.7 to
the possible benefits reservoir computing could have on the design of computational
substrates.

22 Reservoir Computing as a Model for In-Materio Computing 535

22.2 Material Computation

This section discusses some of the principal concepts of material computation, such
as some informal definitions, the role critical dynamics has in complexity and where
it may fit within other computing paradigms.

Material computation is defined to be a computational process that occurs in a
sufficiently complex dynamical system realised in the form of a physical material
substrate.

This definition relies on the idea that matter contains physical information and that
systems of collective matter can dynamically modulate and redistribute information
to change state; therefore, implied here, to perform some form of computation. A
simple example of this would be the physical process in which the state or phase of
matter changes in relation to energy, which could (loosely) in some sense be viewed
as a computational mechanism.

Stepney et al. [111] provide a more contextual definition of material computation
as: “computation directly by physical and chemical processes of a complex sub-
strate, with little or no abstraction to a virtual machine”. From this definition we
can categorise material computation as an analogue process that utilises physical
constructs, the tangible medium itself, and meta-processing to do computation. This
“physicality” may be defined and observed as the structural topology, characteristic
behaviours and information processing associated with the many-scale interactions
occurring in that system.

As a concept, material computation is still in its developmental or conceptual
stage, with early experiments supporting, or working in tandem with, current digital
technology to form hybrid, and potentially very powerful, machines. A configurable
substrate can be used to transfer some of the computational burden from the digital
system to the material [111]. As such, the material can endow the system with
many of the properties and advantages of analogue systems, such as speed and
concurrency, in a device where memory and processing are not separable. To achieve
this, engineers attempt to exploit processes and behavioural phenomena that naturally
occur, properties that are governed directly by the underlying physics and chemistries
of the substrate.

Exploiting computation directly from materials offers many potential advantages
over classical systems where the computation performed does not depend so much
on the details of the materials used. As a paradigm, substrate computing potentially
offers vast amounts of computational power by capitalising on the massive paral-
lelism and natural constraints of these rich systems. Such properties are suggested to
have the potential to provide solutions “for free”, or at least computationally cheaper,
and provide a rich explorable state space, aligning computation to particular trajec-
tories [108].

Much of the current interest in material computation is to abstract a model (or
models) of computation from what the substrate does naturally. It has been proposed

536 M. Dale et al.

that the first step to producing a potential unified theory of material computation, i.e.
a theory that better understands what computation is and how it occurs in materials,
should take place in “primitive” (un-evolved) substrates, where the general princi-
ples are in plain sight [108]. After this, material computation could emerge with
some supportive reasoning to a better understanding of computation in biological
substrates.

22.2.1 The Effects of Criticality on Complexity

It is hypothesised that there is a critical state in which a system can exhibit maximal
computational power, and therefore where maximal complexity can be acquired,
labelled a region near (or at) the edge of chaos [60]. This concept may have a direct
relationship to material computation, whereby a material can exhibit “richness” [75],
and therefore be exploitable, by operating close to or within this region.

This edge of chaos represents the transitional border between ordered dynamics,
where perturbations to the system quickly fade and the system settles, and chaotic
behaviour, where perturbations significantly affect long-term stability and the system
becomes unpredictable. This critical landscape can be observed by looking at the
systems trajectory in the phase space by monitoring the convergence towards or away
from a steady state, and thus highlighting a system’s sensitivity to initial conditions.
Both behaviours are thought to be necessary to gain maximal complexity, using
some ordered behaviour to maintain memory, and some chaotic behaviour to enable
processing.

Langton [60] observed the effects and advantages of systems working in this
transitional region, using cellular automata. At a critical point, Langton observed
that a cellular automaton could optimally perform computations, imitating complex
life-like behaviour. Earlier, Packard [86] observed another unique property: that
genetic algorithms tend to evolve populations in these critical regions, suggesting that
adaptability was therefore optimised close to the edge of chaos. Similar conclusions
are proposed and demonstrated in neural networks, where vast computational power
and capability in this region is described through network connectivity. Bertschinger
and Natschldger [11] demonstrate these relationships in input-driven networks, by
accurately determining the position of the critical line with respect to structural
parameters.

It has also been suggested that living neural networks support the “criticality
hypothesis”. Beggs [9] discusses this notion by looking at how the power-law distri-
bution of neuronal avalanche sizes (a cascade of bursts of activity) suggests operation
near a critical point. Beggs further explains, that the implications of these avalanche
size distributions implies that information transmission, information storage, com-
putational power and stability could all simultaneously optimise at the edge of
chaos.

22 Reservoir Computing as a Model for In-Materio Computing 537

22.2.2 Configuration and Structure

Conventional programs and algorithms represent idealised mathematical objects,
irrespective of their underlying hardware. In a physical system (say a biological sys-
tem) computation is embodied, behaviour may not be completely captured by a closed
mathematical model. As such, trying to program these embodied systems requires dif-
ferent techniques. The programming and manipulation of materials requires (to some
extent) acomplex understanding of the properties and interactions within that system.
We therefore require either some convoluted top-down “programming’ approach (in
the traditional sense) or an alternative mechanism (e.g. through training, learning
or evolution). Whichever method is applied, this “program” would alter the details
of system in a controlled manner, for example, using controlling fields that affect
structure and dynamics.

22.3 Evolution-In-Materio

Evolution-in-materio (EIM) is a term coined by Miller and Downing [75] to refer to
the means by which a physical system, a complex material, could be manipulated by
computer controlled evolution (CCE) to perform useful computation.

The idea of using unconstrained evolution as a search method in physical media is
deep rooted in the field of Evolvable Hardware (EH) [34, 36]. Most evolved config-
urations in EH lead to digital products or components later embedded into physical
artefacts. For example, evolving simulated models and optimisation programs, or,
designing a physical system that can be manufactured after evolution; like antennas
[65], robots [64, 90] or chemical systems made of oil droplets [35].

Miller argues that Evolution-in-materio sits between full embodiment and the
realised evolved EH solutions described above [76]. In this form, physical artefacts
are configured (or conceptually created) during the process and assessed/controlled
by simulated Darwinian evolution. This can also be seen in some EH systems, but,
typically such systems are limited to constrained silicon hardware, e.g. electronic
circuits evolved on Field Programmable Gate Arrays (FPGA) [43]. EIM relies on
a hybrid analogue/digital architecture where the evolutionary process (encapsulated
on a digital computer) controls the writing/reading of physical signals to/from an
analogue material. As such, the directed search tries to exploit the dynamics of the
material by evaluating the performance of individual test configurations. Physical
realisations are therefore embodied in the search process but evaluated externally.
A system that operates in this manner is theoretically very powerful, allowing the
manipulation of physical properties which are hitherto unknown.

An early example of EIM can be found in Thompson’s work with FPGAs [114].
Thompson attempted to evolve a frequency discriminator by allowing evolution to
reconfigure circuit elements on the FPGA. In the process, he discovered that evolution
had in fact used subtle electrical variations in the underlying material to form a

538 M. Dale et al.

solution. It was only made evident when evolved configurations no longer solved
the problem when moved around the FPGA and when areas not directly involved
somehow contributed to the overall operation. Thompson’s work led to an explosion
of interest [36, 76]. Miller and Downing [75] label this work as a “starting point”
for the exploration of intrinsic evolution as a means by which to exploit the natural
properties of materials for computation.

22.3.1 Computation in Liquid Crystal

Miller and Downing [75] discuss several interesting materials that could possess the
desired characteristics needed for both computation and evolution. These include,
liquid crystal, conducting and electro-active polymers, voltage controlled colloids,
nanoparticle suspensions and irradiated or damaged semiconductors [75]. These
materials are exploited using a device that can alter the material’s function through
configuration parameters (discrete signals), using a configurable analogue processor
(CAP) (see Fig.22.1).

Liquid Crystal (LC) has a number of advantages for readily applying the the-
ory. LC contains several key features including, wide availability, addressable using
digital voltages, exhibits emergent behaviour, has a unique mesomorphic structure
between ordered and disordered, and can relax to an initial base state. Harding and
Miller [39] adopt liquid crystal as a basis material and construct a bespoke platform
to solve multiple computational problems. The hardware houses a liquid crystal dis-
play (LCD) and an array of dynamically selectable input/output connections to both
the LCD and external measurement devices. They demonstrate liquid crystal as an
efficient evolvable material where relatively small numbers of generations can pro-
duce effective solutions. Over the course of their investigation the LC system has
been applied to three separate tasks; tone discrimination [39], creating logic gates
[41] and a real-time robot controller [40].

Fig. 22.1 Configurable Incident Modified

Analogue Processor (CAP): signal signal Tes.t for
using an evolutionary guided — —_—» desired
search the material is response
reconfigured to solve some /
compute}tional 'task through Fitness

applied input signals [75] Configuration calcui ;nion

data i /

Configuration
population subject to
artificial evolution

22 Reservoir Computing as a Model for In-Materio Computing 539

Harding and Miller found that a rich substrate of liquid crystal supplied many
more exploitable properties compared to conventional silicon hardware (i.e. Thomp-
son’s FPGA). This in turn increased the diversity of solutions, thus increasing its
evolvability. Harding and Miller’s work demonstrated the advantages of emergent
design by configuring intractable characteristic properties with no knowledge of their
existence. But, the experiments also raised other fundamental questions on applying
techniques from the Evolution-in-materio paradigm. For example, the length of time
needed to “program” materials, i.e. how long does the search need to be and what
constraints are there when transitioning into the physical world? what are the diffi-
culties in defining the boundaries of the system under evolution, i.e. what is actually
doing the computation? and what effects come with non-isolated systems embedded
in a physical environment? is the system/evolution utilising environmental conditions
and sources of noise? and what are the affects on system/solution reproducibility?
what are the consequences of varying conditions on replicating the solution? Many
of these questions and more are discussed in [76].

22.3.2 NASCENCE Project: Carbon Nanotube Substrates

As part of the European FP7-ICT research project NASCENCE! (NAnoSCale Engi-
neering for Novel Computation using Evolution) further materials were considered,
along with a new bespoke hardware platform [15]. The present hardware iteration,
known as the Mecobo board [70], forms another hybrid hardware architecture to
integrate digital computers with experimental materials. The system interfaces with
materials placed on micro-electrode arrays (MEA) (Fig. 22.2) using a similar premise
to Harding and Miller’s liquid crystal system, the CAP.

The substrates currently under analysis consist of Single-Walled Carbon Nan-
otubes (SWCNT) mixed with either a polymer or liquid crystal. Another substrate
consisting of randomly-dispersed gold nanoparticles is also under investigation, but
requires temperatures of less than a few Kelvin to function. The polymer/LC mix-
tures disperse the nanotubes into random static networks, forming varying connection
topologies and conductive pathways, possibly forming something akin to a random
electrical circuit. Carbon nanotubes are used as they can exhibit either metallic or
semi-conducting behaviour and contain other unique properties (e.g. ballistic con-
duction, thermal conductivity, self-assembly via van der Waals forces), whilst the
mixing material is believed to create isolating regions, forming an insulator between
elements and creating network structure.

A number of recent investigations have demonstrated the capabilities of SWCNT/
polymer mixtures, in particular Poly-methyl-methacrylate (PMMA) and Poly-butyl-
methacrylate (PBMA), as a potentially rich, evolvable and ubiquitous substrate.
These investigations include: solving classification and optimisation problems such
as frequency classification [78]; classifying various data instances [23, 80]; solving

'NASCENCE homepage: nascence.no.

540 M. Dale et al.

Fig. 22.2 Micro-electrode array used in the NASCENCE project to contain, stimulate and record
activity in a carbon nanotube-based substrate. Computer controlled evolution is used to select active
electrodes and mode (i.e. record or stimulate)

small numbers of cities instances of the travelling salesman problem (TSP) [22]; and
applied to the (NP-hard) bin packing problem [79]. Early evidence highlights and
supports the plausibility and potential of the methodology, but, in some respects it
still lacks competitive results and still exhibits some of the issues raised at the end
of Sect.22.3.1.

PBMA appears to show greater stability than PMMA. The electrical percolation
threshold of PBMA is said to occur around a concentration of 1% (w.r.t. polymer
weight), forming a useful mixture of short and long-conductive pathways. After this,
adding more nanotubes to the mixture is said to provide a negligible computational
advantage as a suitable network appears to already exist. Although, interestingly,
higher concentrations do demonstrate more non-linear current-voltage (I-V) behav-
iour in comparison. At less than 1 %, the nanotube networks become fairly sparse
and are argued to have reduced computational performance (and potentially more
linear properties) [74]. The PMMA polymer was investigated towards the beginning
of the NASCENCE project (see [56]) and is reported to have a percolation threshold
between 0.17 and 0.70 % in the literature, as explained in [74], but more importantly,
a direct comparison is difficult to make between the two polymers as they come
under different polymer groups, i.e. contain different chain lengths.

Investigations into SWCNT/liquid crystal mixtures has shown some promise, for
example, non-linear I-V behaviour appears to be more prominent. It has also been
demonstrated that conductivity and orientation can be changed by an in-plane electric
field. But, LC has been shown to experience a longer configuration time, in-terms
of LC molecule and SWCNT alignment, due to LC molecules being smaller than
SWCNT ribbons, and associated relaxation times. Other issues include; Long-term
stability and reconfigurability, and the exact role of the liquid crystal in nanotube
alignment [121].

22 Reservoir Computing as a Model for In-Materio Computing 541

New engineering technologies, adaptations in the search method (or fitness cri-
teria), changes in hardware (number of electrodes, different pitch sizes, etc.) and
new materials could all have a significant effect on the field. The key components
to the success of EIM lay in improvements to the fabrication of materials and the
interfacing system used for stimulation and observation. This early work has also
only highlighted one of many means of “programming” a material via evolution
(i.e. through discrete voltage inputs). Other controlling fields, or even a combination
of fields, could be utilised to manipulate/configure different materials—hopefully
further separating the distinction between configuration and input signals. The ideal
scenario for this field would be to pave the way for cheap, small, easily reconfigured
and manufactured, multi- or single-purpose standalone computational devices.

22.4 Reservoir Computing

22.4.1 What Is Reservoir Computing?

Reservoir Computing is the unification of three individually conceived methods for
creating and training artificial recurrent neural networks (RNN): Echo State Net-
works (ESN) [44], Liquid State Machines (LSM) [72] and the Backpropagation-
Decorrelation (BPDC) on-line learning rule [105].

A typical RNN model consists of a system of three layers: an input layer, a hid-
den layer (the core network), and an output layer (see Fig.22.3). The hidden layer
contains processing elements (neurons) that are interconnected through weighted
synapses (connection weights). The input and output layers are connected to the hid-
den layer, again through weighted synapses. Variations on the types of connectivity,
e.g. feedback from the output to hidden layer or input layer to output layer, depends on
the task and method. For simplicity, we examine a simple input-to-hidden-to-output
system encompassing a recurrent network in the hidden layer.

Fig. 22.3 A typical Hidden

three-layer rec.urrent neural Input layer) utput
network. The input and
layer

output layer are connected to
the hidden layer via
weighted connections. The -
connections between
neurons in the hidden layer
are also weighted

542 M. Dale et al.

When driven by an input, neurons activate, propagating information through the
network to other neurons through varying connection strengths. The presence of
recurrent connections can produce self-sustained activations, preserving a dynamic
memory in the network’s internal state. Networks such as this have been shown to
be theoretically very powerful and can be both Turing equivalent [53] and good
universal approximators of dynamical systems [30]. However, making the most of
RNNSs comes at a price, as they suffer from many training difficulties, such as the
computational expense of updating large networks, bifurcation points, and sometimes
falling into inescapable local optima when using gradient-descent.

Reservoir Computing offers an alternative training technique. It reduces the com-
putational cost and removes the problem of degenerative gradient information that
leads to poor convergence. Also, the concepts of reservoirs go beyond traditional
neural networks and encompass (to some extent) more general dynamical systems.
Evidence of this can be seen in the following implementations: in electronic circuits
[95, 98], a bucket of water [28], Gene Regulation Networks (GRN) of E. coli bacte-
ria [24, 52], deoxyribozyme oscillators (referred to as “DNA reservoir computing”)
[33] and a cat’s primary visual cortex [81].

22.4.2 Reservoir Types

There are many “flavours” of reservoir, originating from two separate research fields
of machine learning and computational neuroscience. The first focuses on train-
ing dynamical systems for temporal learning tasks using artificial recurrent neural
networks. The second aims at realistically modelling the computational properties
of neural microcircuits. We give a summary of the two main branches of RC, and
reservoirs in unconventional hardware. For more types and variations see [68].

22.4.2.1 Echo State Network

The Echo State Network (ESN) is a discrete-time neural network constructed from a
sparse, random collection of analogue neurons (Fig. 22.4). The typical neuron model
employed uses the sum of its weighted inputs, applied to a sigmoid function (generally
a hyperbolic-tangent), to give the neuron state x(n) at time n. The state activations
x(n) of these neurons are termed as echo states [44], i.e. echoes of the input history.
To propagate and hold this history the network requires the echo state property, or
more generally speaking, a fading memory. The property itself is provided by the
characteristic dynamics of the system.

In ESNGs, different scaling parameters, and in particular the spectral radius 0(.),
influence these dynamics. These parameters fundamentally alter and control the
amount of memory and non-linearity present in the system. The p(.) parameter is
used to scale the weight matrix W so that the largest absolute eigenvalue satisfies

22 Reservoir Computing as a Model for In-Materio Computing 543

\i4 target
o—F>, S out ' (
Vi / N W

QAN - T

n)

Fig. 22.4 Echo State Network: A random, static, recurrent network of sigmoidal neurons. The
input driven system projects u(n) into the reservoir network. Each node possesses a one-to-one
weighted connection to all inputs (via winy, outputs (via W") and other nodes (via W). The extra
input (labelled “1” in the figure) is provided as a bias Wp;,s. Training occurs on the output weights
W@ (in relation to reservoir states x(n)) by reducing the error between y(n) and y'*"8¢ (n) [66]

pP(W) < 1 (typically, but not always; see [68]). Within this region the echo state
property is said to be assured.

Another variant of the ESN model is the leaky-integrator neuron model, using a
neuron that possesses some form of memory of previous activations. These neurons
contain a leaking rate, or decay parameter o, which can control the speed of the
reservoirs update dynamics (Eq.22.1).

As Jaeger [44] describes, each neuron acts like a digital low-pass filter enabling
a discrete network to approximate the dynamics of a continuous network (variations
and uses can be seen in [44, 66, 68]). Dynamical systems have a natural time-scale;
understanding the time-scale on which the input is changing compared to the time-
scale of the system dynamics can be difficult. The leaky parameter o helps control
and mediate any differences in input time-scales.

Putting together these components gives the neuron state update equation:

x(m)=~1—-o)x(n —1) +af (Wu(n) + Wx(n — 1)) (22.1)

22.4.2.2 Liquid State Machine

The Liquid State Machine (LSM) model arose as a method for defining the compu-
tational properties and power of neural microcircuits, “an alternative to Turing and
attractor-based models in dynamical systems” [71]. The LSM model represents a
competitive model for describing computations in biological networks of neurons.
The LSM attempts to model cortical micro-columns in the neocortex, structured in
cortical layers of randomly created spiking neurons based on a spatial embedding.
Among other things, it has been described as a possible process used by mammalian

544 M. Dale et al.

brains in speech recognition [27] and has been verified for cortical microcircuits in
the primary visual cortex [81] and the primary auditory cortex [54].

Networks based on LSM use continuous streams of data (spike trains) to achieve
real-time computations. Maass [71] has argued that classical models cannot handle
real-time data streams based on spike trains. Unlike ESNs, they are generally more
adaptive systems, supporting additional advanced readout features such as parallel
perceptrons [72], although, in many cases, a linear readout is preferred.

Investigations using Liquid State Machines has highlighted the potential for more
abstract unconventional applications, for example, pattern recognition using a phys-
ical medium (water) [28], and imitating LSMs in E. Coli [52].

22.4.2.3 Unconventional Hardware: Single Non-linear Dynamical Node
with Delayed Feedback

Recent experimental applications of reservoir computing in optoelectronics and pho-
tonics [6, 61, 87] have demonstrated a new way of constructing a pseudo-reservoir
system. Using delay systems theory, a system can imitate the characteristics of a
recurrent network without being one. Delay systems represent a class of dynamical
systems which incorporate non-linear systems with some form of delayed feedback
and/or delayed coupling.

The key feature of this new RC flavour is to replace a physical network of nodes
(often large in size) with a single non-linear node and a delay line. The delay system
mimics a large interconnected network by creating a topology of virtual nodes in the
delay line. This is achieved by applying time-multiplexing techniques on the input,
i.e. through a combination of sample-and-hold operations mixed with an additional
input mask. The sample-and-hold operation creates a stream I (¢) which defines
the state update determined by the delay 7 in the feedback loop. An additional
mask M is created to represent coupled weights between stream 7 (¢) and the virtual
nodes. The matrix M was initially randomly created at first, motivated by the random
connectivity in reservoirs; but later optimised masks were proposed [7].

The number of virtual nodes in the system is defined by N equidistant points sep-
arated in time (0 = 7/N) along the delay interval t. The resulting time-multiplexed
input sequence becomes J (f) = M x I(¢) which is then fed into the non-linear node
(Fig.22.5). Once the system has updated after time t, the output nodes access the
states in the delay line using ZZN:I wix(t — % (N —i). For more detail on the mask-
ing process see the supplementary information provided for [6, 7].

The single non-linear node scheme has many interesting implications for design-
ing hardware reservoir computers. A clear advantage is that the overall architecture
needed is very simple. But using a delay loop implies a serial process (in contrast to
the parallel feeding of nodes in RC). Therefore, the speed of information processing
depends on the state update given by time 7. A few suggestions have been given
to compensate for such discrepancies and to increase computational capability, e.g.
adding additional delay lines (increasing memory capacity) and finding an optimal
number of nodes that can reasonably be implemented physically: adding more nodes

22 Reservoir Computing as a Model for In-Materio Computing 545

{a)lnput layer Reservoir Output layer Classes

N

Trained weights 2
Time multiplexing Virtual nodes ’

) yiky
b

J(t)

NL node
J()

=) _Wpf = -

= x(t-1)

o ‘l o —| r
e
w t

Fig. 22.5 a Single non-linear node with delayed feedback. A new system derived from delay
systems theory where virtual nodes are created in the delay loop 7 to represent the hidden layer.
The number of virtual nodes N is separated by time 6 given by 6 = 7/N, b time-multiplexing of
the input stream / (¢) (sampled from discrete « (k) or continuous time u(¢)) and a randomly created
mask M that creates the input sequence J (¢). J () is then added to the delayed state of the reservoir
x(t — 1) before being fed back into the non-linear node [6]

=
 F—

will decrease 7, but having too many nodes is physically impractical given the hard-
ware involved. Future work using this technique looks promising and could produce
some ultra-high-speed computing solutions for specific tasks.

22.4.3 Reservoirs and Kernels

A reservoir can be interpreted as possessing kernel-like properties. A kernel acts as
a pre-processor, embedding input data into a vector space known as a feature space.
It is understood in many statistical machine learning methods that combining this
feature space with a simple linear discriminant algorithm can enable the learning of
complex non-linear functions.

In kernel methods this is achieved by projecting the input space u(n) into a high-
dimensional (possibly infinite-dimensional) feature space x(n) without paying the
price of its explicit computation, referred to as the kernel trick [92]. A kernel can
therefore be expressed as the expansion function x (u(n)). However, there are two sig-
nificant differences between reservoirs and kernels: reservoirs do explicitly compute
the input transformation, i.e. do not possess the kernel trick; and kernels are typically

546 M. Dale et al.

ill-equipped to handle temporal signals. To tackle temporal tasks the learned func-
tion x(.) requires some form of memory of previous inputs. Reservoirs solve this
by utilising the network’s recurrent topology, which creates memory by retaining
previous state activations. The final expansion function of the reservoir can therefore
be represented as x(n) = x(x(n — 1), u(n)).

Reservoirs use this pre-processing technique to map temporal features of the input
into a spatially defined feature map (the network). The desired features can then be
extracted, or combined, in a linear fashion to create the output y(n):

y(n) = W x[u(n)] (22.2)

where W e RN»*Nx and N,, N, are the number of output nodes and internal nodes
respectively.

This enables reservoirs to tackle many temporal and dynamic real-world tasks not
possible using simple non-temporal kernels. Equation (22.2) also implies the system
contains a clear separation between the reservoir and the linear readout, separating the
training procedure from the hidden layer, i.e. only W is trained. As such, the kernel
representation offers a much faster and better converging mechanism compared to
other RNN models, as it does not suffer from vanishing gradients. This representation
also classes reservoirs as powerful adaptive filters. For more information on kernels
see [100].

22.4.4 Reservoirs and Criticality

To design an optimal reservoir one should find a good trade-off between: (i) the
transformation of the input that optimally boosts the linear classifiers capability, later
referred to as the “quality” of the kernel; and (ii) a sufficiently-long (fading) memory
based on the input history. These two properties often conflict; to obtain a use-
ful memory requires ordered behaviour and a rich transformation requires dynamic
behaviour. Legenstein and Maass [62] have shown that optimal reservoirs tend to
experience the best trade-offs at a critical point near the “edge of chaos”.

Dynamic networks are said to exhibit emergent criticality and self-organising
properties [110]. A novel example of this can be seen [10], where a self-organising
structure of carbon nanotubes evolves to produce maximum entropy given a strong
applied electric field. Moreover, it has been observed that dynamic networks can
self-organise into critical regions where they can perform interesting computations.

These systems are characterised by motion in the phase space described as trajec-
tories or state transitions. A trajectory may converge towards (i.e. be attracted to) a
stable or unstable steady state; an attractor. Attractors vary from point—a point in the
state space that attracts trajectories into its basin—to strange and chaotic—attracting
trajectories, but inside diverge exponentially. These systems are very robust, small
perturbations in the trajectory will tend to converge towards the same attractor. But,
both external inputs and parameter changes in the system can drastically alter the

22 Reservoir Computing as a Model for In-Materio Computing 547

shape of the phase space. Such changes may perturb a trajectory, moving or “clamp-
ing” the system between different attractor basins. As a result, clamping may even
create, remove or change existing attractors and thus alter the initial phase space
created by the natural dynamics of the system [109]. The overall dynamics of the
system can therefore, to some extent, be controlled.

As discussed in Sect.22.2, certain critical regions have been identified to display
interesting properties for computation (e.g. maximum complexity and performance).
Although the reasons for maximised performance is not entirely understood, a series
of quantitative measures have been used to observe the effects of phase transition on
computational capability.

Early measurements of dynamics in reservoir-like systems can be found in [11]
where, using a similar technique to Derrida and Pomeau [26], dynamic behaviour is
measured using the Hamming distances between two output states. By observing a
growth in the distance between states it can be determined that chaotic behaviour is
present; a decrease in distance would indicate more ordered behaviour. This concept is
similar to computing the characteristic Lyapunov Exponent for a dynamical system
(see Sect.22.6.2.2), with both measures analysing the sensitivity to differences in
initial conditions.

Bertschinger and Natschlager [11] highlight two fundamental properties required
for these networks: a fading memory and a “network mediated” separation. A fading
memory is indicative of an ordered phase (memory) with some dynamics (fading).
The same property is found in both Liquid State Machines and Echo State Networks,
referred to as the “echo state property” in the latter. This allows the readout function
to use information from recent inputs and derive functions of those inputs from the
network state. Network mediated separation is deemed fundamentally important for
input time-series networks, with similarities to the separation property in LSMs (see
[72]). The property requires (ideally a large) diversity in network states that is the
result of differences in inputs alone, allowing characteristic features to be identified
in the input, and that any changes in state should not directly be a result of chaotic
dynamics which could produce the same phenomena. As such, this property enables
a readout function to respond effectively to any variation in the inputs.

Legenstein and Maass [63] propose two critical elements that characterise the
computational capabilities of a complex dynamical system (cortical neural microcir-
cuits in this case). These new measures, or properties, are proposed because Lyapunov
exponents are only useful for analysing a systems dynamics, and are not necessarily
helpful in predicting good parameter regions that create high computational perfor-
mance. These measures are the kernel-quality and the generalisation-capability. The
kernel-quality refers to the linear separation property found in kernels (Sect.22.4.3).
An empirical measure of this property is achieved by examining the complexity of
functions that can be carried out on the inputs that boost the classification power of a
subsequent linear layer. The generalisation-capability quantifies a system’s capability
to generalise any learned behaviour to a new input.

Boedecker et al. [13] extend these ideas to ESNs, and create a general frame-
work for direct and localised measurements for each neuron. Boedecker et al. give
measurements indicating the memory of each neuron and the transfer of informa-

548 M. Dale et al.

tion between each neuron. This work highlights some interesting and relevant points
for all systems: a network does not necessarily need to be at the edge of chaos to
do computation, the measured region where a system is at the edge of chaos is not
universal for all tasks, and a critical state may maximise computational capabilities,
but, such criticality may also be unnecessary or detrimental to certain tasks.

22.4.5 Training Reservoirs

This section describes the training procedure and some of the available techniques
one can use to train both the linear outputs and the reservoir itself. The two meth-
ods for training linear readouts described here are: “off-line” batch-mode training,
using simple linear or ridge regression techniques (done once all reservoir states are
collected into matrix X for training length 7'), and “on-line” training, often gradient
descent-based, Recursive Least Squares algorithm (a useful extensive investigation of
RLS-type training is shown in [57]). We then describe some pre-processing training
techniques that can be used on the reservoir itself, methods that have been identified
as useful in creating tailored/optimal reservoirs.

There are many training techniques available in this diverse field. Here we just
discuss methods perceived as “classical” training methods. For more examples of
training techniques see [47, 66, 68].

22.4.5.1 Off-Line Training

Reservoirs are traditionally trained in a supervised manner where the temporal input
u(n) and coupled target output y'“8¢'(n) are provided. Given a desired output the
system can learn input-output behaviour by minimising the error (Eq. 22.3) between
system output and desired output.

target 1 ZrT: (y(n) — y'arset(n))?
E(y,y'"s") = \/ 7555) (22.3)

To evaluate if the learned behaviour generalises accordingly, new input data is tested
and the error between the two are again compared.

Reservoir computers are conceptually viewed as recurrent neural networks incor-
porating the three-layered topology of N, hidden nodes (neurons), N, inputs and N,
outputs. As discussed in Sect.22.4.2, variations on how these are implemented are
also possible, but, essentially the system still adheres to the same structural layers.

The general update state equations for most systems are defined in Egs. (22.4) and
(22.5) for, discrete time n = 1, ..., T, internal state x (n) and output y(n):

x(n) = FW™u(n) + Wx(n — 1) + Wy — 1) + whies) (22.4)

22 Reservoir Computing as a Model for In-Materio Computing 549

y(n) = f(W™[x(n); u(n)l) (22.5)

The function f is commonly represented by a sigmoid, typically a hyperbolic tan-
gent. In echo state networks this represents a basic tanh neuron, but varies depending
on the application. In other networks, f can be designed to form linear nodes, thresh-
old logic gates or spiking neurons. In regards to the output y(n), f°*' may also be a
non-linear function (sigmoid) but tends to be identity in most cases.

The weight matrices; input weights Wi € R¥«*Nx reservoir/hidden layer weights
W € RN->N: and feedback weights (from the output to the reservoir, if needed)
W/t e RN<*N; are all drawn randomly from a uniform distribution at creation and
remain static. The output weight matrix W € RM>*N:+No) includes weights for
the inputs as they act as additional states (hence the concatenation of [x(n); u(n)]).
Typically, the W matrix forms a sparse network with many of the weights set to
zero, the other W and W/? matrices can either be dense or sparse. Additional
scaling parameters might also be applied to the matrices to govern properties such
as non-linearity, stability and global dynamics. Techniques that can optimise/adapt
each matrix (on-line or pre-processing) will be discussed later in the section.

The bias W"% can be used to counteract training issues and large weights by
adding noise, acting as a regularisation parameter, or to push the tanh neuron to a
particular state, creating a smoothing effect.

Applying feedback W/ can be useful, or detrimental, to certain tasks. Some tasks
might not be learnt to a reasonable degree without feedback, or, certain systems may
require dynamics beyond what is supplied by the driven input to construct a suitable
output. Adding feedback comes with its own risks, feedback will ultimately change
the stability of the system and requires adaptations in the training procedure. It is
often advised only to use feedback when necessary. For more information see [66].

The off-line technique is completed in one training cycle T after the system has
computed all states for the given inputs. It provides a very fast training mechanism
as it essentially computes a linear model given by the known output Y, collected
reservoir states X and desired output Y'#"8¢';

Y = wox (22.6)

The collected state matrix X € RY*T is created when the input «(n) is run through
the reservoir states x (). To avoid initial transients created by an initial zero state
x(0), a section at the beginning of the training sequence is discarded in the state
matrix X. Essentially, the system goes through a “warming-up” process where states
bounce around rather than returning to the equilibrium output, i.e. the system is too
chaotic to retrieve any useful information about the input.

Given Eq. (22.6), we can find the optimal weights that minimise the error between
y(n) and y"*"8¢ (n) by solving the overdetermined system:

Ylargel — W(]ulX (22’7)

550 M. Dale et al.

Equation (22.7) can be solved for W using linear regression. The simplest
method is to use Ordinary Least-Squares (Eq.22.8), but typically this method suc-
cumbs to stability issues when inverting (X X7).

Wout — Ylarg@fXT(XXT)_l (228)

LukoSevicius [66] recommends using either ridge regression (regression with
Tikhonov regularisation f) (Eq.22.9) or the Moore—Penrose pseudo-inverse
(Eq.22.10). Ridge regression is a stable and effective solution and is generally
advised. Adding a regularisation parameter counteracts the problems of producing
very large output weights, which often indicates very sensitive and unstable solutions.

wou — YtargetXT(XXT + ,3])71 (22.9)

where [is the identity matrix and § the regularisation parameter.

Setting B = 0 gives the same method for solving linear regression in Eq. (22.8).
It is therefore recommended to use a logarithmic scale for selecting 8 where it never
reaches zero [68].

The pseudo-inverse is applied in some cases typically because it is straightforward
to implement in certain programming environments (e.g. MATLAB). However this
comes at a price. The pseudo-inverse method is computationally expensive for large
matrices of X and typically overdetermined. However, in most cases the network is
made up of relatively small matrices and over-fitting depends on the difficulty of the
task.

Wout — Ytargetx+ (2210)

22.4.5.2 On-Line Training

Some tasks require an on-line training method that adapts with time, minimising the
error at each time step. This implicitly turns W°* into an adaptive linear combiner.
The Recursive Least Squares (RLS) algorithm (Eq.22.11) is more commonly applied
as it overcomes the severely impaired convergence performance of the Least Means
Square (LMS) algorithm [46].

N,
1 <& < .
E , target’ - AT : N 'target N\ 2 2211
v,y n) Ny;jzz; i () — ¥ () (22.11)

Using RLS comes at a cost: the number of weights is quadratic rather than linear,
and it can still be numerically unstable in some cases. Other powerful on-line methods
may be useful to a practitioner, particularly in the presence of feedback connections,
such as Backpropagation-Decorrelation (BPDC) [105].

22 Reservoir Computing as a Model for In-Materio Computing 551

The RLS training procedure is described here, derived from [25]. First, set the
error forgetting parameter A close to but less than one; the forgetting parameter
controls the contribution of previous samples. Next, initialise the autocorrelation
matrix p(0) = /8, with § being a small constant and / the identity matrix. At each
time step compute the output weights using the following steps:

Step 1: Calculate the reservoir state x(n) and output signal y(n) for input u(n).
Step 2: Calculate the error between target output y'“’$¢(n) and system output
given previous output weights:

e(n) =y (n) — W' (n — Dx(n) (22.12)

Step 3: Update the gain vector K (n):

K(n) = x‘;((';)_ pzr)Lx—(nl))x o (22.13)
Step 4: Update the autocorrelation matrix P(n):
p(n) =)%[D(n -1 = K@mx"(n)p(n — 1)] (22.14)
Step 5: Assign new output weights W (n) using (22.12) and (22.13):
W (n) = W (n — 1) + K (n)e(n) (22.15)

For more readout training methods including feedback training (such as FORCE
training), supervised, unsupervised, reinforcement learning, etc. consult the excellent
review [68] and practical aid [66].

22.4.5.3 Adaptation and Pre-training

Adaptive reservoirs, ones that change weights or configuration, are inspired by nat-
ural adaptation in biological neurons. These adaptive processes are the result of
persistent changes in a neuron’s electrical properties, governed by unsupervised
local adaptation rules often referred to as Intrinsic Plasticity (IP). These rules repre-
sent a homeostatic mechanism in which neurons self-modify their intrinsic activity
(i.e. excitability). Using such learning rules has shown to increase robustness and
performance when pre-training reservoirs [96, 106]. For an overview of recent inves-
tigations including both local and global adaptation schemes, see [67, 68].

In classical RC, reservoirs are generated randomly, hence the performance of each
reservoir varies on creation. Reservoir computing boasts its training performance on
the separation between the reservoir and readout. The readout training, at its core, is
quite inexpensive, allowing the possibility of other forms of reservoir pre-training, i.e.

552 M. Dale et al.

generating reservoirs deterministically for each task. Even a crude experiment such
as selecting a reservoir which produces the smallest error from a pool of randomly-
created reservoirs highlights the advantages of pre-training. Evolutionary algorithms
are a potential search strategy for pre-training.

Investigations using evolutionary optimisation for pre-training are well docu-
mented. Many strategies have been attempted, including evolving topologies (i.e.
network size), weight matrices (such as W, W, W/?), global parameters (e.g. spec-
tral radius), connection density, adapting slopes of the activation function f(.) and
even training w°* when no target signal is available. Other interesting methods
include EvoLino—evolving hidden connections to gradient-based long-short term
memory (LSTM) RNNs [91] and using Neuro-Evolution of Augmented Topologies
(NEAT) as a meta-search algorithm for evolving ESNs [20] (the “related work”
section also discusses other neuro-evolution methods for constructing ESNs). All of
these methods have shown great potential, highlighting the performance increases
and optimisations reservoir pre-training can create for specific tasks. Pre-training
and adaptation appears to be one of many key branches under investigation in the
field of reservoir computing.

22.5 Modelling Materials with Reservoir Computing

Any high-dimensional dynamical system with an observable state x (n) that is aresult
of input u(n) could form the basis of a reservoir according to [68]. This implies
that any material that can exhibit sufficient dynamics and a fading memory could
therefore, theoretically, be adopted as a reservoir.

Given thatreservoir computing is based on artificial recurrent neural networks, one
implementation route would be to design hardware substrates modelled on simplified
neural network-like structures, e.g. large coupled networks of non-linear elements
with varying densities of connectivity. Using this structural model, semi-isolated
regions of activity may form exploitable meta-states for the trainable readout. Var-
ious implementations of hardware-based artificial neural networks have existed for
some time; see [77] for a review of HNNs. More recently, there has been increased
popularity towards applying memristive components to neuromorphic circuits, see
[58] (a review CMOS/memristor hybrids) and [101].

Kulkarni and Teuscher [59], among others, have examined and demonstrated
reservoir networks built from memristor devices. Memristors appear to be ideal
components for building reservoirs: they exhibit non-linear properties and maintain
amemory of previous inputs. In the Kulkarni and Teuscher experiment, simulated cir-
cuits are randomly-created from networks of memristors, then a subsequent readout
layer is trained using a genetic algorithm to solve some computational task. Other
simulated memristor reservoirs include: simple-cycle reservoirs [16] i.e. memris-
tive networks that form nodes instead of analogue neurons (see [88]), training more
realistic volatile memristor models [19], and variation-tolerant reservoirs [17].

22 Reservoir Computing as a Model for In-Materio Computing 553

Fabricating random, highly-interconnected networks and devices from nanoscale
switching elements is a challenging task. At these scales, features of self-assembly
and self-organisation are essential: characteristics that might only be achievable
through unconventional methods and materials. Konkoli and Wendin [55] provide a
brief review of some non-CMOS devices and discuss the suitability of the RC model
on such unconventional devices. These devices include, molecular electronic net-
works, memristor networks, and other substrates outlined as part of the SYMONE
project [122]. At present, the SYMONE project is investigating networks of organic
transistors (NOMFETs) and self-assembled networks of gold nanoparticles that could
feature functionalised memristive junctions [55].

Two examples that demonstrate physical, in-materio reservoir computing systems
are silicon-based photonic chips (based on nanophotonic crystal cavities) [29, 117],
and Atomic Switch Networks (ASNs) [103, 112, 113].

The photonics chip primarily exploits the propagation of light through silicon.
Inside these chips are photonic crystals that remove the propagation of certain fre-
quencies of light, known as the band gap. Adding a line defect to a crystal produces
a photonic crystal waveguide, effectively a process by which light is forced between
the defect. Cavities are then created along the line defect to create an optical “res-
onator” which traps light, increasing the power inside the resonator. These resonators
then form a optical reservoir which can be trained and manipulated using different
types of readouts, e.g. [117] creates a linear system, and the non-linearity is added at
the readout through the inherent non-linearity of the measuring equipment. Methods
such as this propose an interesting optical alternative to hardware-based reservoir
computing.

The atomic switch network approach focuses on the electrical and chemical prop-
erties of a material. These networks attempt to mimic the vast complexity, emer-
gent dynamics, and connectivity of the brain. Highly-interconnected networks are
constructed by bottom-up self-assembly of silver nanowires. Through a triggered
electro-chemical reaction, coated copper seed nucleation sites spawn large quanti-
ties of silver nanowires of various lengths, from nano- to millimetre scale. Large
random networks are formed, creating crossbar-like junctions between nanowires,
and when exposed to gaseous sulphur create Ag|Ag» S| Ag nanoscale metal-insulator-
metal (MIM) junctions. Applying external activation (a bias voltage) to these junc-
tions creates a temporary resistance drop, leading to functional memristive junctions
called Atomic Switches. Applying this construction and functionalisation process
the ASN method offers some unique properties, such as scalability and practicality
in creating highly-complex nanoscale substrates.

The emergent behaviour and dynamics of ASNs can be observed through fluctu-
ations in network conductivity, a result of spontaneous switching between discrete
metastable resistance states, where locally excited regions cause cascading changes
in resistance throughout the system. As such, the non-linear responses to resistive
switching are reported to result in higher harmonic generation (HHG), also suggested
as a useful measure for quantitatively evaluating reservoir dynamics [103].

A clear advantage of the ASN technique is that it allows some degree of regu-
lation in fabrication and further control through “resistance control” training [113].

554 M. Dale et al.

For example, varying the parameters of the nucleation sites (copper seeds) can alter
the network structure and therefore the substrates dynamics. The relative size, num-
bers and pitch of copper seeds can determine the length of wires, forming distant
connections or confining spatial regions to dendrite-like structures, thus ultimately
defining the density of connections [103].

ASNs appear to be natural candidates for reservoir computing, producing a high-
dimensional recurrent network that does not require the manipulation of individual
elements. ASNs have been applied to one derived RC task; the waveform genera-
tion task [103, 113]. This is a simple analogue task which measures a reservoir’s
ability to construct a desired output waveform from an independent input waveform
using network generated harmonics. For example, given an input sine-wave, can a
trained reservoir construct a sawtooth, square-wave, or any other periodic function
at the output (essentially a Fourier series task using harmonic analysis). These initial
experiments have proven ASNs to be capable reservoirs and has also highlighted
HHG as a potential metric for evaluating reservoir properties.

22.6 Evaluating the Characteristics of Reservoirs

Creating a random reservoir (in simulation at least) is fairly straightforward, but
designing one with the right properties, using the large parameter space available, is
a challenging task. In many cases parameter selection is done by hand, through trial
and error, and with expert knowledge of the desired characteristics. So how can we
better understand and evaluate reservoirs?

One approach is to simplify its construction. In doing so, one could provide a more
theoretical understanding of what makes reservoirs useful/successful. Reference [88]
explores this idea by addressing three issues: (i) what is the minimal complexity of
topology and parameters that produce comparable performance to standard models?
(ii) what degree of randomness is needed to construct competitive reservoirs? and
(ii1) how do completely deterministic reservoirs compare? These are good questions
for understanding underlying RC principles, but may be impractical to investigate
given an already created (maybe static) physical substrate. Instead, we desire more
experimental quantitative measures that individually describe the reservoir and its
qualities as an efficient kernel.

Determining, or evaluating, reservoir quality and performance can be achieved in
two ways, either through direct measurement of performance on a given task, or by
cumulatively assessing individual properties of the reservoir. Using the latter method
provides a mechanism in which performance could be partly predicted for any task.
As [82] explains, a good reservoir that scores well in all properties may be able to
facilitate the process of “learning transfer”, where the reservoir can be trained to
some objective function that will increase its capability without seeing any output
task. The objective function, in the mentioned case, measures how well a reservoir
(an LSM) separates different classes of inputs into different reservoir states. As such,
it was shown that improving separability and instilling an adaptive balance between

22 Reservoir Computing as a Model for In-Materio Computing 555

chaotic and ordered behaviour (through changes in structure) a reservoir can increase
its performance across different artificial problems.

In this section we discuss some of the measures proposed in the reservoir com-
puting literature, accompanied by a variety of different benchmark tasks used to
assess performance. Such measures and benchmarks may be an effective method for
evaluating the potential of substrate-based reservoirs.

22.6.1 Kernel Quality and Separation

22.6.1.1 Kernel Quality

Kernel quality evaluates a reservoir’s ability to produce diverse and complex map-
pings (functions) of the input stream u that can consequently increase the classifica-
tion performance of a linear decision-hyperplane [62].

Kernel quality, also known as the linear separation property, was first introduced
by Legenstein and Maass [62], along with an accompanying metric referred to as
the generalisation capability of a reservoir. The two properties are closely coupled
and can be measured using a similar ranking mechanism. The first, kernel quality,
measures a reservoir’s ability to produce diverse reservoir states given significantly
different input streams. The second measures the reservoir’s capability to generalise
given similar input streams with respect to a target function. Both measurements
can be carried out using the method in [18], by computing the rank r of an n x m
matrix M, with the two methods differing only in the selection of m input streams
Ui, ..., Uy, .. input streams being largely different or of similar type/class.

The rank is assessed as follows; Given the input stream u; the reservoir state
vector x,, of length n is collected to form each column in the matrix M. The rank r
of each matrix is then estimated by Singular Value Decomposition (SVD). Biising
et al. [18] explains that a good reservoir should possess a high kernel quality and
a low generalisation rank, and also identify a correlation in the measurement to
the reservoir’s dynamics. For example, reservoirs in ordered regimes produce low
ranking values in both measures, and in chaotic regimes produces high values in
both measures. A similar connection is also observed in [21], where the Lyapunov
exponent and the kernel quality strongly correlate.

22.6.1.2 Class Separation

Class separation is a metric that corresponds directly to different classes of input
stimuli. Demonstrations of class separation can be found in [21, 31, 82]. Separation
is measured as the average distance between resulting states, once again, given the
assumption that significantly different inputs should generate significantly different
reservoir states. To calculate separation requires the division of the input and state
vectors into discrete classes; [31] provides an alternative measure characterised on

556 M. Dale et al.

the original assumption. For example, given two different input vectors u;(n) and
uy (n) the euclidean distance between inputs should be large and positive, as described
by D:

D = |lu;(n) — ur(n)|| (22.16)

If the reservoir exhibits a good separation property the reservoir states (x; (n) and
x(n)) should increase in distance, or be equal to the original distance:

D < |lx;j(n) = xi(n)|l (22.17)

which can be represented as the ratio:

llxj () — xe ()l > (22.18)
lluj(n) — ur(n)ll

This simplified measure has been extended [31] into Separation Ratio Graphs to
produce a visual representation of separation and the phase transition of correlated
dynamic behaviour (see Fig.22.6).

Konkoli and Wendin [55] offer another comparable method for identifying reser-
voir quality in memristor networks. This metric is again based on the assumption
that quality can be measured by observing the reservoir’s ability to generate different
dynamic states at the output. In this case, it is observed by measuring the dissimilarity
between output states and a linear combination of the inputs, i.e. determining if the
non-linear frequency response of a network cannot be approximated by a linear mix-
ture of delayed inputs. Dissimilarity is measured in the Fourier space (w) between
outputs o(n) and a linear combination of the time shifted inputs z(n), given by:

Fig. 22.6 Separation Ratio Separation Ratio Graph
Graph [31]. Graphical 10
representation of the phase
.. 9
transition between chaos and ~—
order. Systems in the target =< 8
zone are said to possess both s 7
a good separation property ,-9,.
and ideal dynamic behaviour | -
to produce optimal reservoirs E S
"
. |
2 3
:,
(3
1
1]

22 Reservoir Computing as a Model for In-Materio Computing 557

_ lo@ —z@)|

22.19
lo(@)]] ()

A large dissimilarity (large §) is ideal in a reservoir as it describes a complex projec-
tion of the input. A small § on the other hand may simply describe a linear propagation
of the input, highlighting the absence of richness in the reservoir.

22.6.2 Quantifying Dynamics

Producing a reservoir with rich dynamics is evidently desirable, but how can we
quantify dynamical behaviour? how can we pin-point the critical region at the edge
of chaos? In the literature, there are several prominent themes in classifying and
measuring dynamics, including observation of trajectories and attractor behaviour,
internal scaling of input-driven activity, memory and retention, and higher-harmonic
generation, particularly in reservoirs comprising resistive switches.

22.6.2.1 Spectral Radius

In Echo State Networks, the spectral radius p(.) (the largest absolute eigenvalue)
of the internal weight matrix W is used to determine and control reservoir dynam-
ics [44]. The parameter p globally scales the internal weights, moving the system
between different regimes, altering the non-linearity and impulse response of the
reservoir. Effectively, the scaling parameter alters the internal time-scales of the
system, providing the echo state property.

Parameter selection of the spectral radius is typically centred around a value of
one; smaller than one is attributed to a stable regime (a fading response to input
stimuli), if larger than one, a system will typically be unstable, causing undesirable
interference to new inputs.

22.6.2.2 Lyapunov Exponents

A popular measurement for criticality, or chaotic behaviour, in a reservoir is the
empirical estimation of the Lyapunov exponents (LE) for a dynamical system [11,
21, 31, 63, 118]. To calculate the Lyapunov Exponents, and quantify a system’s
criticality, we measure the divergence between two close trajectories due to some
small perturbation. For example, if an orbit is close to an attractor, in an ordered phase,
small changes should dissipate over time. In a chaotic phase, an applied change will
diverge exponentially from an orbit, persisting or increasing over time.

Gibbons [31] provides a simple approximation of the largest (maximal) Lyapunov
exponent (derived from [89]), as the largest tends to dominate. Various formats and
interpretations exist in calculating different Lyapunov Exponents due to different

558 M. Dale et al.

approximation methods (see [51, 63, 118]). For example, Verstraeten et al. [118]
examines the local Lyapunov spectrum and the Jacobian of the reservoir, suggesting
performance can be better predicted by the maximum of the minimal Lyapunov
Exponent. Boedecker et al. [13] takes a similar approach to Gibbons, estimating the
mean exponential rate of divergence of the trajectories for an n-dimensional phase
space.

A system with a maximal Lyapunov exponent A = (is somewhere near the edge
of chaos. A chaotic system is present at A > 0 and an ordered, or sub-critical, system
atA < 0.

Another suggested measure of criticality is the measure of instantaneous entropy
of reservoir states, defined as the average state entropy (ASE) in [85]. Applying Rényi
quadratic entropy, one can measure the distribution of instantaneous amplitudes in
reservoir states, providing some measure of the “richness” of dynamics. The entropy
measurement is associated with an expectation that increased diversity of amplitudes,
i.e. increased spread of amplitudes away from some concentrated point, will increase
the readout’s ability construct the desired response.

22.6.2.3 Memory Capacity

Measuring the short-term memory capacity of a reservoir was first outlined by Jaeger
[45] as a quantitative measurement to observe the echo state property (fading mem-
ory). To determine the memory capacity of a reservoir we simply measure how many
delayed versions of the input u(n — k) the outputs can recall or recover with preci-
sion. As Jaeger describes, using the equation in (22.20), we can measure memory
capacity by how much variance of the delayed input can be recovered, summed over
all delays [45]. This is carried out by training individual output units to recall the
input at time k with the maximum capacity M C of an N node reservoir typically
bounded by its size, i.e. MC < N.

i cov?(u(n — k), y(n))

o2(u(n))o*(y(n))

MC = Z MC; =
k=1 k=1

(22.20)

This measurement has direct connection to the dynamic behaviour of a system.
It can be helpful in identifying the boundaries between static structure that provides
memory, and the point of complex dynamics that gives us processing. As such, one
might expect a chaotic system to lose information regarding previous inputs at a
faster rate and a more ordered regime to increase (to some extent) input retention.

22.6.2.4 Harmonic Generation

The generation of higher harmonics in Atomic Switch Networks has been iden-
tified as a technique for examining emergent behaviour and network connectivity

22 Reservoir Computing as a Model for In-Materio Computing 559

[103, 113]. In ASNs, higher harmonic generation (HHG) is attributed to the non-
linear frequency response of the system due to both input amplitude and mem-
ristive “hard” switching behaviour. To examine HHG, one can plot the frequency
response of the system, which can be used to identify connectivity and system
dynamics, i.e. changes in network response (an on-set of HHG) is typically due to
an increase in “hard” switching memristive connections past a percolation threshold
[103]).

22.6.3 Evaluation Through Benchmark Tasks

As ameans of direct assessment, we can measure performance of reservoirs and their
subsequent readouts by applying them to specific tasks. Reservoir computing (and
neural networks as a whole) possesses an abundance of benchmark tasks, from simple
classification and time-series prediction to robot navigation [5, 25] and non-linear
channel equalisation [87, 88].

In this section we discuss benchmark tasks that are the most prevalent in the
reservoir computing literature.

22.6.3.1 Waveform Generation

This task requires a rich transformation of a temporal input waveform (a periodic
signal) to create an entirely new waveform. It is based on Sillin et al. [103]’s phys-
ical adaptation of Jaeger’s [47] sine-wave generator task and is linked directly to
Fourier series/analysis. The task is to train the system to produce three different
waveforms, given an input sine wave. In [103, 113], this is achieved by applying a
10Hz input sine-wave (at one electrode in the ASN) to produce a 10 Hz square-wave,
and sawtooth, and a 20Hz sine-wave at the output (y(n)), via the combination of
other weighted electrode readings (e.g. recorded states x(n)). The task is said to
be an excellent precursor to testing potential reservoir substrates on more difficult
temporal problems [103], as it highlights an abundance of temporal features (phase
shifts, delays, harmonic generation, recurrence etc.).

A similar task is the continuous-time multiple superimposed oscillator (MSO)
task. In this benchmark, the reservoir’s role is to predict the evolution of, and generate
a superposition of, two or more sinusoidal waves with different frequencies.

s(t) = sin(w;t) + sin(w-,t) (22.21)

where w; = 0.2 and w, = 0.311. The task has been demonstrated in photonics exper-
iments [29] and other non-traditional reservoirs [107].

560 M. Dale et al.
22.6.3.2 Time-Series Prediction and Generation

Two prominent benchmark tasks in reservoir computing are Non-linear Auto-
regressive Moving Average (NARMA) dynamical system modelling and the Mackey—
Glass chaotic time-series prediction task.

The NARMA task originates from Atiya and Parlos [8]’s work on training recur-
rent network; its goal is to evaluate a reservoir’s ability to model an nth order, highly
non-linear dynamical system where the system state depends on the incoming input
as well as its own history. The challenging aspect of the NARMA task is that it
contains long-term dependencies created by the nth order time-lag. Typically, the
benchmark is carried out on 10th and 30th ordered systems [6, 46, 47, 106].

A description of the 10th ordered task is as follows; Given white noise u(n) from
a uniform distribution of interval [0, 0.5], the reservoir should predict an output y(7)
close to the target y(n + 1), calculated by:

9
y(n+1)=03y(n) + 0.05y(n)(zy(n — i)) + 1.5u(n — 9u(n) + 0.1
i (22.22)
Mackey—Glass chaotic time-series prediction is another common benchmark,
where the system is trained to predict one time-step into the future (for examples see
[44, 49, 118]).
The system is described by the Mackey—Glass delay differential equation:

ym) =ay(n—1)/(1+ymn — 1)) —yyn) (22.23)

As [44] explains, parameters for the MG task are typically set to « = 0.2, 8 = 10
and y = 0.1 with the parameter t set to 17 to produce a mildly chaotic attractor: the
system has a chaotic attractor for t > 16.8.

Other time-series prediction benchmarks are summarised in [88], including pre-
dicting laser activations in the Santa Fe Laser dataset (originally used in [50]), pre-
dicted next output in the Hénon Map dataset, and IPIX Radar and Sunspot series
datasets.

22.6.3.3 Classification Tasks

Simple classification problems are wide and varied in the field of machine learning,
some of which can be seen in both the RC and EIM literature. For example, typical
tasks for EIM are tone and frequency discriminators, and Iris and Lenses dataset
classification [38, 78, 80]. Examples in reservoir computing include, signal classifi-
cation (discriminating between two waveforms) [87], various n-bit parity problems
[11, 25, 94, 97] and other time-independent classification tasks [4].

Possibly the most adopted classification task in RC involves the recognition of
isolated digits from multiple speakers [61, 87, 88, 93, 96, 119, 120]. Taken from a

22 Reservoir Computing as a Model for In-Materio Computing 561

subset of the T146 speech corpus dataset, the task uses a total of 500 speech fragments
collected from five different participants listing the digits zero to nine (repeated
ten times). The reservoir interprets these speech fragments through a preprocessing
filter in the form of a digital model of the human cochlea. Linear classifiers are then
trained to be sensitive to individual digits, with a final classification being made on
the temporal mean of the output. Performance on the task is measured using cross-
validation by calculating the number of misclassified digits using the Word Error
Rate (WER).

Reservoir computing is said to be very competitive to, or outperform, many of the
state-of-the-art approaches on these tasks.

22.6.4 Material Properties and Considerations

In order to perform material computation we require some ability to manipulate and
control certain aspects of physical structure and behaviour. To observe such effects
requires a means of observation and measurement. In the two examples presented
(ASNs and EIM), we have discussed one method by which this can be achieved,
through the application and recording of electrical voltages to a micro-electrode array.
There are other possible methods, for example: optical stimulus/measurement and
other stimuli across the electromagnetic spectrum (e.g. optoelectronic and photonic
reservoirs); image recognition for observation (e.g. a method also used in Fernando
and Sojakka [28]’s bucket of water); control and observation through magnetic fields
(e.g. manipulating ionised gases or observing nuclear magnetic resonance (NMR)
[108]); chemical excitation and reaction (e.g. reaction-diffusion computers and slime
mould [1, 2]).

There are many physical properties and considerations that require discussion
when talking about using any novel material for computation. Here we focus on four
key factors that possess some relevance to substrate-based reservoirs: (i) a means
by which to observe network connectivity and activity, (ii) assuring non-linearity is
present in the system, (iii) methods for modelling activity and behaviour, and (iv)
the impact of environmental factors.

22.6.4.1 Network Connectivity and Activity

The computational capability of a material is often directly related to conductivity
and the density of connections inside it. Variations in these concentrations can have
an adverse or favourable effect on conductivity and task performance. For example, to
optimise an ASN one can control the densities of silver nanowires [103]. Massey et al.
[74] identify a similar relationship, where nanotube concentration directly alters the
conductivity and computational performance of SWCNT/PBMA composites.

How can we measure connectivity in materials and analyse distributed activity?
One possible method is demonstrated in [112], where ultra-sensitive infra-red (IR)

562 M. Dale et al.

Fig. 22.7 Infrared image of carbon nanotube/polymer mixture. Infrared has been identified as a
useful method for observing current flow and local regions of activity in both EIM and ASNs [73]

imaging is used to help identify network conductivity and behaviour in ASNs. IR
imaging was used to observe and measure possible dominant conductive pathways
and identify the activity of local regions to stimulus by thermal emission. Similar
experiments have also been carried out on carbon nanotube/polymer substrates within
the NASCENCE project (see Fig. 22.7).

Other forms of network observation include: observation of power-law scaling
in the power spectral density [103], optical microscopy such as examining struc-
ture through an optical microscope (an example can be seen in Fig.22.8 with a
SWCNT/LC substrate), electron microscopy and scanning-probe microscopy such
as scanning electron microscopy (SEM) [32] and scanning-force microscopy (SFM)
[14], observing current flow in polymer substrates by electron-beam-induced-current
(EBIC) [37], investigating structural properties using Fourier transform infrared and
Raman spectroscopy (FTIR) (a method used to observe the interaction of molecules
in liquid crystal/SWCNT composites in [121]), and other absorption and emission
spectroscopy techniques [99].

22.6.4.2 Non-linearity

Non-linearity within a material can be measured through current-voltage (I-V) char-
acteristics. In ASNs, non-linearity is observed by the presence of pinched hysteresis
curves as a function of input amplitude (produced by applying slow voltage sweeps).
This non-linear I-V characteristic is said to be the result of changing switch behaviour
(in this case towards a “hard-switching” regime) and increased harmonic generation
[103].

22 Reservoir Computing as a Model for In-Materio Computing 563

Fig. 22.8 Image of SWCNT/LC behaviour to voltage stimulus, observed through a microscope.
Observation at this scale shows detail in the complexity of local interactions and carbon nanotube
alignment to electric fields [73]

Similar I-V measurements have also been used in both SWCNT/PBMA and
SWCNT/LC composites proposed in the NASCENCE project [74, 121].

22.6.4.3 Modelling

Simulating the internal properties of specific materials would be desirable, but it is
typically impractical to create an exact representation of one individual material.
Instead, we could use an abstraction, a model, of what the material is doing. Some
methods that model specific features of the system, and others that are potential
accompaniments to the reservoir model, include: the modelling of electron transport
using a Monte Carlo approach, percolation visualisation for electrode pathways,
Voronoi diagrams for visualising electrode activity [102], Volterra series and Wiener
series models, using Random Boolean Networks as a model, abstract neural net-
works for modelling global activity, NARMAX (non-linear autoregressive moving
average model with exogenous inputs) modelling, and using Cellular Automata as a
reservoir/substrate model [83, 84].

22.6.4.4 Environment and Noise

The local environment, thermal noise, other noise related fluctuations and quantum
effects are tangible concerns in the physical domain. Sensitive systems require good
isolation and compensation techniques to reduce the effects of both internal and
external noise. Effectively, the systems susceptibility to noise will determine its
robustness and adaptability. In many cases, noise and unwanted variability could be
filtered using conventional techniques, but requires some care in implementation (i.e.

564 M. Dale et al.

does not impede on the boundaries of the system or unduly affect what is doing the
computation). Evolution-in-materio on the other hand has been found to exploit such
external influences. Using an evolutionary search in physical systems has shown an
uncanny ability to utilise strange characteristics that are clearly attributed to external
influences. For example, Bird and Layzell [12]’s evolvable motherboard was directly
influenced by local laboratory equipment in producing evolved oscillators.

22.7 Feedback Design: Designing Substrates to Be Good
Reservoirs

Beyond simply applying the reservoir model, could we utilise some of its highlighted
features to aid in the design of in materio systems?

Often the difficulty in designing and engineering computational substrates is
knowing what range of features are necessary, or even exploitable. Some aspects of
the physical system are unknown. There are clearly some attributes that are desirable
(for evolution at least): reconfigurable, input-driven, reproducible, some stability,
etc. Can we use known computational phenomena from reservoir computing to help
reduce the search space of suitable materials? Could the abstract model guide mate-
rial design, and in return, serve to create a more realistic and efficient model? This
could create a virtuous feedback-loop in design, where new novel materials can be
evaluated for computational capability and reservoir quality.

Going further, could multiple smaller reservoirs reproduce the overall dynamics
of a larger network? As stated in [66], a powerful extension of ESN consists of
many small ESNs in parallel, where an averaged output has drastically improved
performance, but, at a price in terms of memory capacity, i.e. fewer nodes typically
equals less memory. Another approach would be to use multiple reservoirs to over-
come hardware limitations, such as the number of electrode contacts available. These
networked reservoirs could, as a by-product, provide increased robustness (further
distributing computation) and added variability in states, i.e. promote a good overall
separation property. Additionally, such systems could be constructed from various
materials, each with different kernel properties and time-scales, allowing a global
weighting system or training method (possibly backpropagation) to optimally choose
which material to use for certain tasks. Moreover, this could lead to a more generic
reservoir network suitable to multiple tasks.

Hierarchical reservoirs represent an up-and-coming, possibly highly advanta-
geous, avenue worth pursuing [68]. A hierarchical system attempts to overcome
some of difficulties found in classical reservoirs such as scalability, learning com-
plex intelligent tasks and working with multiple time-scales simultaneously. Some
early examples of these architectures can be found in [48] where high-level reservoirs
extract features from low-level ones using a “feature-voting” system. Another can be
seen in a system comprised of decoupled sub-reservoirs with inhibitory connections
[124] where the inhibitory connections predict the activation of sub-reservoirs. Other

22 Reservoir Computing as a Model for In-Materio Computing 565

examples include, hierarchically clustered ESNs and the impact substructures have on
stability [51], increased performance on speech recognition tasks [115] and acoustic
modelling [116], and a hierarchical architecture used for hand-writing recognition
to sort delivery parcels [69].

22.8 Conclusion

We believe that reservoir computing can be used as a stepping stone to modelling
and training the currently somewhat static in structure in-materio systems. Reservoir
computing is considered mostly on the basis that the systems themselves may not be
able to undergo “on-line” training/adaptation (manually or autonomously). Thus, the
material is perceived as an initially-configurable black-box, or a suitably rich kernel,
removed from the final training process.

The reservoir method provides many advantages when dealing with unknown or
intractable properties, but, it is also limited by the complexity of the task it is required
to learn. For example, a good reservoir requires a high-dimensional expansion of the
input that can be exploited by a subsequent readout layer. This implies that for more
complex tasks the reservoir may require an exponential growth in exploitable features
from an exceptionally large feature space, which itself is potentially impractical, or
at least very difficult to extract useful features from. Harnessing these features then
becomes a significant challenge when implemented in a physical device. Standard
artificial neural networks try to overcome this problem by building the required
non-linear features internally. This is achieved through internal training, which is
traditionally achieved through backpropagation.

To apply backpropagation in a physical system requires a material to contain the
right attributes for internal training and manipulation, however. A recent example of a
physical system that does use error-backpropagation as a training method is demon-
strated in [42]. The experiment and implementation is carried out on an acoustic
system, using the propagation of sound waves between a speaker and microphone,
and on an electro-optical system, harnessing the reciprocal transmission of light
through an optical circuit. This experiment provides a unique insight into backprop-
agation applied to physical systems and presents a potentially competitive alternative
to digital neural networks.

The research areas discussed in this chapter, if combined, provide a rich avenue to
explore. Reservoir computing presents us with a convenient theoretical model. It also
provides some indication of what properties are required to increase the performance:
the right dynamic criticality, good kernel projection, etc.

Optimisation and pre-training can improve performance in reservoirs, by allowing
a reservoir to be pre-set with some properties that effectively increase the perfor-
mance of the main training process. Evolution as a form of pre-training in the physical
domain may provide a crucial and efficient technique for manipulating/configuring
matter into suitable reservoirs, e.g. through structural alignment/deformation, or cre-
ating rich local regions of varying activity. As is described in the Evolution-in-materio

566

M. Dale et al.

doctrine, evolution may be the best practical technique to exploring and exploiting
properties that are currently intractable or hitherto unknown, properties that could
produce the most interesting and competent physical reservoirs.

Acknowledgments Matthew Dale is funded by a Defence Science and Technology Laboratory
(DSTL) Ph.D. studentship.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Adamatzky, A.: Physarum Machines: Computers from Slime Mould, vol. 74. World Scientific,

Singapore (2010)

. Adamatzky, A., Costello, B., Asai, T.: Reaction-Diffusion Computers. Elsevier, Amsterdam

(2005)

. Adamatzky, A., Erokhin, V., Grube, M., Schubert, T., Schumann, A.: Physarum chip project:

growing computers from slime mould. IJUC 8(4), 319-323 (2012)

. Alexandre, L.A., Embrechts, M.J., Linton, J.: Benchmarking reservoir computing on time-

independent classification tasks. In: International Joint Conference on Neural Networks
IJCNN 2009, pp. 89-93. IEEE (2009)

. Antonelo, E.A., Schrauwen, B., Van Campenhout, J.: Generative modeling of autonomous

robots and their environments using reservoir computing. Neural Process. Lett. 26(3), 233—
249 (2007)

. Appeltant, L., Soriano, M.C., Van der Sande, G., Danckaert, J., Massar, S., Dambre, J.,

Schrauwen, B., Mirasso, C.R., Fischer, I.: Information processing using a single dynami-
cal node as complex system. Nature Commun. 2, 468 (2011)

. Appeltant, L., Van der Sande, G., Danckaert, J., Fischer, I.: Constructing optimized binary

masks for reservoir computing with delay systems. Sci. Rep. 4(3629) (2014)

. Atiya, A.F, Parlos, A.G.: New results on recurrent network training: unifying the algorithms

and accelerating convergence. IEEE Trans. Neural Netw. 11(3), 697-709 (2000)

. Beggs, J.M.: The criticality hypothesis: how local cortical networks might optimize informa-

tion processing. Philos. Trans. R. Soc. Lond. A: Math., Phys. Eng. Sci. 366(1864), 329-343
(2008)

Belkin, A., Hubler, A., Bezryadin, A.: Self-assembled wiggling nano-structures and the prin-
ciple of maximum entropy production. Sci. Rep. 5(8323) (2015)

Bertschinger, N., Natschldger, T.: Real-time computation at the edge of chaos in recurrent
neural networks. Neural Comput. 16(7), 1413-1436 (2004)

Bird, J., Layzell, P.: The evolved radio and its implications for modelling the evolution of
novel sensors. In: Proceedings of the Congress on Evolutionary Computation CEC’02, vol.
2, pp- 1836-1841. IEEE (2002)

Boedecker, J., Obst, O., Lizier, J.T., Mayer, N.M., Asada, M.: Information processing in echo
state networks at the edge of chaos. Theory Biosci. 131(3), 205-213 (2012)

Bose, S.K., Lawrence, C.P., Liu, Z., Makarenko, K.S., van Damme, R.M.J., Broersma, H.J.,
van der Wiel, W.G.: Evolution of a designless nanoparticle network into reconfigurable
boolean logic. Nature Nanotechnol. (2015). doi:10.1038/nnano.2015.207

Broersma, H., Gomez, F., Miller, J., Petty, M., Tufte, G.: Nascence project: nanoscale engi-
neering for novel computation using evolution. Int. J. Unconv. Comput. 8(4), 313-317 (2012)
Biirger, J., Goudarzi, A., Stefanovic, D., Teuscher, C.: Composing a reservoir of memristive
networks for real-time computing. arXiv:1504.02833 (2015)

Burger, J., Teuscher, C.: Variation-tolerant computing with memristive reservoirs. In: 2013
IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), pp. 1-6.
IEEE (2013)

http://dx.doi.org/10.1038/nnano.2015.207
http://arxiv.org/abs/1504.02833

22 Reservoir Computing as a Model for In-Materio Computing 567

—

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

8.

Biising, L., Schrauwen, B., Legenstein, R.: Connectivity, dynamics, and memory in reservoir
computing with binary and analog neurons. Neural Comput. 22(5), 1272-1311 (2010)

. Carbajal, J.P., Dambre, J., Hermans, M., Schrauwen, B.: Memristor models for machine

learning. Neural Comput. 27(3), 725-747 (2015)

Chatzidimitriou, K.C., Mitkas, P.A.: A NEAT way for evolving echo state networks. In: ECAI
2010, pp. 909-914. 10S Press (2010)

Chrol-Cannon, J., Jin, Y.: On the correlation between reservoir metrics and performance for
time series classification under the influence of synaptic plasticity. PloS One 9(7), e101792
(2014)

Clegg, K.D., Miller, J.F., Massey, M.K., Petty, M.: Travelling salesman problem solved ‘in
materio’ by evolved carbon nanotube device. In: Parallel Problem Solving from Nature-PPSN
XIII, pp. 692-701. Springer, Heidelberg (2014)

Clegg, K.D., Miller, J.F., Massey, M.K., Petty, M.C.: Practical issues for configuring car-
bon nanotube composite materials for computation. In: IEEE International Conference on
Evolvable Systems, ICES 2014, pp. 61-68. IEEE (2014)

Dai, X.: Genetic regulatory systems modeled by recurrent neural network. In: Advances in
Neural Networks-ISNN 2004, pp. 519-524. Springer, Heidelberg (2004)

Dasgupta, S., Worgoétter, F., Manoonpong, P.: Information theoretic self-organised adaptation
in reservoirs for temporal memory tasks. In: Engineering Applications of Neural Networks,
pp. 31-40. Springer, Heidelberg (2012)

Derrida, B., Pomeau, Y.: Random networks of automata: a simple annealed approximation.
EPL (Europhys. Lett.) 1(2), 45 (1986)

Dominey, P.F.: Complex sensory-motor sequence learning based on recurrent state represen-
tation and reinforcement learning. Biol. Cybern. 73(3), 265-274 (1995)

Fernando, C., Sojakka, S.: Pattern recognition in a bucket. In: Advances in Artificial Life, pp.
588-597. Springer, Heidelberg (2003)

Fiers, M., Van Vaerenbergh, T., Wyffels, F., Verstracten, D., Dambre, J., Schrauwen, B.,
Bienstman, P.: Nanophotonic reservoir computing with photonic crystal cavities to generate
periodic patterns. IEEE Trans. Neural Netw. Learn. Syst. 25(2), 344-355 (2014)

Funahashi, K., Nakamura, Y.: Approximation of dynamical systems by continuous time recur-
rent neural networks. Neural Netw. 6(6), 801-806 (1993)

Gibbons, T.E.: Unifying quality metrics for reservoir networks. In: IJCNN 2010, The Inter-
national Joint Conference on Neural Networks, pp. 1-7. IEEE (2010)

Goldstein, J., Newbury, D.E., Echlin, P, Joy, D.C., Romig, A.D Jr., Lyman, C.E., Fiori, C.,
Lifshin, E.: Scanning Electron Microscopy and X-ray Microanalysis: A Text for Biologists,
Materials Scientists, and Geologists. Springer Science & Business Media, Heidelberg (2012)
Goudarzi, A., Lakin, M.R., Stefanovic, D.: DNA reservoir computing: a novel molecular
computing approach. In: DNA Computing and Molecular Programming, pp. 76-89. Springer,
Heidelberg (2013)

Greenwood, G.W., Tyrrell, A.M.: Introduction to Evolvable Hardware: A Practical Guide for
Designing Self-Adaptive Systems, vol. 5. Wiley, New York (2006)

Gutierrez, J.M., Hinkley, T., Ward Taylor, J., Yanev, K., Cronin, L.: Evolution of oil droplets
in a chemorobotic platform. Nature Commun. 5 (2014)

Haddow, P.C., Tyrrell, A.M.: Challenges of evolvable hardware: past, present and the path to
a promising future. Genet. Program. Evolvable Mach. 12(3), 183-215 (2011)

Hanoka, J.I1., Bell, R.O.: Electron-beam-induced currents in semiconductors. Ann. Rev. Mater.
Sci. 11(1), 353-380 (1981)

Harding, S., Miller J.F.: Evolution in materio: a tone discriminator in liquid crystal. In: CEC
2004, Congress on Evolutionary Computation, vol. 2, pp. 1800-1807. IEEE (2004)
Harding, S., Miller J.E.: Evolution in materio: initial experiments with liquid crystal. In: 2004
NASA/DoD Conference on Evolvable Hardware, pp. 298-305. IEEE (2004)

Harding, S., Miller J.F.: Evolution in materio: a real-time robot controller in liquid crystal.
In: 2005 NASA/DoD Conference on Evolvable Hardware, pp. 229-238. IEEE (2005)

568

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

M. Dale et al.

Harding, S., Miller J.E.: Evolution in materio: evolving logic gates in liquid crystal. In: ECAL
2005 Workshop on Unconventional Computing: From cellular automata to wetware, pp. 133—
149. Beckington, UK (2005)

Hermans, M., Burm, M., Van Vaerenbergh, T., Dambre, J., Bienstman, P.: Trainable hard-
ware for dynamical computing using error backpropagation through physical media. Nature
Commun. 6, (2015)

Higuchi, T., Iwata, M., Kajitani, 1., Yamada, H., Manderick, B., Hirao, Y., Murakawa, M.,
Yoshizawa, S., Furuya, T.: Evolvable hardware with genetic learning. In: IEEE International
Symposium on Circuits and Systems, ISCAS’96, vol. 4, pp. 29-32. IEEE (1996)

Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks-
with an erratum note. Bonn, Germany: German National Research Center for Information
Technology GMD Technical Report 148, 34 (2001)

Jaeger, H.: Short term memory in echo state networks. GMD-Forschungszentrum Informa-
tionstechnik (2001)

Jaeger, H.: Adaptive nonlinear system identification with echo state networks. In: Advances
in Neural Information Processing Systems, pp. 593-600 (2002)

Jaeger, H.: Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and
the “echo state network” approach. GMD-Forschungszentrum Informationstechnik (2002)
Jaeger, H.: Discovering multiscale dynamical features with hierarchical echo state networks.
Technical report No. 9 (2007)

Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy
in wireless communication. Science 304(5667), 78-80 (2004)

Jaeger, H., LukoSevicius, M., Popovici, D., Siewert, U.: Optimization and applications of echo
state networks with leaky-integrator neurons. Neural Netw. 20(3), 335-352 (2007)

Jarvis, S., Rotter, S., Egert, U.: Extending stability through hierarchical clusters in echo state
networks. Front. Neuroinformatics 4, (2010)

Jones, B., Stekel, D., Rowe, J., Fernando, C.: Is there a liquid state machine in the bacterium
escherichia coli? In: IEEE Symposium on Artificial Life, 2007. ALIFE’07, pp. 187-191. IEEE
(2007)

Kilian, J., Siegelmann, H.T.: The dynamic universality of sigmoidal neural networks. Inf.
Comput. 128(1), 48-56 (1996)

Klampf, S., David, S.V., Yin, P., Shamma, S.A., Maass, W.: Integration of stimulus history in
information conveyed by neurons in primary auditory cortex in response to tone sequences.
In: 39th Annual Conference of the Society for Neuroscience, Program, vol. 163 (2009)
Konkoli, Z., Wendin, G.: On information processing with networks of nano-scale switching
elements. Int. J. Unconv. Comput. 10(5-6), 405-428 (2014)

Kotsialos, A., Massey, M.K., Qaiser, F., Zeze, D.A., Pearson, C., Petty, M.C.: Logic gate and
circuit training on randomly dispersed carbon nanotubes. Int. J. Unconv. Comput. 10(5-6),
473-497 (2014)

Kiiciikemre, A.U.: Echo state networks for adaptive filtering. Ph.D. thesis, University of
Applied Sciences (2006)

Kudithipudi, D., Merkel, C., Soltiz, M., Garrett, S.R., Robinson, E.P.: Design of neuromorphic
architectures with memristors. In: Network Science and Cybersecurity, pp. 93—103. Springer,
Heidelberg (2014)

Kulkarni, M.S., Teuscher, C.: Memristor-based reservoir computing. In: IEEE/ACM Inter-
national Symposium on Nanoscale Architectures, NANOARCH, 2012, pp. 226-232. IEEE
(2012)

Langton, C.G.: Computation at the edge of chaos: phase transitions and emergent computation.
Phys. D: Nonlinear Phenom. 42(1), 12-37 (1990)

Larger, L., Soriano, M.C., Brunner, D., Appeltant, L., Gutiérrez, J.M., Pesquera, L., Mirasso,
C.R., Fischer, I.: Photonic information processing beyond turing: an optoelectronic imple-
mentation of reservoir computing. Opt. Express 20(3), 3241-3249 (2012)

Legenstein, R., Maass, W.: Edge of chaos and prediction of computational performance for
neural circuit models. Neural Netw. 20(3), 323-334 (2007)

22 Reservoir Computing as a Model for In-Materio Computing 569

63.
64.

65.

66.
67.
68.
69.

70.

71.
72.
73.
. Massey, M.K., Kotsialos, A., Qaiser, F., Zeze, D.A., Pearson, C., Volpati, D., Bowen, L.,
75.
76.

71.

78.

79.

80.

81.

82.

83.
84.

85.

86.

Legenstein, R., Maass, W.: What makes a dynamical system computationally powerful. In:
New Directions in Statistical Signal Processing: From Systems to Brain, pp. 127-154 (2007)
Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature
406(6799), 974-978 (2000)

Lohn, J.D., Linden, D.S., Hornby, G.S., Kraus, W.F.,, Rodriguez-Arroyo, A.: Evolutionary
design of an X-band antenna for NASA’s space technology 5 mission. In: NASA/DoD Con-
ference on Evolvable Hardware, pp. 155-155. IEEE (2003)

Lukosevicius, M.: A practical guide to applying echo state networks. In: Neural Networks:
Tricks of the Trade, pp. 659-686. Springer, Heidelberg (2012)

Lukosevicius, M., Jaeger, H.: Overview of reservoir recipes. Technical report 11, Jacobs
University Bremen (2007)

Lukosevicius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network
training. Comput. Sci. Rev. 3(3), 127-149 (2009)

Lukosevicius, M., Jaeger, H., Schrauwen, B.: Reservoir computing trends. KI-Kiinstliche
Intelligenz 26(4), 365-371 (2012)

Lykkebg, O.R., Harding, S., Tufte, G., Miller, J.F.: Mecobo: A hardware and software platform
for in materio evolution. In: Unconventional Computation and Natural Computation, pp. 267—
279. Springer, Heidelberg (2014)

Maass, W.: Liquid state machines: motivation, theory, and applications. In: Computability in
Context: Computation and Logic in the Real World, pp. 275-296 (2010)

Maass, W., Natschlédger, T., Markram, H.: Real-time computing without stable states: a new
framework for neural computation based on perturbations. Neural Comput. 14(11), 2531-
2560 (2002)

Massey, M.K.: Presentation at NASCENCE Consortium Progress Meeting. Totnes, UK (2015)

Petty, M.C.: Computing with carbon nanotubes: optimization of threshold logic gates using
disordered nanotube/polymer composites. J. Appl. Phys. 117(13), 134903 (2015)

Miller, J.F., Downing, K.: Evolution in materio: looking beyond the silicon box. In:
NASA/DoD Conference on Evolvable Hardware 2002, pp. 167-176. IEEE (2002)

Miller, J.F., Harding, S., Tufte, G.: Evolution-in-materio: evolving computation in materials.
Evol. Intell. 7(1), 49-67 (2014)

Misra, J., Saha, L.: Artificial neural networks in hardware: a survey of two decades of progress.
Neurocomputing 74(1), 239-255 (2010)

Mohid, M., Miller, J.F., Harding, S., Tufte, G., Lykkebo, O.R., Massey, M.K., Petty, M.C.:
Evolution-in-materio: a frequency classifier using materials. In: International Conference on
Evolvable Systems, ICES 2014, pp. 46-53. IEEE (2014)

Mohid, M., Miller, J.F,, Harding, S., Tufte, G., Lykkebo, O.R., Massey, M.K., Petty, M.C.:
Evolution-in-materio: solving bin packing problems using materials. In: International Con-
ference on Evolvable Systems, ICES 2014, pp. 38—45. IEEE (2014)

Mohid, M., Miller, J.F,, Harding, S., Tufte, G., Lykkebg, O.R., Massey, M.K., Petty, M.C.:
Evolution-in-materio: solving machine learning classification problems using materials. In:
PPSN XIII, Parallel Problem Solving from Nature, pp. 721-730. Springer, Heidelberg (2014)
Nikolié, D., Haeusler, S., Singer, W., Maass, W.: Temporal dynamics of information content
carried by neurons in the primary visual cortex. In: Advances in Neural Information Processing
Systems, pp. 1041-1048 (2006)

Norton, D., Ventura, D.: Improving liquid state machines through iterative refinement of the
reservoir. Neurocomputing 73(16), 2893-2904 (2010)

Ozgur, Y.: Reservoir computing using cellular automata. arXiv:1410.0162 [cs.NE] (2014)
Ozgur, Y.: Connectionist-symbolic machine intelligence using cellular automata based
reservoir-hyperdimensional computing. arXiv:1503.00851 [cs.ET] (2015)

Ozturk, M.C., Xu, D., Principe, J.C.: Analysis and design of echo state networks. Neural
Comput. 19(1), 111-138 (2007)

Packard, N.H.: Adaptation toward the edge of chaos. In: Kelso, J.A.S., Mandell, A.J.,
Shlesinger, M.F. (eds.) Dynamic Patterns in Complex Systems, pp. 293-301. World Scientific,
Singapore (1988)

http://arxiv.org/abs/1410.0162
http://arxiv.org/abs/1503.00851

570

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.
108.

109.

110.

M. Dale et al.

. Paquot, Y., Duport, F., Smerieri, A., Dambre, J., Schrauwen, B., Haelterman, M., Massar, S.:

Optoelectronic reservoir computing. Sci. Rep. 2, (2012)

Rodan, A., Tino, P.: Minimum complexity echo state network. IEEE Trans. Neural Netw.
22(1), 131-144 (2011)

Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest
Lyapunov exponents from small data sets. Phys. D: Nonlinear Phenom. 65(1), 117-134 (1993)
Samuelsen, E., Glette, K.: Real-world reproduction of evolved robot morphologies: auto-
mated categorization and evaluation. In: Applications of Evolutionary Computation, vol.
9028. LNCS, pp. 771-782. Springer, Heidelberg (2015)

Schmidhuber, J., Wierstra, D., Gagliolo, M., Gomez, F.: Training recurrent networks by
evolino. Neural Comput. 19(3), 757-779 (2007)

Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT press (2001)

Schrauwen, B., Defour, J., Verstraeten, D., Van Campenhout, J.: The introduction of time-
scales in reservoir computing, applied to isolated digits recognition. In: Artificial Neural
Networks—ICANN 2007, pp. 471-479. Springer, Heidelberg (2007)

Schrauwen, B., Biising, L., Legenstein, R.A.: On computational power and the order-chaos
phase transition in reservoir computing. In: Advances in Neural Information Processing Sys-
tems, pp. 1425-1432 (2008)

Schrauwen, B., D’Haene, M., Verstraeten, D., Van Campenhout, J.: Compact hardware liquid
state machines on fpga for real-time speech recognition. Neural Netw. 21(2), 511-523 (2008)
Schrauwen, B., Wardermann, M., Verstraeten, D., Steil, J.J., Stroobandt, D.: Improving reser-
voirs using intrinsic plasticity. Neurocomputing 71(7), 1159-1171 (2008)

Schumacher, J., Toutounji, H., Pipa, G.: An analytical approach to single node delay-coupled
reservoir computing. In: Artificial Neural Networks and Machine Learning—ICANN 2013,
pp. 26-33. Springer, Heidelberg (2013)

Schiirmann, F., Meier, K., Schemmel, J.: Edge of chaos computation in mixed-mode vlsi-a
hard liquid. In: Advances in Neural Information Processing Systems, pp. 1201-1208 (2004)
Shah, J.: Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, vol.
115. Springer Science & Business Media, Heidelberg (1999)

Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University
Press, Cambridge (2004)

Sheridan, P., Ma, W., Lu, W.: Pattern recognition with memristor networks. In: IEEE Inter-
national Symposium on Circuits and Systems, ISCAS 2014, pp. 1078-1081. IEEE (2014)
Sillin, H.O.: Neuromorphic hardware: the investigation of atomic switch networks as complex
physical systems. Ph.D. thesis, University of California, Los Angeles (2015)

Sillin, H.O., Aguilera, R., Shieh, H., Avizienis, A.V., Aono, M., Stieg, A.Z., Gimzewski, J.K.:
A theoretical and experimental study of neuromorphic atomic switch networks for reservoir
computing. Nanotechnology 24(38), 384004 (2013)

Steane, A.: Quantum computing. Rep. Prog. Phys. 61(2), 117 (1998)

Steil, J.J.: Backpropagation-decorrelation: online recurrent learning with o (n) complexity.
In: 2004 IEEE International Joint Conference on Neural Networks, vol. 2, pp. 843-848. IEEE
(2004)

Steil, J.J.: Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation
and echo state learning. Neural Netw. 20(3), 353-364 (2007)

Steil, J.J.: Several ways to solve the MSO problem. In: ESANN, pp. 489-494 (2007)
Stepney, S.: The neglected pillar of material computation. Phys. D: Nonlinear Phenom. 237(9),
1157-1164 (2008)

Stepney, S.: Nonclassical computation: a dynamical systems perspective. In: Rozenberg, G.,
Bick, T., Kok, J.N. (eds) Handbook of Natural Computing, vol. 4, pp. 1979-2025. Springer,
Heidelberg (2012)

Stepney, S., Braunstein, S.L., Clark, J.A., Tyrrell, A., Adamatzky, A., Smith, R.E., Addis, T.,
Johnson, C., Timmis, J., Welch, P.: Journeys in non-classical computation I: a grand challenge
for computing research. Int. J. Parallel, Emergent Distrib. Syst. 20(1), 5-19 (2005)

22 Reservoir Computing as a Model for In-Materio Computing 571

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

Stepney, S., Abramsky, S., Adamatzky, A., Johnson, C., Timmis, J.: Grand challenge 7: Jour-
neys in non-classical computation. In: Visions of Computer Science, London, UK, September
2008, pp. 407-421. BCS (2008)

Stieg, A.Z., Avizienis, A.V., Sillin, H.O., Martin-Olmos, C., Aono, M., Gimzewski, J.K.:
Emergent criticality in complex Turing B-type atomic switch networks. Adv. Mater. 24(2),
286-293 (2012)

Stieg, A.Z., Avizienis, A.V., Sillin, H.O., Aguilera, R., Shieh, H., Martin-Olmos, C., Sandouk,
E.J., Aono, M., Gimzewski, J.K.: Self-organization and emergence of dynamical structures
in neuromorphic atomic switch networks. In: Memristor Networks, pp. 173-209. Springer,
Heidelberg (2014)

Thompson, A.: An evolved circuit, intrinsic in silicon, entwined with physics. In: Evolvable
Systems: From Biology to Hardware, pp. 390—405. Springer, Heidelberg (1997)
Triefenbach, F., Jalalvand, A., Schrauwen, B., Martens, J.: Phoneme recognition with large
hierarchical reservoirs. In: Advances in Neural Information Processing Systems, pp. 2307—
2315 (2010)

Triefenbach, F., Jalalvand, A., Demuynck, K., Martens, J.: Acoustic modeling with hierarchi-
cal reservoirs. IEEE Trans. Audio, Speech, Lang. Process. 21(11), 2439-2450 (2013)
Vandoorne, K., Mechet, P., Van Vaerenbergh, T., Fiers, M., Morthier, G., Verstraeten, D.,
Schrauwen, B., Dambre, J., Bienstman, P.: Experimental demonstration of reservoir comput-
ing on a silicon photonics chip. Nature Commun. 5, (2014)

Verstraeten, D., Schrauwen, B.: On the quantification of dynamics in reservoir computing.
In: Artificial Neural Networks—ICANN 2009, pp. 985-994. Springer, Heidelberg (2009)
Verstraeten, D., Schrauwen, B., Stroobandt, D., Van Campenhout, J.: Isolated word recogni-
tion with the liquid state machine: a case study. Inf. Process. Lett. 95(6), 521-528 (2005)
Verstraeten, D., Schrauwen, B., d’Haene, M., Stroobandt, D.: An experimental unification of
reservoir computing methods. Neural Netw. 20(3), 391-403 (2007)

Volpati, D., Massey, M.K., Johnson, D.W., Kotsialos, A., Qaiser, F., Pearson, C., Coleman,
K.S., Tiburzi, G., Zeze, D.A., Petty, M.C.: Exploring the alignment of carbon nanotubes
dispersed in a liquid crystal matrix using coplanar electrodes. J. Appl. Phys. 117(12), 125303
(2015)

Wendin, G., Vuillaume, D., Calame, M., Yitzchaik, S., Gamrat, C., Cuniberti, G., Beiu, V.
Symone project: synaptic molecular networks for bio-inspired information processing. Int. J.
Unconv. Comput. 8(4), 325-332 (2012)

Whiting, J., de Lacy Costello, B., Adamatzky, A.: Slime mould logic gates based on frequency
changes of electrical potential oscillation. Biosystems 124, 21-25 (2014)

Xue, Y., Yang, L., Haykin, S.: Decoupled echo state networks with lateral inhibition. Neural
Netw. 20(3), 365-376 (2007)

