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Abstract We wish to use Artificial Chemistries to build and investigate open-ended
systems. As such, we wish to minimise the number of explicit rules and proper-
ties needed. We describe here the concept of sub-symbolic Artificial Chemistries
(ssAChems), where reaction properties are emergent properties of the internal struc-
ture and dynamics of the component particles. We define the components of a
ssAChem, and illustrate it with two examples: RBN-world, where the particles are
Random Boolean Networks, the emergent properties come from the dynamics on an
attractor cycle, and composition is through rewiring the components to form a larger
RBN; and SMAC, where the particles are Hermitian matrices, the emergent proper-
ties are eigenvalues and eigenvectors, and composition is through the non-associative
Jordan product. We conclude with some ssAChem design guidelines.

1 Introduction

Artificial Chemistries (AChems) are examined for many reasons. In the context of
Artificial Life (ALife) they can form an underpinning technology. In these cases,
the systems are often carefully crafted, with atoms and reaction rules hand tuned to
produce the desired properties, such as replication and evolution.

Another use of AChems is to study open-ended systems in general [6]. In such
cases it is important to ensure that the open-ended properties are not specifically
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designed in, but rather emerge from the properties underlying system. Such behav-
iour is needed to allow the possibility of multiple levels of emergence.

In 2009, Faulconbridge, Stepney, Miller and Caves presented the first work on a
subsymbolic artificial chemistry (ssAChem), called bRBN-world [11], with subse-
quent work described in [9, 10]. The core idea of ssAChems is that reaction proper-
ties should be emergent properties of the internal structures of the relevant atoms and
molecules, analogous to the way that these are emergent properties of the electronic
structures of physical atoms and molecules. The behavioural specifics emerge from
these structures, rather than being solely defined by external rules.

We have continued work on ssAChems, enriching and diversifying the original
concept. In this chapter we brings together some of the recent work. We start with
some background material on AChems in general (Sect. 2). We then give a formal
definition of ssAChems (Sect. 3). We use this definition to introduce a new ssAChem,
SMAC, based on matrix algebra (Sect. 4). We also use the definition to summarise
bRBN-world, and add a new feature: an environmental temperature model (Sect. 5).
We finish with some guidelines to follow when designing a new ssAChem (Sect. 6).

2 Why AChems?

2.1 What Chemistry Can Give ALife/Complexity Science

When we take a good look at the contemporary activities carried out under the
broad umbrella of ‘chemistry’ we are confronted with a vast range of fascinating
developments and output. An increasing proportion of these research and develop-
ment activities no longer fits the traditional boxes of the various science disciplines,
but instead has moved to cover areas in between classical disciplines, ranging from
shared approaches with physics, engineering, materials science, biology, pharma-
cology, archaeology, forensic sciences all the way to medical sciences.

This contemporary state of affairs can act as an encouragement for our endeavour
to design subsymbolic artificial chemistries (we come back to various definitions in a
moment): whatever theoretically underpins this wide range of natural activities must
surely cater well for the emerging properties of a rich system.

Traditionally, the discipline has been subdivided into the classical domains of
organic, inorganic and physical chemistry. This subdivision is still maintained in
many areas of undergraduate teaching and in organisational structures of many chem-
istry departments. However, its mainly output/substance focus cannot help us with
finding inspiration for the rational design of artificial chemistries.

If we want to take inspiration from chemistry for the design of algorithms with
emergent properties we need to take a step back, and take a dispassionate and per-
haps slightly unconventional look at the very core of what forms the basis of the
conceptual and descriptive framework that helps us to deal with chemistry. Strip-
ping matters back to the essentials yields the following picture.
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Nature provides a set of possibilities: the elements in the periodic table. Their
properties in turn provide variability, and their number forms the basis of endless
options for combinatorics constrained by reaction properties. In practice much of
the rich behaviour of chemical systems relies on a fairly small subset of chemical
elements. Biochemistry produces its own larger ‘units’ from this small subset of
chemical atoms: the four unit genetic code, and the 20 unit amino acid code. Pri-
mary linear combinatoric systems (DNA and proteins) then exploit spatial properties
to gain functional secondary and tertiary structures. In each case, the properties of
the units emerges from their internal structure. Further exotic units can be added to
these small alphabets in certain circumstances. The properties of these further units
emerge in a similar manner.

Faced with having to understand, handle, predict or manipulate a massive set
of possibilities, the discipline of chemistry has developed empirical rules to come
to grips with this richness in nature. The basic set of rules in use is limited and
fairly straightforward. The energetics of the systems considered are described by
thermodynamics; kinetics describe rates of change (and often reaction mechanisms)
of the systems as macroscopic entities. The laws of quantum mechanics describe
microscopic properties such as electronic structures of atoms and molecules. Statis-
tics, mainly in the form of statistical thermodynamics, provides the necessary link
between macroscopic and microscopic properties.

This small but effective set of rules in operation deals with essentially the entire
vast range of ‘chemistry’. Note that (i) none of these rules applied to ‘chemistry’
make any reference to chemical properties, and (ii) all of the many and varied prop-
erties of chemical systems emerge from the combination of a set of possibilities with
a set of rules. This ‘chemistry rule book’ seems to be quite capable of dealing with
the rich natural system.

Let us translate this highly minimalistic view of the working of the foundations
of chemistry to our task of recreating similarly rich emergent properties in silico. To
do this we need recognise that chemistry uses descriptive rules that are a scientific
model built from observation of what the system does; such a model may be wrong
or partial. AChems, on the other hand, implement underlying rules that govern what
the simulation system does; such rules cannot be wrong, cannot be broken. Thus
we must chose our simulation rules judiciously, not to rigidly enforce one level of
behaviour, but to provide sufficient richness of possibilities that higher level rule-
based behaviours can emerge.

A stripped down view of the underpinning rules of chemistry lends itself to being
applied in the rational design of algorithms with emergent properties: we need (i) to
pick a sufficiently large and versatile set of possibilities (‘atoms’) and (ii) combine
this set with a small but powerful set of rules to govern the possibilities and steer the
system toward a sweet spot of just enough complexity. Nature does this fabulously
well, so there is no immediately obvious reason why we should not be able to recreate
such behaviours in silico, as long as we are able to do so in a computationally feasible
manner.
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2.2 Quick Definition of AChems

An artificial chemistry (AChem) is a computational system that is analogous to cer-
tain aspects of the dynamics of atomic and molecular level interactions of real chem-
istry. AChems are not typically used as simulations of real chemistry, but rather
exploit combinatorics, dynamics, and other properties in a computational setting.
Often, AChems are used to explore aspects of Artificial Life, and aspects of the ori-
gin of life. Here we are interested in exploring how open-ended systems can develop
as a consequence of emergent properties.

Dittrich et al. [7] formally define an AChem as a triple (�,ℝ,�), where� is the set
of possible molecules, ℝ is the set of rules for interacting the molecules, and � is an
algorithm describing the dynamics of the environment, the reaction vessel, and how
the rules are applied to the molecules. � and ℝ are more fundamental to the AChem,
and may be thought of as the underlying ‘physics’ of the system; � may then be
varied to see how the specified molecules and rules behave in different environments
or contexts, for example, spatial versus aspatial, closed versus chemostat.

� and ℝ can be defined explicitly (by listing all possible molecules, and all pos-
sible interactions), or implicitly, using a procedural algorithm or declarative expres-
sion. For an open-ended system, both � and ℝ need to be defined implicitly, as novel
molecules and their interactions can continually arise.

2.3 Historical Context

AChems were originally created as an addition to the study of artificial life in the
hopes that they would illuminate the transition from inanimate to animate matter
through complex chemistry. Three properties are thought to be the basis for open-
ended evolution and complexification of life [2, 8, 24]

1. self-replication: a property that directly or indirectly propagates the creation of
copies of itself [14, 15, 23]

2. metabolism: a lifeform’s ability to change and maintain itself in its life time, by
processing energy to reproduce, repair damage, create or destroy structures [16,
23]

3. mutability: the capability for minor changes to occur during replication [8],
needed for life capable of evolutionary behaviours

From these requirements of life the need for several high level emergent properties
of chemistries have been inferred [11]: autocatalytic sets [17] (a precursor of self-
reproduction); hypercycles [8]; and heteropolymers (giving an information-bearing
molecule made up from a set of repeating subunits, for example RNA and DNA
[22]).
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2.4 Desirable Properties of an AChem

Complex emergent properties such as self-replication and metabolism should not be
designed into an AChem. Instead, we can define a set of low level requirements of a
chemistry that can be tested at the level of small ‘molecules’ comprising only a few
atoms [9, 11, 25]. These properties are not sufficient for these and other higher level
properties to emerge, but are necessary to allow them to exist.

2.4.1 Macroscopic Properties

∙ unbounded molecular size: an open-ended system must have some aspect of its
state space unbounded in size; a bounded system could (at least potentially)
exhaust its state space.

∙ conservation of mass: some form of conservation law (energy, mass, particle num-
ber) is needed to stop the system simply being a white hole; we conserve atoms,
in a context where our reaction vessel may have inflows and outflows.

2.4.2 Microscopic Properties

∙ synthesis: the forming of a bond between two molecules, producing a new larger
molecule: A + B → D. The products of synthesis (and decomposition, below)
should be the same kind of objects as the reactants, so that these can then react
without the need to introduce new kinds of rules.

∙ self-synthesis: the forming of a bond between two identical molecules: A + A →
D. The overall goal is start from a relatively small set of atoms, so we must allow
some atoms and molecules to bind with copies of themselves. However, self-
synthesis should not be universal, as we do not want every randomly selected
set of atoms to form a molecule. If all molecules were possible, the system would
be the basic combinatorics of all possible combinations of the atoms. We want
the system to have the same complexity as real chemistry, so we need implicit
restrictions to the set of possible molecules.

∙ decomposition: the removal of a bond in a molecule (which may affect other bonds
in the molecule): D → A + B. Decomposition allows for the potential formation
of structures that cannot be formed directly by synthesis, for example by allow-
ing the use of scaffolding. It also allows cycles in reaction networks, for example,
metabolic cycles as a combination of anabolic (building up) and catabolic (break-
ing down) reactions.
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2.4.3 Environmental and Contextual Properties

Molecules and reactions should be able to be influenced by environmental or con-
textual conditions, such as space and temperature analogues. This allows the same
‘physics’ of the molecules to exhibit different behaviours in different contexts, and
so for that behaviour to potentially be controlled, regulated, or influenced.

Additionally, molecules and reactions should be able to influence their environ-
ment, permitting feedback cycles so that the system can influence its own dynamics.
For example, endothermic and exothermic reactions can affect the environmental
temperature, which in turn can affect reaction rates.

2.5 Rationale for Sub-symbolic AChems

In real-world chemistry, whether an atom or molecule bonds with another is a result
of a complex set of factors based on the states of the reactants, such as the number
of electrons and energy states. These are emergent properties that cannot be inferred
from the chemical formula (symbolic form) of a molecule.

In order to build a system with such properties we use a new approach, of defin-
ing atoms with internal structure. Rather than assigning an atom a symbol and then
defining its bonding behaviour purely in the rule system, we define an atom with
its own structure and emergent properties. We then define bonding rules in terms of
these emergent properties.

We call AChems that display this property of controlling binding based on emer-
gent properties of the molecule sub-symbolic AChems (ssAChems) [9, 11]. These
ssAChems move beyond treating atoms as structureless symbols as in traditional
AChems.

We use the same (�,ℝ,�) formalism to define our ssAChems below, but our
systems have more of their semantics and behaviour provided in the molecules in
� (since it emerges from their internal structure), and less in the rules ℝ; behaviour
can emerge in a uniform manner across molecules. This makes the definitions in
ssAChems more implicit than in symbolic AChems.

2.5.1 Terminology

To help prevent confusion between the properties of real chemical molecules and
our AChem objects, and to prevent the abuse of chemistry terminology, we use the
following distinct terminology:

∙ The objects of interest are particles; these are either atomic particles (atoms) or
composite particles (composites).

∙ Particles can be joined together, or composed, with links; links can be broken to
decompose composite particles; no operations within the system can decompose
an atom.
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2.5.2 Requirements and Design Principles

We place several requirements on the kinds of things that can be used as the basis of
an ssAChem.

∙ structure and/or dynamics: the particles should have an underlying structure
and/or dynamics, from which linking properties can emerge

∙ multiple emergent properties: in a system with a rich set of emergent properties,
different properties can be selected to serve a variety of functions

∙ single type of particle: atomic particles can be linked to form composite particles
that are the same type of thing as the atoms, with the same kind of emergent prop-
erties, so that these can in turn link to other atoms and composites, without the
need to introduce new rules

∙ everything emergent: any design decision (for example, linking probability) is
based on an emergent property, not on a property of the underlying representa-
tion (for example, a property should not rely on using the first item in a list, but
instead the item in the list with, say, the maximum or minimum value of an emer-
gent property)

∙ computational tractability: we wish to build computational systems, and so we
need the calculation of emergent properties, and of the composition rules, to be
tractable.

3 Definition of an ssAChem

In this section we define a generic ssAChem, in terms of its (�,ℝ,�). This provides a
detailed framework that can be instantiated with specific ssAChems. This framework
is then instantiated with two example ssAChems, one based on Hermitian matrices
(Sect. 4), and one based on Random Boolean Networks (Sect. 5).

3.1 The Set of Possible Particles �

The particles are defined in terms of the underlying structure of particles, their
behavioural model, and the emergent properties of that model. Particles in an
ssAChem have their own emergent behaviours that are exploited by the rules. Some
of the ‘physics’ of the system has been moved from ℝ into �.

3.1.1 Structure

S defines the underlying structure of the members of the particle set.
Example structures are:
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∙ Binary trees: S ∶= A | S × S, so S is the set of possible particles comprising the
atoms A and all pairwise linked particles S × S. This structure is used in the matrix
chemistry of Sect. 4.

∙ General n-ary trees: S ∶= A | S+, so S is the set of possible particles comprising
the atoms A and all chains of linked particles S+ (we also require the chain length
to be ≥ 2). This structure is used in the RBN chemistry of Sect. 5.

∙ General graphs: S ∶= (E,V), where the vertices are the constituent atoms A, and
the edges are the relevant links. This structure is a model for real world molecules.

Other structures can be defined. We require structures to have a ‘memory’ of the
underlying constituent atoms. That is, any structure defined must conserve atomic
constituents:

A + B ⇌ C ⇒ bag(A)⊕ bag(B) = bag(C) (1)

where bag(P) denotes the bag (multiset) of atoms in particle P, and ⊕ denotes bag
addition.

3.1.2 Behavioural Model

B is the behavioural model of the particles, which provides the basis of the chemical
properties of interest of the particles.

Each particle structure s ∈ S has a behavioural model instance b ∈ B, derived via
linking rules from the behavioural model instances of its constituent atoms.

Some models are static mathematical constructs (for example, matrices, Sect. 4).
Others may be discrete dynamical systems (for example, RBNs, Sect. 5), which can
have an associated current state, �.

3.1.3 Emergent Properties

Behavioural models have one or more emergent properties: e ∶ B × � → X. The
ssAChem-specific type X is typically the real numbers, but it may be, say, a vector,
or any other type of interest.

These emergent properties can be used for a variety of purposes: here we use them
mainly for linking probabilities.

It is desirable for these emergent properties to be efficiently computable.

3.1.4 Atoms and Composites

Each of the atoms, A ⊂ S, is assigned a unique base atomic model ba ∈ B. Where
relevant, each atom instance is initialised to a particular or random initial state,
�0 ∈ �.
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Each atom is assigned a unique symbol as its name, enabling us to write down the
structure of specific particles. This name is typically an arbitrary letter, or a struc-
tured name reflecting some of its underlying emergent properties. The name may be
decorated with a tag to indicate the current state of an atom instance.

Each composite is defined by its structure, behavioural model, and current state:
C = S × B × �.

Composites may have an internal composition mirroring their structure S; that
is, subcomposites corresponding to substructures may also have behavioural models
and state. These submodels and substates are related to the overall model and state
in a way defined by the linking algorithms (see later).

One possibility we have yet to explore is associating multiple diverse models with
a given structure, with C = S × (B × �)N . For example, one model might express
micro/particle level behaviour, and another macro/ensemble level behaviour. Or one
might express linking properties, another functional properties, allowing composites
to have some derived behaviour. Or the models might be combined in some way to
jointly express a single property.

3.2 The Rules, ℝ

The rules define the result of linking two particles, and of decomposing a composite
particle. Each of these is defined through a precondition (whether the rule applies),
and an operation (the result of applying the rule).

3.2.1 Ancillary Information

Ideally, all the properties of a particle emerge from its behavioural model. How-
ever, in some cases extra information is needed to make deterministic the definition
of how two particles link, or how a composite particle decomposes. This ancillary
information is provided to operations by the parameter � ∈ L.

The ancillary information � ∈ L might provide some internal position within the
structure of C where the link is to be established or decomposed; it might provide
details of which linking site is to be used. The specific value of � is provided by the
algorithm.

For example, in bRBN-world (Sect. 5), each particle has two linking sites, and the
ancillary information of which site is to be used in the linking attempt is provided by
the algorithm (a random choice if both are available). This choice is made emergently
in the later Spiky-RBN ssAChem [20].
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3.2.2 Linking Criterion

The linking criterion, K ∶ ℙ((C × L) × (C × L)), defines whether a pair of particles
can in principle link, based on their emergent properties, plus any ancillary infor-
mation � ∈ L. K defines the domain of applicability, or precondition, of the linking
operation ⌢.

Whether particles that can link in principle then link in practice is given by the
linking algorithm, which depends on further factors.

3.2.3 Linking Operation

The linking operation, ⌢ ∶ (C × L)2 → C, takes two particles, plus ancillary infor-
mation, and gives their linked composition. The linking operation can be applied
only if the linking criterion holds.

It is desirable that the linking operation to be either non-commutative (a⌢b ≠
b⌢a in general), or non-associative (a⌢(b⌢c) ≠ (a⌢b)⌢c in general), or both [12].
An operation that is both commutative and associative cannot capture isomers,
composites comprising the same collection of atoms but with different structures
and properties. This is because with associativity we can omit the brackets, so
a⌢(b⌢c) = a⌢b⌢c, and then with commutativity we can swap adjacent atoms:
= a⌢c⌢b = c⌢a⌢b. By this means we can get all permutations of a, b, c; the linked
system is merely an unstructured bag of atoms, not a structured composite, and so
loses much of the possible combinatoric power.

3.2.4 Decomposition Criterion

The decomposition criterion, Kd ∶ ℙ(C × L), defines whether a composite particle
can in principle decompose, based on its emergent properties, plus any ancillary
information � ∈ L. Kd defines the domain of applicability, or precondition, of the
decomposition operation.

Decomposition acts to break links between subcomposite components: it does not
cleave atomic particles. Hence no atomic particle is in Kd.

Whether composite particles that can decompose in principle then decompose in
practice is given by the decomposition algorithm, which depends on further factors.

3.2.5 Decomposition Operation

The decomposition operation, D ∶ C × L → C2, takes a composite particle, plus
ancillary information, and gives its decomposed products resulting from breaking a
single link. The decomposition operation can be applied only if the decomposition
criterion holds.
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There is no requirement for the products to be able to link to form the original
composite. Thus decomposition may allow the indirect formation of composites that
cannot form by linking alone.

3.3 The Algorithm, �

The overall reactor algorithm describes the dynamics of the reaction system, includ-
ing the effect of the environment. Environmental effects may include such things
as spatial structure (well-mixed, grid, etc.), inflows and outflows of particles, and
(analogues of) energetics. The environmental state can affect the probability of an
attempted linking or decomposition succeeding.

3.3.1 Environment

The environment, E , captures those properties of the system within which reactions
happen that are not captured by particle properties alone.

For example, the environment might be aspatial, or a spatial system, allowing
varying concentrations and movement of particles; it might have sources and sinks
of particles (as in a chemostat); it might have a temperature analogue.

3.3.2 Linking Probability

The linking probability, Prb ∶ E → (C × L)2 → C → ℜ, defines the probability
that, in a given environment, an attempted linking operation (c1, �1)⌢(c2, �2) = c′
will be successful.

If the linking criterion is not satisfied, that is, if ((c1, �1), (c2, �2)) ∉ K, then the
linking operation is not applicable, and we say that Prb(e)((c1, �1), (c2, �2))(c′) = 0.
The linking algorithm can distinguish the case of not linkable in principle (not in K)
from linkable but with zero probability in this case (in K, but nevertheless Prb = 0).

3.3.3 Linking Algorithm

The linking algorithm defines how to use the linking rule and linking probability
to perform a linking attempt. The behaviours of a given particle structure and rules
can be explored in a variety of algorithms.
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3.3.4 Decomposition Probability

The decomposition probability, Prd ∶ E → C × L → C2 → ℜ, defines the proba-
bility that, in a given environment, an attempted decomposition operation, (c, �) →
(c1, c2), will be successful.

3.3.5 Decomposition Algorithm

The decomposition algorithm defines how to use the decomposition rule and
decomposition probability to perform a decomposition attempt.

3.3.6 Reactor Algorithm

The reactor algorithm defines how to use the linking and decomposition algo-
rithms, and the environment state, to describe the overall behaviour of the reacting
system. It defines which particles are in the initial system, which are chosen for link-
ing and decomposition attempts, and if and how particles are added to or removed
from the system during execution.

The algorithm for choosing particles can cover all the possibilities: exhaustive
pair-wise search, random collisions via a Gillespie-style algorithm [13] for a well-
mixed reaction vessel, proximity in a spatial grid of diffusing particles, and more.
There might be a fixed number of atoms (conservation of mass), or a chemostat-style
inflow/outflow, or other non-physical simulation possibilities. Each of these choices
can used the same ‘physics’ of the system (the same � and ℝ), merely changing
the reaction vessel setup, �, to investigate different behaviours and properties of the
AChem.

3.4 Summary of the ssAChem Framework

1. the set of possible particles �, and their underlying properties, defined by

a. S, the underlying structure of the particles
b. B, the behavioural model of the particles
c. e, the emergent properties of B

2. the rules ℝ, defining how particles link and decompose, given by

a. the linking rule, comprising:
i. the linking criterion, which defines whether a pair of particles can in

principle link, based on their emergent properties
ii. the linking operation, which takes two particles that satisfy the linking

criterion, and gives their linked composition
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b. the decomposition rule, comprising:
i. the decomposition criterion, which defines whether a composite par-

ticles can in principle decompose, based on its emergent properties
ii. the decomposition operation, which takes a composite particle that

satisfies the decomposition criterion, and gives its decomposition prod-
ucts

3. the algorithm �, using the following components to define the overall behaviour
of the reacting system:

a. the environment, defining properties of the system within which reactions
occur (e.g., space, temperature)

b. the linking probability that, in a given environment, an attempted linking
operation will succeed

c. the linking algorithm, which uses the linking rule under the linking prob-
ability to perform a linking attempt

d. The decomposition probability, that, in a given environment, an attempted
decomposition operation will succeed

e. The decomposition algorithm, which uses the decomposition rule under
the decomposition probability to perform a decomposition attempt

f. The overall reactor algorithm, which uses the linking and decomposition
algorithms, and defines how particles are chosen for reaction attempts.

4 SMAC: Sub-symbolic Matrix Artificial Chemistry

In our first example we illustrate the basics of the ssAChem concepts in a relatively
simple system that has no dynamic state, but a lot of rich mathematical structure.

We consider a mathematical system with rich algebraic structure that can be
employed to define a ssAChem. The basic particle is the matrix. Given the richness
of emergent properties of matrices and the fact that most computers are optimised for
matrix arithmetic, the matrix seems to be a natural base for a sub-symbolic AChem.

There are various so-called matrix AChems in the literature. For example, the
Matrix-multiplication chemistry [3–5] works over binary strings and folds them in to
matrices to perform linking through matrix multiplication. However, this makes no
use of the many emergent properties or algebraic structure of mathematical matri-
ces. In general, existing matrix AChems make little or no use of the mathematical
properties of matrices, and would be better named ‘array-based’ AChems.
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4.1 SMAC’s Set of Possible Particles, �

4.1.1 SMAC Structure

The structure of SMAC particles is defined as S ∶∶=A | S⌢S, that is, the structure of
the set of possible particles comprises the atoms A and all pairwise linked particles
S⌢S. So SMAC particles have an underlying binary tree structure.

4.1.2 SMAC Behavioural Model

The SMAC behavioural model B is the set of d dimensional Hermitian matrices (here
d = 3). Particles are static; they have no current state �.

Matrix Notation

We define a vector � of dimension d in terms of its components vi, 1 ≤ i ≤ d; it has
magnitude |�| = v. We define a matrix � of dimension d in terms of its components
Mij, 1 ≤ i, j ≤ d. Vector dot product �.�, matrix addition � + �, matrix-vector mul-
tiplication ��, and matrix multiplication �� have their usual definitions.

A Hermitian matrix is one equal to its conjugate transpose: � = �† ⟺ Mij =
M̄ji where Mij ∈ ℂ.

4.1.3 SMAC Emergent Properties

Matrices have several emergent properties, that is, properties of the matrix as a
whole, rather than of its individual components. These include:

∙ Eigenvalues �i and eigenvectors �i, solutions of �� = ��. A d-dimension matrix
in general has d eigenvalue-eigenvector pairs. Each of the eigenvectors describes a
direction, while the corresponding eigenvalue provides a magnitude to that direc-
tion. This provides an inherent geometry to the matrix. In general eigenvalues can
be complex numbers (they are solutions of the d-order characteristic polynomial
of the matrix). Here we restrict ourselves to Hermitian matrices, which have real
eigenvalues.

∙ Trace: Tr(�) =
∑d

i=1 Mii. The sum of the eigenvalues equals the trace:
∑d

i=1 �i =
Tr(�), hence the trace of a Hermitian matrix is real.

∙ Rank: the dimension spanned by the matrix’s rows (or columns).
∙ Determinant: |�|
∙ Similar properties of submatrices of �
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Here we restrict our investigations to d = 3, both for tractability (the complexity
of eigenvalue calculations is >O(d2)), and for a convenient geometric interpretation
of the eigenvectors.

The SMAC emergent properties are the absolute values of the three eigenvalues
of the behavioural model matrix, truncated to the nearest integer towards zero:

ei ∶= ⌊|�i|⌋ (2)

The trace is not necessarily equal to the sum of these truncated values.
We also use the length-normalised eigenvectors �̂i in calculating linking proba-

bilities.

4.1.4 SMAC Atoms and Composites

We create an atomic set of 3 × 3 Hermitian matrices. We restrict the entries in our
atomic set to have real and imaginary parts of 0 or ±1, and further restrict the leading
diagonal elements to be real (because Hermitian).

We disallow the ‘singleton matrices’ (those with a single non-zero entry) and the
traceless matrices (which includes the zero matrix), since these have trivial linking
properties (later).

We generate our set of atomic behavioural models as:

Ba = {� | Ajj ∈ {0,±1};
Ajk ∈ {0,±1,±i,±1 ± i}, j < k;
Ajk = Ākj, k < j; (3)
#(Ajk ≠ 0) > 1;
Tr(�) ≠ 0}

This gives a set of 39 − 6 − 7 × 36 = 14574 ‘atoms’, which is rather too large to be
investigated fully. So we partition this set into 66 equivalence classes of atoms, where
atoms in the same class have the same integer values of their eigenvalues rounded
to zero, and same traces. We take a single arbitrarily chosen1 entry from each class.
This provides us with a ‘periodic table’ of 66 elements, classified by eigenvalue set
and by trace (Fig. 1).

The textual representation of large composites is not very readable. For example,
one of the composites generated by our system (see later) is:

M1000 =((((FFd⌢LLf )⌢Vc)⌢Lb)⌢((AAd⌢(Nc⌢Re))
⌢((Re⌢(FFd⌢LLf ))⌢((Nc⌢GGf )⌢(JJf⌢(Aa⌢Dc))))))

(4)

1To follow our design criteria, we should choose a non-arbitrary element. Future work includes
developing a choice criterion for this.
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Fig. 2 Graph representation of M1000. This demonstrates a property of SMAC that differs from
real chemistry: links can form between links, as well as between atoms

Fig. 3 SMAC graphs showing the atomic structure of two composites containing the same atoms
a (((Ba⌢Yc)⌢Kc)⌢(Kc⌢Re)) b (((Yc⌢Kc)⌢Ba)⌢(Kc⌢Re))

This is difficult to unpick, so we introduce a graph representation of composites. The
graph of the above composite is shown in Fig. 2.

Figure 3 shows two isomers (comprising the same atoms, but linked in different
structures) in the graphical representation.

Since the behavioural model has no state, a composite is completely defined by its
binary tree structure and its matrix; C = S × B. The matrix at the root of the structure
is the only one involved in linking; sub-structures have their own associated compo-
nent matrices which need to be remembered, however, as they may become the root
matrix as a result of decomposition. See Fig. 4.
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((AB)(CD))

(CD)

(D)(C)

(AB)

(B)(A)

Fig. 4 The underlying structure of the SMAC compound ((A⌢B)⌢(C⌢D)). The structure S is given
by the binary tree with A,B,C,D as the atomic leaves. The behavioural model at each sub-tree is
given by the relevant matrix product defined in Sect. 4.2.2. The matrix at the root of the structure
is the only one involved in the linking algorithm. Sub-structure matrices may become the root of
decomposed composites

4.2 SMAC Rules

4.2.1 SMAC Linking Criterion

The SMAC emergent properties used in linking are the set of d (truncated) eigen-
value and eigenvector pairs. A SMAC particle can be considered to have d potential
binding sites, labelled 1,… , d. For SMAC, ancillary information is provided by the
linking criterion, which determines which (if any) specific site of these d is linkable
in each particle: L = 1,… , d. Here d = 3.

Consider two particles A and B, with corresponding emergent properties of sets
of truncated eigenvectors {bA

i } and {bB
j }. For the particles to link, we require them

to have

∙ a non-zero eigenvalue in common: {bA
i } ∩ {bB

j } ∉ {∅, {0}}
∙ a non-zero trace of their Jordan product, Tr(A◦B) ≠ 0 (in order to apply trace scal-

ing; see Sect. 4.2.2).

4.2.2 SMAC Linking Operation

For SMAC, no ancillary information is needed for the linking operation, so we have
⌢∶C2 → C.

We impose the following algebraic requirements on our linking operation as
applied to our behavioural model of Hermitian matrices:

∙ It should preserve the property of being Hermitian: � = �† and � = �† ⟹
�⌢� = (�⌢�)†.

∙ It should be commutative: �⌢� = �⌢�. This is inspired by real chemistry; for
example, carbon monoxide could be written as C⌢O or O⌢C, but is still the same
molecule. Note that matrix addition is commutative and matrix multiplication is
not commutative.

∙ It should therefore be non-associative: �⌢(�⌢�) ≠ (�⌢�)⌢� in general (see
Sect. 3.2.3). Note that both matrix addition and matrix multiplication are associa-
tive.
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To meet these requirements, we use a Jordan algebra [21] based on Hermitian
matrices, and define the linking operation using the Jordan product:

�◦� = 1
2
(�� + ��) (5)

This is clearly commutative (since matrix addition is commutative). A little algebra
demonstrates that it is non-associative, and that the product preserves the Hermitian
property.

The Jordan product itself is not suitable for a linking operation that uses eigen-
value matching as its linking property. The eigenvaules of Jordan product matrices
tend to grow exponentially fast with the number of Jordan products used. This would
result in composites predominantly linking only with composites containing similar
numbers of atoms: we would not, for example, be able to see a single atom linking
to a large composite.

So our linking operation incorporates trace-scaling, which exhibits matching
eigenvalues over a wide range of particle sizes.

A⌢B ∶=
|Tr(A)| + |Tr(B)|

|Tr(A◦B)|
A◦B (6)

Consequently, we require composites to have a non-zero trace.

4.2.3 SMAC Decomposition Criterion

Currently, we have not defined a SMAC decomposition criterion. We are investigat-
ing the products of decomposition given that a link breaks, but not yet the criterion
for allowing that link breaking.

4.2.4 SMAC Decomposition Operation

Although the SMAC structure is a binary tree, we wish to have a decomposition
operation that allows ‘internal’ links to break. This potentially allows the formation
of structures that cannot form directly.

The simplest case is breaking an outermost link. A⌢B → A + B. Both A and B
may be complex structures.

Breaking a link one deep in the tree is also simple to define: A⌢(B⌢C) → A +
B + C.

When we break a link two deep, we need to ‘fix up’ the resulting mal-formed
binary tree: A⌢(B⌢(C⌢D)) → A⌢B + C + D. This forms composite A⌢B indirectly,
potentially allowing new composites that could not form directly, or have only a low
probability of forming directly.
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(a)
...

x

DC

B

A

(b)
...

?B

A

+ C + D

(c)
...

BA

+ C + D

B

A

C DX

B

A C D

?

BA C D

Fig. 5 Breaking the link between C and D in the composite subcomponent A⌢(B⌢(C⌢D)). a the
link to be broken (left shows the binary tree representation; right shows the SMAC notation); b the
link broken, and the resulting components: B has no partner; c B migrates up the tree, resulting in
A⌢B; in the SMAC notation, we refer to this as ‘link straightening’

This break and fix-up pattern also holds for more deeply nested links:
A⌢(B⌢(C⌢(D⌢E))) → A⌢(B⌢C) + D + E. The underlying operation is illustrated
in Fig. 5.

4.3 SMAC Algorithm

4.3.1 SMAC Environment

The version of SMAC described here has no environmental input.

4.3.2 SMAC Linking Probability

Consider two particles A and B, with corresponding sets of truncated eigenvalues
{bA

k } and {bB
k }, and length-normalised eigenvectors {�̂A

k } and {�̂B
k }.

If the linking criterion holds, then we have a matching eigenvalue bA
i = bB

j = b.
Let the eigenvectors associated with this matching eigenvalue be �̂A

i and �̂B
j .
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We construct a linking probability from their dot product, such that anti-parallel
eigenvectors have the highest linking probability of 1, and parallel eigenvectors have
the lowest linking probability of 0:

Pr(A⌢B) = 1
2
(
1 − �̂A

i .�̂
B
i

)
(7)

If there is more than one pair of matching eigenvalues, we choose the pair whose
eigenvectors are most nearly anti-parallel (min{�̂A

i .�̂
B
i }), and so produce the highest

linking probability.
This choice of parallel eigenvectors resulting in zero linking probability ensures

that not every atom can undergo self synthesis. In order to get self-synthesis we must
have a repeated eigenvalue.

4.3.3 SMAC Linking Algorithm

For particles to be able to link, they must have non-zero eigenvalues in common, and
the trace of the resulting composite must be non-zero. If these criteria are met, then
linking can occur on this attempt with probability as given by Eq. 7.

4.3.4 SMAC Decomposition Probability

Currently, we have not specified a decomposition probability.
Our decomposition operation can produce composites that cannot form directly

by synthesis, because certain links do not have matching eigenvalues. This implies
the decomposition probability needs to be different from the linking probability, to
ensure such composites do not immediately disintegrate.

4.3.5 SMAC Decomposition Algorithm

Currently, we have not specified a decomposition algorithm.

4.3.6 SMAC Reactor Algorithm

Here we are in the early stages of investigation, and use a simple reactor algorithm
involving linking only, and no decomposition. We generate 10,000 composites using
Algorithm 1. We then analyse the resulting composites (see Sect. 4.5).
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Algorithm 1 SMAC 10,000 composite synthesis
1: mols := list of the 66 atoms
2: tries := 0
3: repeat
4: A,B :∈ mols
5: C := A⌢B
6: if C then
7: append C to mols list
8: end if
9: ++tries

10: until # mols = 10,066

4.4 Summary of the SMAC ssAChem

4.4.1 Definition

∙ structure S

– structure: binary tree: S ∶∶=A | S⌢S
– behavioural model: 3 × 3 Hermitian matrices, Tr ≠ 0; no state
– emergent properties: eigenvalues and eigenvectors; trace
– atoms: 66 specific matrices

∙ linking rules R

– linking criterion: matching (truncated, absolute-value) eigenvalues and
Tr(A◦B) ≠ 0

– linking operation: A⌢B = |Tr(A)|+|Tr(B)|
|Tr(A◦B)|

(A◦B);A◦B = 1
2
(AB + BA)

– decomposition criterion: not defined
– decomposition operation: ‘link straightening’, see Fig. 5

∙ algorithm A

– environment: none, for now
– linking probability: 1

2

(
1 − �̂A

i .�̂
B
i

)

– linking algorithm: the linking operation is applied with the linking probability
– decomposition probability: not defined
– decomposition algorithm: not defined
– reactor algorithm: see Algorithm 1; used for our initial investigations
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Fig. 6 The isomers
(Am⌢X)⌢An and
Am⌢(X⌢An), where X is an
atom or a composite, have
identical properties in this
ssAChem

Am X

An

≡
An X

Am

XAm

An

≡

XAn

Am

4.4.2 Structure v Model

The commutative but non-associative linking operation used in SMAC allows iso-
mers exist (Fig. 3). However, the linking operation is associative in some special
cases. For example, it is clear from Eq. (5) that A◦A = AA = A2, and that therefore

Power associative: A◦mA◦n = A◦(m+n) = Am+n ∀m, n ≥ 0 (8)

where A◦n = A◦A◦… ◦A(n times) = An. Hence all composites containing n copies
of just a single atom type A have identical properties in this ssAChem.

It can readily be checked that the following associativity condition also holds:

Jordan identity: (Am◦X)◦An = Am◦(X◦An) ∀m, n ≥ 0 (9)

Hence the two isomers (different structures) in Fig. 6 have identical properties (model
values) in this ssAChem.

This demonstrates the difference between structure and properties. Two particles
with the same properties can nevertheless be different particles, in that they have a
different internal structure. In particular, they may decompose differently.

4.5 SMAC Results

We have performed a variety of experiments to investigate SMAC’s low-level chem-
ical properties of synthesis and decomposition, to evaluate its promise as the basis
for a sub-symbolic AChem. We summarise the results here.

4.5.1 Synthesis and Self-synthesis

The linking probability is zero for parallel eigenvectors, so in order to get self-
synthesis we must have a repeated eigenvalue. In such cases there will be (at least
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two) eigenvectors orthogonal to one another (because Hermitian), and hence cos 	 =
0, p = 0.5. Hence self-synthesis probabilities are either be 0 (no repeated eigenval-
ues: 10 atom classes) or 0.5 (repeated eigenvalues, using the orthogonal eigenvectors:
28 atom classes). Hence we do have atoms capable of self-synthesis, and atoms not
capable of self-synthesis.

The probability distribution for general atomic synthesis across all possible atom
pairs shows a broad range of probabilities from zero to one.

To investigate the synthesis properties of composites we use the reactor Algo-
rithm 1 to generate 10,000 composites. This process generates a wide range of com-
posite sizes, including example composite M1000 (Eq. 4, Fig. 2), and large compos-
ites comprising over 200 atoms.

The composite generator took 119,757 tries at forming links to generate 10,000
composites. This implies an 8.35% probability of successful linking in this setup. The
probability distribution for this form of composite synthesis also shows a broad range
of linking probabilities from zero to one. Additionally, there does not seem to be a
strong effect of trace size (and hence composite size) on these linking probabilities.
This indicates that large composites can still link effectively.

We observe that large and small composites react with each other, as do similarly
sized composites. For any particular size of composite s the set of reactions creating
composites of that size have reactants ranging in size evenly from 1 to s − 1. Thus
there is no bias to linking either similarly or differently sized composites.

4.5.2 Decomposition

We have examined the larger composites produced in the synthesis experiment, and
have found several cases where the decomposition operation could form composites
that cannot be created directly (because of no matching eigenvalues), or only with a
very low probability (because of near-parallel eigenvectors).

A particular composite formation by decomposition in shown in Fig. 7; the prod-
uct composite cannot be formed by synthesis alone.

(a) (b)

Fig. 7 a Initial composite before (Yc⌢Ia) link decomposed; b The two atoms Yc and Ia, plus the
composite shown, result from link breaking and link straightening. The new composite cannot form
directly because (Yc⌢Pe) and (Jb⌢BBe) do not have matching eigenvalues
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4.6 SMAC History Versus Presentation

The definition of SMAC here following the ssAChem framework starts with matri-
ces as particles, then moves to Jordan products for linking rules. The invention of
SMAC followed a different route [12]: the requirement for non-associativity led to
the investigation of Jordan algebras, and then the Hermitian matrices as a suitably
rich model of these algebras. The overall aim of the SMAC work is to use mathemat-
ical structures (starting with the algebraic structure of the particles and their links)
as a rich source of inspiration and results for exploitation by ssAChems.

5 The bRBN-World ssAChem

Our second example to illustrate the ssAChem concepts exploits a different approach
from the algebraic matrix structures in SMAC. Here, we use Random Boolean Net-
works as our particles and network manipulations as our linking operation: these
systems have rich dynamical structure but less overt mathematical foundations.

This work is based mainly on the bRBN models discussed in [9–11], augmented
with a first investigation of a temperature model. Current work is exploring more
emergent linking sites, to produce ‘spiky RBNs’ [20].

5.1 bRBN-World Particles

5.1.1 bRBN-World Structure

We define this structure inductively as S ∶∶=A | S+, with n > 1. That is, the set of pos-
sible particles comprises the atoms A and all (finite) lists of linked particles S⌢…⌢S
(n > 1 terms). This results in bRBN-world particles having an underlying n-ary tree
structure.

5.1.2 bRBN-World Behavioural Model

The behavioural model B is the set of K = 2 ‘linking’ Random Boolean Networks
(bRBNs).

Random Boolean Network Definition

A Random Boolean Network (RBN) is a discrete dynamical system with the follow-
ing structure. It has N nodes. Each node i has:

susan.stepney@york.ac.uk



312 P. Faulkner et al.

∙ a binary valued state, which at time t is si,t ∈ �
∙ K inputs, assigned randomly from K of the N nodes (including possibly itself),

defining its neighbourhood, a K-tuple of node labels with no duplicates
∙ a randomly assigned state transition rule, a boolean function from its neighbour-

hood state to its own next state: 
i ∈ �K → �

The state of node i’s neighbourhood at time t is �i,t ∈ �K , a K-tuple of the binary
states of the neighbourhood nodes. At each timestep, the state of all the nodes updates
in parallel: si,t+1 = 
i(�i,t).

As with any finite discrete dynamical system, the state of an RBN eventually falls
on an attractor: a repeating cycle of states. Kauffman [18, 19] discovered that K = 2
RBNs rapidly converge to relatively few relatively short attractors: they are complex,
but not chaotic.

bRBNs: RBNs Modified for Linking

K = 2 RBNs are a computationally tractable system with rich microdynamics (of the
entire microstate) and complex macrodynamics (the attractor space). We take such
K = 2 RBNs as the basis for an ssAChem.

bRBN-world [9–11] uses a modification of basic RBNs, called bRBNs, as the
behavioural model. A bRBN atom is constructed from a plain RBN as follows: add
b linking nodes to the RBN (for this work, b = 2). For each linking node, select an
RBN node at random, and change one of its K inputs to come from the linking node.
Linking nodes do not have inputs, so have no need for an associated random boolean
function; instead they have a fixed boolean state (0 or ‘cleared’ if unlinked, 1 or ‘set’
if linked; see later for linking details). See Fig. 8.

The linking algorithm can access the microstate of the RBN (to calculate the
emergent linking property), each of the b linking nodes and their state, and the
‘wiring’ between nodes (to perform the link).

A given particle can exist in different states (the microstate of the underlying RBN
at time t), dependent on its initial condition.

5.1.3 bRBN-World Emergent Properties

An RBN is a discrete dynamical system which exhibits many rich emergent proper-
ties. We can look at properties at different levels of resolution. There are properties
that merely count the number of timesteps needed to traverse between two states:

∙ transient length et: the number of timesteps to move from some initial state (for
example, all zeros or all ones) to an attractor

∙ attractor cycle length ec

Then there are detailed properties of the microstates during these macro
-transitions, such as:
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(a) (b)

(c) (d)

Fig. 8 Constructing a bRBN: a a K = 2,N = 4 RBN, plus b = 2 unattached linking nodes (cir-
cles); b connecting the first bnode: randomly select rnode 1; randomly select south input (dashed);
c connecting the first bnode: replace south input with input from b1; d connecting the second bnode:
randomly select rnode 3; randomly select north input; replace with input from b2

∙ flashing: how many nodes change state during the macro-transition
∙ flashes: total number of state changes during the macro-transition
∙ total: the sum of the state values during the macro-transition
∙ proportion: the proportion of nodes that are ‘on’, averaged over the macro-

transition

We have investigated each of these properties for attractor cycles to determine
their suitability as emergent properties in bRBN-world [9, 10]. The suitable choices,
which also depend on choice of linking criterion, are discussed in Sect. 5.5.1.

5.1.4 bRBN-World Particles

The atoms are chosen from the set of size N RBNs. We discuss the choice of N in
Sect. 5.5.1.

Initially [10, 11] we chose small atomic RBNs at random. Later investigations
[9] use an evolutionary algorithm to search for an ‘interesting’ set of atomic bRBNs;
see Sect. 5.5.2.

We use arbitrary alphabetical symbols to name the atoms. We use parenthesised
strings of atoms to display the composites. We distinguish the different basin of
attraction, where necessary, with a superscript digit. For example (adapted from [9,
Fig. 8.5.3]):

((((C1⌢C1)2⌢(C1⌢C1)1)3⌢(C1⌢C6)4)1⌢B3)1 (10)
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Fig. 9 The underlying structure of the RBN-world compound ((A⌢B⌢C)⌢D). The structure S is
given by the n-ary tree with A,B,C,D as the atomic leaves. The behavioural model at each sub-
tree is given by the relevant linked RBNs (Sect. 5.2.2 and Fig. 10). The bRBNs at each level of the
structure are involved in the linking algorithm. A white circle denotes a linking site not yet linked,
with value set to 0; a black circle denotes a linking site that has been linked (in a parent node), with
value here set to 1

An RBN-world particle is defined by its n-ary tree structure, its bRBN, and its
current state; C = S × B × �. At the root of each substructure is a single compos-
ite bRBN; the intermediate nodes contains smaller composite bRBNs; the leaves
contain the atomic bRBNs (Fig. 9). The properties of the bRBNs at each level of the
structure are involved in the linking algorithm. The fact that properties of lower level
structures are used in the linking algorithm stops the linking operation from being
associative: ((A⌢B⌢C)⌢D) ≠ ((A⌢B)⌢(C⌢D)) ≠ (A⌢B⌢C⌢D) in general.

5.2 bRBN-World Rules

5.2.1 bRBN-World Linking Criterion

An RBN is a discrete dynamical system which exhibits a rich possible set of emergent
properties that we can use for defining linking criteria (Sect. 5.1.3).

These numerical properties can be compared in a variety of ways. We have inves-
tigated [9, 10]:

∙ equal: the same values (to within a small tolerance)
∙ similar: like equal, but with a larger tolerance bound
∙ different: not similar
∙ sum one: the properties sum to one (to within a small tolerance)
∙ sum zero: the properties sum to zero (to within a small tolerance), hence are oppo-

sites

The suitable choices, which also depend on choice of emergent property, are dis-
cussed in Sect. 5.5.1.

susan.stepney@york.ac.uk



Sub-Symbolic Artificial Chemistries 315

5.2.2 bRBN-World Linking Operation

Two individual bRBNs are linked into a larger composite as shown in Fig. 10. Note
that although the result is a bRBN, its RBN component does not have the structure
of a ‘typical’ RBN: the communication is channeled through specific links, and the
result is not a small world network. In particular, large composites comprising long
chains of RBNs will have different dynamics from a typical RBN.

Two structured compounds are linked, at a given linking site in each, as illustrated
in Figs. 11 and 12. The link is formed, and the structures are ‘zipped’ together moving
up the trees, to form a single tree.

Fig. 10 Linking two bRBNs. The unlinked bRBNs are stored in the lower nodes of the structure
tree; the linked composite bRBN is stored in the higher level of the tree

Fig. 11 Two composites,
(A(B(CDE))) and
(((FG)H)J), to be linked at
the linking sites indicated by
the arrow
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(a) (b)

(c) (d)

Fig. 12 The linking operation illustrated: linking (A(B(CDE))) and (((FG)H)J) to produce the
linked compound ((A(B(CDE)FG)H)J): a set linking sites here and below to ‘linked’ black dots;
b merge parent nodes; create bRBN that is the join of all the new node’s children (shown in grey);
move up to the newly merged parent; c while the node has two parents, merge the parent nodes;
create the newly merged node’s bRBN from its children; move up to the newly merged parent;
d while the node has one parent, create the node’s bRBN from its children; move up to the parent

Ancillary information used for linking is: S, the position in the structure where
the link is to be formed; b, which linking node is to be used; �, the current state (for
the linking property).

5.2.3 bRBN-World Decomposition Criterion

The decomposition criterion on a formed link is the same as the linking criterion for
forming the link. So, for example in Fig. 10, the criterion for decomposing the top
level link uses the two bRBNs ABC and D. Although these had to fulfil the linking
criterion when the link was formed, they might no longer fulfil it, because now their
linked input nodes are set to 1 rather than 0, and so their dynamics have been changed.

5.2.4 bRBN-World Decomposition Operation

The decomposition operation is the reverse of the linking operation (Sect. 5.3.3). The
designated link is broken, the higher level nodes are ‘unzipped’ to form two separate
trees, and the binding site nodes of the lower levels set to 0.
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5.3 bRBN-World Algorithm

5.3.1 Environment

In previously published work on bRBN-world [9–11], there are no environmental
inputs. In particular, all reactions occur in an aspatial environment.

We report here some preliminary results related to reaction in a constant temper-
ature heat bath.

5.3.2 bRBN-World Linking Probability

In the previously published work on bRBN-world [9–11], Pr = 1. That is, if the
linking criterion holds, and the link is attempted, then it succeeds with no further
criterion to satisfy.

We report here some preliminary results related to reaction probabilities given by
a temperature analogue, inspired by reaction kinetics. We use transient lengths as the
emergent properties for calculating a temperature-dependent probability. Let X0,X1
be the length of the transient from the all-zeros and all-ones state of particle X. Then
consider the linking operation attempting to form composite C from particles A,B.
We define two energies; the linking energy �Eb and the decomposition energy �Ed
(Fig. 13):

�Eb = (A1 + B1 + C1) − (A0 + B0) (11)
�Ed = (A1 + B1 + C1) − C0 (12)

The binding and decomposition probabilities use these energy-analogues in a
Boltzmann-like factor, similar to that used in simulated annealing:

Pr =
{

1 ; �E < 0
exp(−�E∕T) ; 0 ≤ �E (13)

Fig. 13 ‘Energy’ levels of
reactants and linked
particles, used to calculate
probabilities
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The previously published work can be thought of as the infinite temperature limit,
with Pr = 1.

5.3.3 bRBN-World Linking Algorithm

Choose one of the linking nodes in each particle, at random.
Get the linking location for these nodes: starting at atomic level, progressively

move up the composite tree structure until the linking property holds; use the first
linking location found, or FAIL if no linking location is found.

Apply the linking operation (Sect. 5.2.2) at the linking location with probability
given by Eq. 13.

5.3.4 bRBN-World Decomposition Probability

In the previously published work on bRBN-world [9–11], Pr = 1. That is, if the
linking criterion does not hold, and decomposition is attempted, then it succeeds
with no further criterion to satisfy.

We report some preliminary results related to reaction probabilities given by a
temperature analogue, inspired by reaction kinetics. This allows otherwise ‘unstable’
links that do not meed the linking criterion to nevertheless persist. See Sect. 5.3.2
for the linking and decomposition probabilities.

5.3.5 bRBN-World Decomposition Algorithm

Decomposition proceeds as follows. For a given composite, all the links of its linked
component bRBNs are examined. Any link the no longer fulfils the linking criterion
(the linking property may have changed on linking) is broken, with probability given
by Eq. 13. Any products are similarly decomposed.

5.3.6 bRBN-World Reactor Algorithm

The full reactor algorithm is as follows. Two distinct composites are selected; a link-
ing is attempted (Sect. 5.3.3). Decomposition is then attempted (Sect. 5.3.5), either
on the initial reactants, or on the successfully linked product. The overall result is
the outcome of these two attempts.

A newly-formed composite may decompose because the original linking no
longer satisfies the linking criterion (due to changing the state of the relevant link-
ing nodes at the linking location), or because the linking criterion no longer holds
elsewhere in the compound. If no link takes place, one or both initial composite
particles might themselves decompose, if the linking attempt somehow falsified a
linking criterion somewhere in the stateful composite.
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5.4 Summary of bRBN-World ssAChem

∙ set �

– structure: n-ary tree: S ∶∶=A|S+, n > 1
– model: bRBN with b = 2 linking sites; cycle evolution experiments use N = 10,

K = 2
– emergent properties: various transient and attractor cycle properties

(Sect. 5.1.3); cycle evolution experiments use ‘proportion’
– atoms: specific small bRBNs

∙ rules ℝ

– linking criterion: matching emergent properties of the bRBNs (Sect. 5.2.1);
cycle evolution experiments use ‘sum one’

– linking operation: form a larger bRBN at the top of the structure tree, zipping
together component RBNs lower down the tree

– decomposition criterion: linking criterion fails to hold for linked structures
– decomposition operation: break the link, and unzip the trees

∙ algorithm �:

– environment: aspatial heat bath
– linking probability: Boltzmann factor from transient emergent properties
– linking algorithm: link those that pass the linking criterion, with linking prob-

ability
– decomposition probability: Boltzmann factor from transient emergent proper-

ties
– decomposition algorithm: break internal links that fail the linking criterion, with

decomposition probability
– reactor algorithm: link, then decompose.

5.5 bRBN-World Results

5.5.1 Choice of Parameters, Linking Property and Criterion

There are many parameters and properties to choose from: do any result in a good
ssAChem?

In our initial work on bRBN-world [11], we arbitrarily chose attractor cycle length
as our emergent property, to establish that bRBNs exhibited sufficiently rich behav-
iours to be the basis for an ssAChem.

In subsequent investigations [9, 10] we determined a better choice, through explo-
ration of the parameter space. That exploration demonstrates that atomic network
size N and connectivity K has little influence, and that the best choice of emergent
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property (Sect. 5.1.3) and linking criterion (Sect. 5.2.1) is either ‘proportion’ as prop-
erty and ‘sum one’ as criterion, or ‘total’ as property and ‘sum zero’ as criterion. We
use ‘proportion/sum one’ for further work on bRBNs.

5.5.2 Evolutionary Search for Atomic bRBNs

The space of possible atomic RBNs is vast. The preliminary bRBN-world exper-
iments [10, 11] sample bRBNs at random. To find richer behaviours from small
atomic sets, [9] employs a search over the bRBN atomic space, using a genetic algo-
rithm.

The richness of the exhibited behaviour of a candidate atomic set is measure by
a fitness function. This function examines the reaction network generated by the
atoms for ‘loops’; cyclic reactions such as A → A(BCD) → A(BC) → AB → A. What
counts as a ‘loop’ has to be carefully defined to exclude trivial loops such as A1 →
A2 → A1 (where the superscript indicates an atom in a different attractor state), and
meaningless loops such as A → BC → A (where there is no common element around
the loop). See [9, Chap. 8] for details.

A well-mixed reactor vessel is populated with 1000 atoms of each of five types.
A reaction network is formed by running the vessel for a sufficient time, using a
Gillispie-style algorithm. The fitness function is applied to the resulting network.

The genetic algorithm uses a population size of 100 vessels, and is run for 300
generations. Mutation changes the details of the five types of atoms used. See [9,
Chap. 8] for further details.

This evolutionary approach successfully discovered atomic sets capable of pro-
ducing complex reaction networks. For example, one reaction network analysed in
detail exhibited 1,286 reactions and 645 different particles, and a longest reaction
loop comprising 8 reactions.

This demonstrates that the bRBN-world ssAChem can continue to support more
complex behaviours.

5.5.3 Addition of a Temperature Analogue

Following on from the work presented in [9–11], we have performed some prelimi-
nary experiments with the temperature analogue described in Sect. 5.3.2.

At very low temperatures (‘absolute zero’, T = 0) essentially no reactions occur,
as the probability is always zero (except when �E < 0, which happens only rarely).

At very high temperatures (T = 15) the system essentially reduces to the previ-
ously published bRBN-world behaviours: all reactions that merely satisfy the linking
criterion occur, as do all the possible decompositions (no ‘unstable’ links can sur-
vive).

At intermediate temperatures (2 < T < 10) we have a reduced reaction rate, as
expected. We see a mix of behaviours, with different composite species thriving in
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different temperature ranges. Additionally, we see new composites that cannot occur
at higher temperatures, because they would decompose.

We have also performed preliminary experiments where the temperature of the
system changes between three temperatures (low T = 2, medium T = 5, high T =
10) for five cycles. These systems show a higher degree of reactivity than a similar
system held at the medium temperature.

These preliminary experiments demonstrate that a temperature analogue has an
interesting effect on the behaviour of the system, by allowing otherwise unstable
composites to persist, and engage in further reactions. Having demonstrated the
promise of the approach, we need to perform larger scale experiments to quantify
the effects.

6 ssAChem Design Guidelines

We have provided a framework within which ssAChems can be defined. SMAC and
bRBN-world provide two different instantiations of this framework. SMAC focusses
on the underlying mathematical structure provided by Jordan algebras and their
realisation in the Hermitian matrix model. RBN-world focusses on the underlying
dynamical system that provides the atomic properties. These results demonstrate
that the ssAChem concept is generically useful. It is not only the original dynamic
bRBN-world implementation that demonstrates interesting chemistry: other systems
with less dynamics but deeper mathematical structure also demonstrate interesting
chemistry.

The process of designing a new ssAChem can proceed as follows:

1. start from the ssAChem framework provided here
2. instantiate it with a particular model: an atomic set, the emergent properties, the

linking rules
3. develop a computational implementation
4. perform initial experiments, to demonstrate that the chosen model has rich behav-

iour, and to find good parameter values
5. perform full experiments, to explore full system behaviours

Acknowledgements Faulkner is funded by an York Chemistry Department Teaching PhD stu-
dentship. Krastev is funded by a York Computer Science Department EPSRC DTA PhD stu-
dentship. We thank Leo Caves for some insightful comments on this work. We thank Michael Kro-
tosky, Andrew Balin, and Rudi Mears for their work in exploring some earlier versions of ideas
presented here.

susan.stepney@york.ac.uk



322 P. Faulkner et al.

References

1. ALife XV, Cancun, Mexico. MIT Press (2016)
2. Anet, F.A.L.: The place of metabolism in the origin of life. Curr. Opin. Chem. Biol. 8(6),

654–659 (2004)
3. Banzhaf, W.: Self-replicating sequences of binary numbers—Foundations I: General. Biol.

Cybern. 69(4), 269–274 (1993)
4. Banzhaf, W.: Self-replicating sequences of binary numbers—Foundations II: Strings of length

N = 4. Biol. Cybern. 69(4), 275–281 (1993)
5. Banzhaf, W.: Self-organization in a system of binary strings. In: Proceedings of Artificial Life

IV, pp. 109–118 (1994)
6. Banzhaf, W., Baumgaertner, B., Beslon, G., Doursat, R., Foster, J.A., McMullin, B., de Melo,

V.V., Miconi, T., Spector, L., Stepney, S., White, R.: Requirements for evolvability in complex
systems. Theory Biosci. 135(3), 131–161 (2016)

7. Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial chemistries–a review. Artif. Life 7(3), 225–275
(2001)

8. Eigen, M., Schuster, P.: A principle of natural self-organization. Naturwissenschaften 64(11),
541–565 (1977)

9. Faulconbridge, A.: RBN-world: sub-symbolic artificial chemistry for artificial life. Ph.D. the-
sis, University of York, UK (2011)

10. Faulconbridge, A., Stepney, S., Miller, J.F., Caves, L.: RBN-world: The hunt for a rich AChem.
In: ALife XII, Odense, Denmark, pp. 261–268. MIT Press (2010)

11. Faulconbridge, A., Stepney, S., Miller, J.F., Caves, L.S.D.: RBN-World: a sub-symbolic artifi-
cial chemistry. In: ECAL 2009, Budapest, Hungary. LNCS, vol. 5777, pp. 377–384. Springer
(2011)

12. Faulkner, P., Sebald, A., Stepney, S.: Jordan algebra AChems: exploiting mathematical richness
for open ended design. In: ALife XV, Cancun, Mexico [1], pp. 582–589 (2016)

13. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem.
81(25), 2340–2361 (1977)

14. Hutton, T.J.: Evolvable self-replicating molecules in an artificial chemistry. Artif. Life 8(4),
341–356 (2002)

15. Hutton, T.J.: Evolvable self-reproducing cells in a two-dimensional artificial chemistry. Artif.
Life 13(1), 11–30 (2007)

16. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J.
Theoret. Biol. 22(3), 437–467 (1969)

17. Kauffman, S.A.: Autocatalytic sets of proteins. J. Theoret. Biol. 119(1), 1–24 (1986)
18. Kauffman, S.A.: Requirements for evolvability in complex systems. Physica D 42, 135–152

(1990)
19. Kauffman, S.A.: The Origins of Order. Oxford University Press (1993)
20. Krastev, M., Sebald, A., Stepney, S.: Emergent bonding properties in the Spiky RBN AChem.

In: ALife XV, Cancun, Mexico [1], pp. 600–607 (2016)
21. McCrimmon, K.: Jordan algebras and their applications. Bull. Am. Math. Soc. 84(4), 612–627

(1978)
22. Ogawa, A.K., Yiqin, W., McMinn, D.L., Liu, J., Schultz, P.G., Romesberg, F.E.: Efforts toward

the expansion of the genetic alphabet: information storage and replication with unnatural
hydrophobic base pairs. J. Am. Chem. Soc. 122(14), 3274–3287 (2000)

23. Ono, N., Ikegami, T.: Model of self-replicating cell capable of self-maintenance. In: Advances
in artificial life, pp. 399–406. Springer (1999)

24. Pross, A.: Causation and the origin of life: metabolism or replication first? Orig. Life Evol.
Biosph. 34(3), 307–321 (2004)

25. Suzuki, H., Ono, N., Yuta, K.: Several necessary conditions for the evolution of complex forms
of life in an artificial environment. Artif. Life 9(2), 153–174 (2003)

susan.stepney@york.ac.uk


	Preface
	References

	Contents
	Evolution and Hardware
	1 Evolvable Hardware Challenges: Past, Present and the Path to a Promising Future
	Abstract
	1 Introduction
	2 Defining Evolvable Hardware
	2.1 Evolvable Hardware Characteristics
	2.2 Possible Advantages of Evolvable Hardware

	3 Platforms for Intrinsic EH
	4 Success Stories
	5 Challenges
	5.1 From Birth to Maturity
	5.2 Scalability
	5.3 Measurements
	5.4 Realistic Environments or Models

	6 Newer Approaches
	7 The Future
	8 Summary
	References
	Bridging the Gap Between Evolvable Hardware and Industry Using Cartesian Genetic Programming
	1 Introduction
	2 Evolutionary Design of Digital Circuits
	2.1 First Generation EHW
	2.2 Scalability Issues
	2.3 Second Generation EHW

	3 Open Challenges
	3.1 Evolutionary Synthesis and Hardware Community
	3.2 Efficiency of Cartesian Genetic Programming
	3.3 Deceptive Fitness Landscape

	4 Final Remarks
	References
	Designing Digital Systems Using Cartesian Genetic Programming and VHDL
	1 Introduction
	2 Evolving Circuits
	2.1 Combinatorial
	2.2 Sequential
	2.3 HDLs in the Evolutionary Loop
	2.4 Development of GA and CGP Representations

	3 Proposed Method
	3.1 Physical Representation
	3.2 Hardware Description Language and VHDL
	3.3 CGP Representation and Evolutionary Strategies

	4 Experimental Setup
	4.1 Environment
	4.2 CGP Parameters

	5 Combinatorial Circuit Results
	5.1 4-Bit Even Parity Generator
	5.2 2-Bit Adder
	5.3 3-Bit Adder

	6 Sequential Circuits Results
	6.1 3-Bit Counter
	6.2 4-Bit Counter

	7 Conclusion
	References
	Evolution in Nanomaterio: The NASCENCE Project
	1 A Bit of History
	2 A Bit of Background
	3 NASCENCE in a Nutshell
	4 Why and How to Evolve Dead Matter?
	4.1 An Illustrative Example: Nanoparticle Networks

	5 Back to the General Method
	6 Other Examples from the NASCENCE Project
	6.1 Materials and Interfaces Used Within NASCENCE
	6.2 Computational Problems
	6.3 Electrical Behaviour of SWCNT-Composites

	7 Conclusions
	References
	Using Reed-Muller Expansions  in the Synthesis and Optimization  of Boolean Quantum Circuits
	1 Introduction
	2 Quantum Logic
	2.1 The General n-Qubit Controlled Gate 
	2.2 Generalized CNOT Gate
	2.3 Boolean Quantum Circuits (BQC)

	3 Direct Synthesis of a BQC Using a Truth Table
	3.1 Converting a Truth Table to a BQC 
	3.2 Comparison with Previous Work
	3.3 Analysis and Results

	4 Boolean Quantum Circuits as Reed-Muller Expansions
	4.1 Reed-Muller Expansions
	4.2 Boolean Quantum Logic 
	4.3 Representation of BQC as RM

	5 Practical Construction of BQC
	6 Conclusion
	References
	Cartesian Genetic Programming Applications
	Some Remarks on Code Evolution with Genetic Programming
	1 Search-Based Software Engineering
	2 History of Genetic Programming as Applied to Code Evolution
	3 Machine Learning
	4 The Use of Genetic Programming in Code Evolution Tasks
	4.1 An Overview of the Tasks Approachable by GP
	4.2 Main Aspects of Code Evolution

	5 How to Scale Up?
	6 Conclusion
	References
	Cartesian Genetic Programming for Control Engineering
	1 Introduction
	2 Feedback Control
	2.1 Outline Principles
	2.2 Control Strategies and Objectives
	2.3 Representations of Plant and Control Systems
	2.4 Control Specifications

	3 CGC and Its Implementation
	3.1 Consequences of the Design Sequence

	4 Phenotypes for a Controller
	4.1 Evolving Control Strategy
	4.2 Evolving Controller Structural Blocks

	5 Representative CGP Control Experiments
	5.1 Problem 1---Speeding up Response
	5.2 Problem 2---Eliminating a Steady State Error
	5.3 Observations

	6 Conclusions
	References
	Combining Local and Global Search:  A Multi-objective Evolutionary Algorithm  for Cartesian Genetic Programming
	1 Introduction
	2 Related Work
	3 The Periodization Model
	4 Hybrid Evolutionary Strategies
	5 Performance Assessment
	5.1 Quality Indicators
	5.2 Empirical Attainment Functions

	6 Evaluation
	6.1 Periodization of hES for DTLZ2, DTLZ6 and ZDT6
	6.2 Periodization of hES for Digital Circuit Design

	7 Conclusion 
	References
	Approximate Computing: An Old Job  for Cartesian Genetic Programming?
	1 Introduction
	2 Cartesian Genetic Programming
	2.1 Circuit Representation
	2.2 Genetic Operators
	2.3 Seeding the Initial Population
	2.4 Search Algorithm
	2.5 Fitness Evaluation and Its Acceleration
	2.6 Practical Aspects of Evolutionary Circuit Design

	3 Approximate Computing and Evolvable Hardware
	3.1 Approximate Computing
	3.2 Approximations with CGP Before the Approximate Computing Era

	4 Circuit Approximation by Means of CGP
	4.1 Resources-Oriented Method
	4.2 Error-Oriented Method
	4.3 Multi-objective CGP
	4.4 Relaxed Equivalence Checking

	5 New Directions
	5.1 Quality Configurable Circuits
	5.2 Approximate Neural Networks

	6 Final Remarks
	References
	Breaking the Stereotypical Dogma of Artificial Neural Networks with Cartesian Genetic Programming
	1 Artificial Neural Networks
	2 Neuro-Evolution
	3 CGP Evolved Artificial Neural Network (CGPANN)
	3.1 Feed-Forward CGP Evolved ANN (FCGPANN)
	3.2 Recurrent CGPANN (RCGPANN)
	3.3 Plastic CGPANN (PCGPANN)
	3.4 Plastic Recurrent Cartesian Genetic Programming Evolved Artificial Neural Network (PRCGPANN)

	4 Concluding Remarks
	References
	11 Multi-step Ahead Forecasting Using Cartesian Genetic Programming
	Abstract
	1 Introduction
	2 Proposed Algorithm Applied to Data Forecasting Problem
	2.1 Lagging Forecast Method
	2.2 Full Period Forecast Method
	2.3 Evaluation of the Forecasting Performance

	3 Experimental Results
	4 Conclusions and Further Work
	Acknowledgements
	References
	12 Medical Applications of Cartesian Genetic Programming
	Abstract
	1 Introduction
	2 CGP for Medical Applications
	2.1 CGP Geometry
	2.2 Implicit Context Representation CGP
	2.3 Fitness Function
	2.4 CGP as an Optimiser and a Feature Extractor

	3 Example Applications
	3.1 Parkinson’s Disease
	3.1.1 Diagnosis of Parkinson’s Disease
	3.1.2 Monitoring the Side Effects to Medication for Parkinson’s Disease

	3.2 Thyroid Cancer
	4 Summary
	References

	Chemistry and Development
	13 Chemical Computing Through Simulated Evolution
	Abstract
	1 Introduction
	2 Chemical Computing
	3 Experimental Setup
	4 Configuration Design
	5 Dynamic Control
	5.1 Simulated Gels
	5.2 Evolutionary Control
	5.3 Results 1: Simulation
	5.4 Results 2: Experimentation

	6 Conclusions
	References
	Sub-Symbolic Artificial Chemistries
	1 Introduction
	2 Why AChems?
	2.1 What Chemistry Can Give ALife/Complexity Science
	2.2 Quick Definition of AChems
	2.3 Historical Context
	2.4 Desirable Properties of an AChem
	2.5 Rationale for Sub-symbolic AChems

	3 Definition of an ssAChem
	3.1 The Set of Possible Particles mathbbS
	3.2 The Rules, mathbbR
	3.3 The Algorithm, mathbbA
	3.4 Summary of the ssAChem Framework

	4 SMAC: Sub-symbolic Matrix Artificial Chemistry
	4.1 SMAC's Set of Possible Particles, mathbbS
	4.2 SMAC Rules
	4.3 SMAC Algorithm
	4.4 Summary of the SMAC ssAChem
	4.5 SMAC Results
	4.6 SMAC History Versus Presentation

	5 The bRBN-World ssAChem
	5.1 bRBN-World Particles
	5.2 bRBN-World Rules
	5.3 bRBN-World Algorithm
	5.4 Summary of bRBN-World ssAChem
	5.5 bRBN-World Results

	6 ssAChem Design Guidelines
	References
	Discovering Boolean Gates in Slime Mould
	1 Introduction
	2 Data Collection
	2.1 Method
	2.2 Results

	3 Discussion
	References
	Artificial Development
	1 Introduction
	1.1 Models of Development in Evolutionary Computation
	1.2 Benefits of Artificial Developmental Systems

	2 Artificial Developmental Systems
	2.1 Macro-Model Developmental Systems
	2.2 Micro-Model Developmental Systems

	3 Constructing an Artificial Developmental Model
	3.1 Ingredients

	4 Case Studies
	4.1 Robot Controller
	4.2 Image Compression Using Artificial Development

	5 Concluding Remarks
	References
	Computers from Plants We Never Made: Speculations
	1 Introduction
	2 Morphological Computation
	2.1 Shortest Path
	2.2 Spanning Trees
	2.3 Crowd Dynamics
	2.4 Voronoi Diagram
	2.5 Planar Hulls
	2.6 Subdivision of Concave Polygons
	2.7 Logical Gates from Plant Roots

	3 Plant Electronics
	3.1 Plant Wire
	3.2 Functionalizing Plants
	3.3 Case Study. Modifying Lettuce with Nanomaterials
	3.4 Implementation of Logical Circuits Using Plant-Based Memristors

	4 Analog Computation on Electrical Properties of Plant Roots
	5 Evolution in Plants: Searching for Logical Gates
	6 Brain Made of Plants
	7 Discussion
	References




















