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Abstract

We propose a simple approach to visualising the time behaviour of Random Boolean
Networks (RBNs), and demonstrate the approach in a variety of cases: examin-
ing the dynamics as a function of network size for K = 2 connectivity networks,
examining the effect of state and structure mutations on K = 2 networks, and
examining the effect of canalising functions for K > 2 networks. We provide a
Matlab implementation of the visualisation algorithm, and of the various demon-
strations.
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Chapter 1

Introduction

Random Boolean networks (RBNs) are a well-studied form of complex discrete dy-
namical systems [1, 2, 3, 4, 9]. Visualisation of the dynamics can aid understanding,
but (unlike for 1D Cellular Automata, for example), there has been no satisfac-
tory visualisation of RBN time behaviour. In [5] we propose a simple approach to
visualising the time behaviour of RBNs; in [6] we illustrate its use for examining
network mutations and canalisation. Here we demonstrate the approach in a va-
riety of cases: examining the dynamics as a function of network size for K = 2
networks, examining in detail the effect of state and structure mutations for K = 2
networks, and examining in detail the effect of canalising functions for K > 2
networks. We also provide Matlab code (in the Appendix) for these visualisations
and mutations.
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Chapter 2

RBNs

2.1 Definitions

A Random Boolean Network (RBN) [3, 4] comprises N nodes. Each node i at time
t has a binary valued state, si,t ∈ B. Each node has K inputs assigned randomly
from K of the N nodes (an input may be from the node itself)1; the wiring pattern
is fixed throughout the lifetime of the network. This wiring defines the node’s
neighbourhood, νi ∈ NK . See figure 2.1.

The state of node i’s neighbourhood at time t is χi,t ∈ BK , a K-tuple of node
states that is the projection of the full state onto the neighbourhood νi.

Each node has its own randomly chosen local state transition rule, or update
rule, φi : BK → B. These nodes form a network of state transition machines. At
each timestep, the state of each node is updated in parallel, si,t+1 = φi(χi,t).

The global dynamics f is determined by the local rules φi and the connectivity
pattern of the nodes νi.

Given a particular global state s0 ∈ BN , its trajectory under f is a sequence
of states s0, s1, . . . , st, . . . . Eventually, because the state space is finite, a state
that was met before will be met again: there exists a k such that sk = sk+p, for
some p. Since the dynamics is deterministic, the trajectory will then recur: for all
i ≥ k.si = si+p. The system has entered an attractor, with cycle length or period
p. States not on an attractor are called transient.

The set of all states sj whose trajectories lead to the same attractor forms the
basin of attraction of that attractor. The total state space is partitioned into these
basins: every state is in precisely one basin.

1 These wiring conditions are not stated explicitly by Kauffman [3, 4]. However, in the
K = N case, Kauffman [4, p.192] states that “Since each element receives an input from all other
elements, there is only one possible wiring diagram”. This implies that multiple connections from
a single node are not allowed in a true RBN (otherwise more wiring diagrams would be possible)
whereas self connections are allowed (otherwise K would be restricted to a maximum value of
N −1). Subsequent definitions (for example [1, §2.A]) explicitly use the same conditions as given
here.
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2.2 Ordered dynamics 3

Figure 2.1 An example RBN with N = 6,K = 2. Each node has K = 2 inputs; it can
have any number of outputs. So the neighbourhood function is νA = (A,F ), νB = (C,F ),
etc. Each node combines its inputs by a random boolean function φi: that function might
ignore one or more of the inputs.

K cycle length #attractors stability reachability
1 O(

√
N) O(2N ) low high

2 O(
√
N) O(

√
N) high low

> 5 O(2N ) O(N) low high

Table 2.1 Dynamics of RBNs for different K, adapted from [4, table 5.1]. Stability and
reachability are discussed in §5.1.

2.2 Ordered dynamics

Kauffman [3, 4] investigates the properties of RBNs as a function of connectivity
K. Despite all their randomness, “such networks can exhibit powerfully ordered
dynamics” [3], particularly when K = 2 (table 2.1). Kauffman investigates RBNs
as simplified models of gene regulatory networks (GRNs). He notes that “cell types
are constrained and apparently stable recurrent patterns of gene expression”, and
interprets his RBN results as demonstrating that a “cell type corresponds to a
state cycle attractor” [4, p.467] (in a K = 2 network).

Drossel [1, §1] notes that subsequent computer simulation of much larger net-
works shows that “for larger N the apparent square-root law [of attractor numbers
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and cycle lengths] does not hold any more, but that the increase with system size
is faster”. This faster growth is dominated by the appearance of a few complex
“relevant components” (the parts of the network that are not determined by the
values of other nodes, and so determine the attractors) with exponentially long
attractors, which “dominate the mean attractor [cycle] length”. The asymptotic
behaviour is seen only for “networks with more than 100000 nodes”, significantly
larger than those visualised here (N = 100− 800).

2.3 Frozen core

Kauffman [4, p.203] observes that K = 2 RBNs “develop a connected mesh, or
frozen core, of elements, each frozen in either the 1 or 0 state.” Some nodes may
freeze in one attractor, but not in another: the frozen core itself comprises the
“nodes that are frozen on the same value on all attractors” [1, §5].

Drossel [1, §5.A] discusses the structure of the frozen core in some detail. It
arises in two ways. Firstly, “there are constant functions that fix the values of
some nodes, which in turn lead to the fixation of the values of some other nodes,
etc.” Secondly, there are “self-freezing loops”, where nodes remain in a certain state
once they have entered it, and, for large networks, the chance of never entering the
self-freezing state is low.



Chapter 3

Visualising the dynamics

3.1 Introduction

Good visualisations can aid the understanding of complex systems, and can help
generate new questions and hypotheses about their behaviours.

3.2 Attractor basins

Visualising the global structure of boolean networks (RBNs and Cellular Au-
tomata) can help in understanding some aspects of their dynamics. For small
systems, a common approach is to lay out the global state transition graph (de-
fined by f) to highlight the separate basins and their attractors (see figure 3.1).

Wolfram [8, fig 9.1] used this approach in early work on cellular automata;
Wuensche [10, 9] has developed special purpose layout software, and uses this
approach consistently, to highlight aspects of the dynamics. This state transition
graph approach emphasises global state structure, and de-emphasises the states
of the individual nodes. It also does not scale particularly well, since the full
transition graph has 2N states.

3.3 Time dynamics of CAs

Another approach is commonly used to visualise the time-dependent states of the
nodes. For 1D cellular automata (CAs), the global behaviour from a given initial
state is conventionally visualised by drawing the global state at time t as a line
of nodes (with colours corresponding to the local state), then drawing the state
at t + 1 directly below, and so on (see figure 3.2). This approach highlights the
propagation of information through the CA.

CAs have a regular topology, which is used when laying out the nodes for vi-
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Figure 3.1 Visualisation of two basins of attraction of an RBN, from [9, fig.4]

Figure 3.2 Visualisation of the time evolution of ECA rule 110, with N = 300, 100
timesteps, and two different random (50% “on”, 50% “off”) initial conditions

sualisation. RBNs have no such regular topology. If this approach is taken with
their nodes laid out at random (as done, for example, in [9, fig.3] or [2, fig.2]), the
structure of the dynamics is hard to discern: see figure 3.3.

3.4 Using the frozen core

We use the existence of a frozen core (§2.3) to provide an order for placing the
nodes in the visualisation. Nodes frozen in the 1 or 0 state are placed towards the
edges of the figure; nodes that are changing state are placed towards the centre:
see figure 3.4. The different transient behaviours and attractors are now clearly
visible; for example, it is clear that these show three different attractors, with three
different periods.

The algorithm used here is as follows (see appendix B.1 for Matlab source code).
For a given RBN, to determine the order of drawing the nodes in the visualisation,
do the following: (1) Pick a representative number of timesteps, t (for example,
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Figure 3.3 Visualisation of the time evolution of a typical K = 2 RBN, with N = 200,
and initial condition all nodes randomised (50% “on”, 50% “off”); reinitialised after 100
timesteps with all nodes “on”; reinitialised after a further 100 timesteps with all nodes
“off”.

the number that will be used in the subsequent visualisations). (2) Set the RBN
into a given initial state (here, random). (3) Run it for t timesteps, counting how
many times each node is on. Repeat steps 2 and 3 for other suitable conditions,
accumulating the counts. (4) Sort the nodes by the total number of times they
were on in these runs.

This has the effect that the frozen core nodes move to the edges of the figures,
since they are in a constant state (after transient behaviour has died out), whilst
the nodes with cycling states are in the centre. Additionally, the frozen core nodes
with shorter transient behaviour will be closer to the edges than those with longer
transient behaviours. Similarly, nodes with cycling states will be sorted according
to the amount of time they spend in one state or the other, with those half the time
in each state towards the centre. This tends to highlight the attractor structure.
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Figure 3.4 Visualisation of the time evolution of the K = 2 RBN shown in figure 3.3,
(a) with the nodes sorted to expose the frozen core; (b) zooming in on the structure of
the cycling region.

3.5 Effect of reordering

Clearly, nodes with boolean function 0 (false) and 15 (true) will be sorted to the
extremes: these nodes are off (on) all the time, and so will have minimal (maximal)
count. What of the other nodes? Figure 3.5 shows that these are biassed: boolean
functions with one on output tend to shift to the left and those with three on
outputs tend to shift to the right (into the frozen core); those with two on outputs
are clustered more to the centre (the active region).

This bias is not very strong, though, and sorting on boolean function alone is
insufficient to reveal the attractor structure (figure 3.6).
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Figure 3.5 Scatter plot of the boolean function distribution of K = 2 RBNs with
N = 200. Open circles are (random) positions before sorting; filled circles are (biassed)
positions after sorting. y-axis value is the number of inputs to the boolean function that
give an output of 1. (See appendix B.2 for Matlab source code).

Figure 3.6 Visualisation of the time evolution of a typical K = 2 RBN, with N = 200,
and initial condition all nodes randomised (50% “on”, 50% “off”); reinitialised after 100
timesteps with all nodes “on”; reinitialised after a further 100 timesteps with all nodes
“off”. (a) left: unsorted (as figure 3.3); (b) middle: sorted on boolean function value;
(c) right: sorted on frozen core activity (as figure 3.4)
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3.6 How many runs to sort

Note that the precise order depends on the various initial states chosen, and how
many different runs are sorted.

For reproducibility, the network could be run only from initial states that can be
reconstructed independent of the node ordering (for example, all zeroes, all ones,
or some non-trivial some function of the node’s boolean operation). Here, however,
for simplicity, we run from random initial states (with an average of half nodes on,
half off). Choosing reproducible states, or others proportions of nodes on and off,
makes no observable difference.

Figures 3.7 shows a K = 2, N = 200 RBN. The RBN is run 10 times, from
10 different initial conditions. The columns show the results when the nodes are
sorted on the first 1, 2, 4, and 8 runs. When sorted on only the first run, the frozen
core is not well-identified. When sorted on only two runs, the core is fairly well
identified, but the transient behaviour looks a little scrappy. Sorting on 4 runs
exposes most of the behaviour; sorting on 8 runs does not seem to expose much
more structure.

Figure 3.8 shows a different K = 2, N = 200 RBN; much the same observations
apply.

Figures 3.9–3.12 show a K = 2, N = 800 RBN with the nodes sorted on the first
1, 2, 4, and 6 runs. Again, sorting on the first 4 runs seems to expose the structure
sufficiently.

For a more quantitative analysis, the number of runs needed to expose the struc-
ture could be investigated by calculating the correlation between the ordering after
different number of runs. But for the visualisations here, in all subsequent exam-
ples, we simply sort the nodes on 4 runs. Note that sorting on more runs gives
different detail, but the gross overall structure is unchanged: transient lengths,
cycle length, etc.
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Figure 3.7 Visualisation of the time evolution of a typical K = 2 RBN, with N = 200,
t = 80. The nodes are sorted on the first 1, 2, 4, 8 runs.
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Figure 3.8 Visualisation of the time evolution of another typical K = 2 RBN, with
N = 200, t = 80. The nodes are sorted on the first 1, 2, 4, 8 runs.
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Figure 3.9 Visualisation of the time evolution of a typical K = 2 RBN, with N = 800,
t = 160. The nodes are sorted on the first run.
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Figure 3.10 Visualisation of the time evolution of a typical K = 2 RBN, with N = 800,
t = 160. The nodes are sorted on the first 2 runs.
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Figure 3.11 Visualisation of the time evolution of a typical K = 2 RBN, with N = 800,
t = 160. The nodes are sorted on the first 4 runs.
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Figure 3.12 Visualisation of the time evolution of a typical K = 2 RBN, with N = 800,
t = 160. The nodes are sorted on the first 6 runs.
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3.7 How many timesteps to sort

The precise order also depends on the length of the run (number of timesteps)
used.

Figure 3.13 shows a K = 2, N = 200 RBN, sorted on different numbers of
timesteps. Clearly, t = 20 is insufficient; the transient behaviour is hiding the
active node behaviour. There is a small difference between 50 and 100 timesteps,
but this is the same order of difference as between sorting on 4 and 8 runs (last
column).

So a good heuristic is to make the length of the run at least twice the length
of the longest transient, which is also a good choice for the minimum length to
display the structure of the dynamics. For a more quantitative analysis, the number
of timesteps needed could be investigated by calculating the correlation between
orderings using different number of timesteps.

In all subsequent examples, unless states otherwise, we sort the nodes on the
total length of each run displayed.

3.8 Examples

In the following chapters, we explore several different aspects of RBNs, using this
visualisation approach to expose the relevant features.

We use Tufte’s “small multiples” [7] technique, which “allows the viewer to
focus on changes in the data”, by displaying an array of RBNs that can be readily
compared.

The aim is to use the visualisation to prime intuition and aid understanding of
RBNs’ rich dynamics, and to provoke hypotheses about the detailed behaviours.
Any such hypotheses would need to be investigated in a rigorous manner.
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Figure 3.13 Visualisation of the time evolution of a typical K = 2 RBN, with N = 200,
t = 100. In the first three columns, the nodes are sorted on the first 4 runs, and the first
20, 50, 100 timesteps. In the last column, the nodes are sorted on all 8 runs, and the
first 100 timesteps.



Chapter 4

Network size

Here we visualise the effect of the number of nodes, N , on the time behaviour of
K = 2 networks. As Kauffman notes (table 2.1), for K = 2 RBNs, the (mean)
attractor cycle length and number of attractors both go as O(

√
N). Here we show

visualisations of K = 2 RBNs with different N , ranging from N = 100 (
√
N = 10),

to N = 800 (
√
N ≈ 28): see figures 4.1–4.9.

These visualisations demonstrate that there are indeed short period attractors.
But they also suggest further possible properties: (a) the number of cycling nodes
involved in the attractors does not vary widely within a single RBN, although
it does varies widely across RBNs with the same N ; (b) the frozen core within
an RBN is well conserved1 (take together, these imply that the nodes that are
cycling or frozen in one attractor basin are likely to be similarly cycling or frozen
in all attractor basins); (c) the frozen core is balanced: there are roughly the
same number of nodes frozen on as frozen off; (d) the size of the frozen core is
typically more than half the nodes2; (e) the transient behaviour of the frozen core
is well conserved in a given RBN: frozen nodes tend to have short or long transient
behaviours independent of the attractor; (f) the length of the transient behaviour of
the frozen core does not depend strongly on N (although the transient behaviour of
the cycling nodes does, probably because there are potentially many more cycling
nodes in large N RBNs).

More such conjectures could be generated from larger numbers of examples;
some of these may be worthy of further investigation. In particular, what these
visualisations help to show is the scale of the variation between attractors in one
RBN, and the much greater variation between RBNs. Analytic calculations and
numerical experiments tend to focus on mean behaviour, rather than on variation.

1 Strictly, the frozen core comprises the “nodes that are frozen on the same value on all
attractors” [1, §5]. However, there are some nodes that are frozen on one attractor, but not
on another. The observation here is that there tend not to be many of these latter “sometimes
frozen” nodes.

2 Drossel [1, §5.A] notes that the mean number of nodes not in the frozen core is proportional
to N2/3 for large N .
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20 Chapter 4. Network size

Figure 4.1 Visualisation of the time evolution of 14 typical K = 2 RBNs, with N = 100.
Every 60 timesteps the nodes are reinitialised to a new random configuration, to explore
other attractors. They exhibit ordered behaviour: short transients, and low period
attractors. In each case, the nodes are sorted over the first four runs: note that this has
not been sufficient to isolate the frozen core in the final example (bottom right).
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Figure 4.2 Visualisation of the time evolution of eight typical K = 2 RBNs, with
N = 200. Every 80 timesteps the nodes are reinitialised to a new random configuration,
to explore other attractors. They exhibit ordered behaviour: short transients, and low
period attractors. In each case, the nodes are sorted over the first four runs.
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Figure 4.3 Visualisation of the time evolution of four typical K = 2 RBNs, with N =
400. Every 100 timesteps the nodes are reinitialised to a new random configuration,
to explore other attractors. They exhibit ordered behaviour: short transients, and low
period attractors.
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Figure 4.4 Visualisation of the time evolution of four further typical K = 2 RBNs, with
N = 400.
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Figure 4.5 Visualisation of the time evolution of the long transient K = 2 N = 400
RBN, (figure 4.4, top left), with t = 300, to show the attractors of the first two runs.
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Figure 4.6 Visualisation of the time evolution of a typical K = 2 RBN, with N =
800. Every 160 timesteps the nodes are reinitialised to a new random configuration, to
explore other attractors. It exhibits ordered behaviour: short transients, and low period
attractors. The nodes are sorted over the first four runs.
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Figure 4.7 Visualisation of the time evolution of a further typical K = 2 RBN, with
N = 800.



27

Figure 4.8 Visualisation of the time evolution of a further typical K = 2 RBN, with
N = 800.
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Figure 4.9 Visualisation of the time evolution of a further typical K = 2 RBN, with
N = 800.



Chapter 5

Perturbing RBN state

5.1 Background

Here we visualise the stability of K = 2 networks to perturbations of their state.
Kauffman [3] defines a minimal perturbation to the state of an RBN as flipping

the state of a single node at one timestep. Flipping the state of node i at time
t is equivalent to changing its update rule at time t − 1 to be ci,t = ¬φi(χi,t−1).
Such a perturbation leaves the underlying dynamics, and hence the attractor basin
structure, the same, it merely moves the current state to a different position in the
state space, from where it continues to evolve under the original dynamics: it is a
transient perturbation to the state.

Kauffman [3] describes the stability of RBN attractors to minimal perturbations:
if the system is on an attractor and suffers a minimal perturbation, does it return
to the same attractor, or move to a different one? Is the system homeostatic?
(Homeostasis is the tendency to maintain a constant state, and to restore its state
if perturbed.)

Kauffman [4] describes the reachability of other attractors after a minimal per-
turbation: if the system moves to a different attractor, is it likely to move to any
other attractor, or just a subset of them? If the current attractor is considered
the analogue of “cell type”, how many other types can it differentiate into under
minimal perturbation?

Kauffman’s results are summarised in table 2.1, which picks out the K = 2 net-
works as having interesting behaviour under minimal perturbation (high stability
so a perturbation usually has no effect; low reachability so when a perturbation
moves the system to another attractor, it moves it to one of only a small subset of
possible attractors).

29
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5.2 Slow perturbations

Visualisations of the effect of minimal perturbations are shown in figures 5.1–5.4,
for perturbations of cycling nodes, and of frozen core nodes. (See appendix B.3 for
Matlab source code.) The perturbation rate is slower than the typical transient
timescale, allowing the system to settle to an attractor before the next perturbation
is applied.

These visualisations demonstrate that K = 2 RBNs are remarkably stable to
minimal perturbations. They also suggest further possible properties: (a) a per-
turbation to a frozen core node is more likely to preserve the attractor than a
perturbation to a cycling node; (b) a perturbation to a frozen core node tends
to have longer transient behaviour than a perturbation to a cycling node; (c) a
perturbation to a cycling node tends not to cause transients in the frozen core.

5.3 Fast perturbations

Visualisations of the effect of minimal perturbations are shown in figures 5.5
and 5.6, for perturbations of cycling nodes, and of frozen core nodes. The per-
turbation rate here is fast enough that the system has not necessarily reached an
attractor before the next perturbation is applied, but may still be in a transient
state.
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Figure 5.1 Visualisation of the time evolution of four typical K = 2 RBNs with N = 200
(two runs of each) undergoing minimal perturbation. The nodes are sorted on 4 runs
of 100 timesteps. Then a single run of 500 timesteps, and random initial condition, is
shown. After 100 timesteps, a node is flipped once every 20 timesteps. For the left run
of each pair, a node is flipped near the centre; for the right run, a node flipped in the
frozen core.
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Figure 5.2 Visualisation of the time evolution of four more typical K = 2 RBNs with
N = 200 (two runs of each) undergoing minimal perturbation (see figure 5.1 for details).
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Figure 5.3 Visualisation of the time evolution of two typical K = 2 RBNs with N = 400
(two runs of each) undergoing minimal perturbation. The nodes are sorted on 4 runs
of 100 timesteps. Then a single run of 500 timesteps, and random initial condition, is
shown. After 100 timesteps, a node is flipped once every 30 timesteps. For the left run
of each pair, a node is flipped near the centre; for the right run, a node flipped in the
frozen core.



34 Chapter 5. Perturbing RBN state

Figure 5.4 Visualisation of the time evolution of two further typical K = 2 RBNs with
N = 400 (two runs of each) undergoing minimal perturbation (see figure 5.3 for details).
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Figure 5.5 Visualisation of the time evolution of a typical K = 2 RBN with N = 200
(two runs of each) undergoing minimal (fast) perturbation. The nodes are sorted on 4
runs of 100 timesteps, Then a single run of 500 timesteps, and random initial condition,
is shown. After 100 timesteps, a node is flipped once every 10,5,2,1 timesteps. For the
top run of each pair, a node is flipped near the centre; for the bottom run, a node flipped
in the frozen core.
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Figure 5.6 Visualisation of the time evolution of a further typical K = 2 RBN with
N = 200 (two runs of each) undergoing minimal (fast) perturbation (see figure 5.5 for
details).



Chapter 6

Mutating RBN structure

6.1 Background

Here we visualise the stability of K = 2 networks to changes of their structure.
Kauffman [3] defines a structural perturbation to an RBN as being a permanent

mutation in the connectivity or in the boolean function. So a structural perturba-
tion at time t0 could change the update rule of node i at all time t > t0 to be φ′i
or change the neighbourhood of node i at all time t > t0 to be ν ′i. Since the dy-
namics is defined by all the φi and νi, such a perturbation changes the underlying
dynamics, and hence the attractor basin structure: it is a permanent perturbation
to the dynamics, yielding a new RBN.

Such a perturbation could have several consequences: a state previously on an
attractor cycle might become a transient state; a state previously on a cycle might
move to a cycle of different length, comprising different states; a state might move
from an attractor with a small basin of attraction to one with a large basin; a state
might move from a stable (homeostatic) attractor to an unstable attractor; and so
on.

Kauffman [4] relates structural perturbation to the mutation of a cell; if there is
only a small change to the dynamics, this represents mutation to a “similar” kind
of cell.

37
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6.2 Mutating the wiring

6.2.1 The mutation

A wiring mutation to a node changes one of its input source nodes, to some ran-
domly chosen node. (See appendix B.4 for Matlab source code.)

6.2.2 Slow mutations

Visualisations of the effect of mutating input connections are shown in figures 6.1–
6.4. The mutation rate is slower than the typical transient timescale, allowing the
system to settle to an attractor before the next mutation is applied.

Mutating wiring of central active nodes tends, in the majority of cases, to “sim-
plify” the attractor structure, adding more nodes to the frozen core. This seems
reasonable: an active node must have at least one input from another active node,
but, according to Drossel [1, §5.A], “the number of nodes that are nonfrozen and
that receive 2 nonfrozen inputs is proportional to N1/3”. So the majority of active
nodes have only one active input: if the mutation changes this to an input from a
frozen node the active node will become frozen.

Mutating wiring of a frozen core node also, in most cases, has minimal effect.
But it can have a dramatic effect, if a frozen node gets input from an active node
and that change then propagates further (see, for example, the lower right RBN
in figure 6.3).

6.2.3 Fast mutations

Visualisations of the effect of mutating input connections are shown in figures 6.5
and 6.6, for mutations of cycling nodes, and of frozen core nodes. The mutation
rate here is fast enough that the system has not necessarily reached an attractor
before the next mutation is applied, but may still be in a transient state.
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Figure 6.1 Visualisation of the time evolution of four typical K = 2 RBNs with N = 200
(two runs of each) undergoing wiring mutation. The nodes are sorted on 4 runs of 100
timesteps, Then a single run of 500 timesteps, and random initial condition, is shown.
After 100 timesteps, the input of a node is mutated, once every 20 timesteps. For the left
run of each pair, a node is mutated near the centre; for the right run, a node is mutated
in the frozen core.
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Figure 6.2 Visualisation of the time evolution of four more typical K = 2 RBNs with
N = 200 (two runs of each) undergoing wiring mutation (see figure 6.1 for details).
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Figure 6.3 Visualisation of the time evolution of two typical K = 2 RBNs with N = 400
(two runs of each) undergoing wiring mutation. The nodes are sorted on 4 runs of 100
timesteps, Then a single run of 500 timesteps, and random initial condition, is shown.
After 100 timesteps, the input of a node is mutated, once every 30 timesteps. For the left
run of each pair, a node is mutated near the centre; for the right run, a node is mutated
in the frozen core.
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Figure 6.4 Visualisation of the time evolution of two further typical K = 2 RBNs with
N = 400 (two runs of each) undergoing wiring mutation (see figure 6.3 for details).
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Figure 6.5 Visualisation of the time evolution of a typical K = 2 RBN with N = 200
(two runs of each) undergoing (fast) wiring mutation. The nodes are sorted on 4 runs
of 100 timesteps, Then a single run of 500 timesteps, and random initial condition, is
shown. After 100 timesteps, an input to a node is mutated once every 10,5,2,1 timesteps.
For the top run of each pair, a node is mutated near the centre; for the bottom run, a
node mutated in the frozen core.
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Figure 6.6 Visualisation of the time evolution of a further typical K = 2 RBN with
N = 200 (two runs of each) undergoing (fast) wiring mutation (see figure 6.5 for details).
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6.3 Mutating the boolean function

6.3.1 The mutation

A boolean function mutation to a node changes its boolean function to some ran-
domly chosen function. (See appendix B.5 for Matlab source code.)

6.3.2 Slow mutations

Visualisations of the effect of mutating the boolean functions are shown in fig-
ures 6.7–6.10. The mutation rate is slower than the typical transient timescale,
allowing the system to settle to an attractor before the next mutation is applied.

Changing the boolean function of an active node has a relatively small effect
on the dynamics. If it mutated to a constant function, it would have the effect of
freezing to node (and possible freezing downstream nodes). But it can also simply
change it to a different kind of active node.

Changing the boolean function of a frozen core node, on the other hand, appears
to have a larger effect. If the node was in the frozen core because it had a constant
function, for example, it could become active, and potentially activate downstream
nodes. In some cases, this activation process is “catastrophic”, resulting in large
changes to the activity, and to the dynamics of the RBN.

Visualisation of further experiments along these lines could yield interesting
conjectures about the stability of these RBNs.

6.3.3 Fast mutations

Visualisations of the effect of mutating boolean functions are shown in figures 6.11
and 6.12, for mutations of cycling nodes, and of frozen core nodes. The mutation
rate here is fast enough that the system has not necessarily reached an attractor
before the next mutation is applied, but may still be in a transient state.
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Figure 6.7 Visualisation of the time evolution of four typical K = 2 RBNs with N = 200
(two runs of each) undergoing boolean function mutation. The nodes are sorted on 4
runs of 100 timesteps, Then a single run of 500 timesteps, and random initial condition,
is shown. After 100 timesteps, the boolean function of a node is mutated, once every 20
timesteps. For the left run of each pair, a node is mutated near the centre; for the right
run, a node is mutated in the frozen core.
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Figure 6.8 Visualisation of the time evolution of four more typical K = 2 RBNs with
N = 200 (two runs of each) undergoing boolean function mutation (see figure 6.7 for
details).
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Figure 6.9 Visualisation of the time evolution of two typical K = 2 RBNs with N = 400
(two runs of each) undergoing boolean function mutation. The nodes are sorted on 4
runs of 100 timesteps, Then a single run of 500 timesteps, and random initial condition,
is shown. After 100 timesteps, the boolean function of a node is mutated, once every 30
timesteps. For the left run of each pair, a node is mutated near the centre; for the right
run, a node is mutated in the frozen core.
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Figure 6.10 Visualisation of the time evolution of two more typical K = 2 RBNs with
N = 400 (two runs of each) undergoing boolean function mutation (see figure 6.9 for
details).
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Figure 6.11 Visualisation of the time evolution of a typical K = 2 RBN with N = 200
(two runs of each) undergoing (fast) boolean function mutation. The nodes are sorted
on 4 runs of 100 timesteps, Then a single run of 500 timesteps, and random initial
condition, is shown. After 100 timesteps, the boolean function of a node is mutated once
every 10,5,2,1 timesteps. For the top run of each pair, a node is mutated near the centre;
for the bottom run, a node mutated in the frozen core.
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Figure 6.12 Visualisation of the time evolution of a further typical K = 2 RBN with
N = 200 (two runs of each) undergoing (fast) boolean function mutation (see figure 6.11
for details).
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Canalisation

7.1 Introduction

Here we visualise the effect of canalising functions on the time behaviour of K > 2
networks. K > 2 networks do not show the same ordered attractor structure as
K = 2 networks: see figure 7.1.

Kauffman [4, p.203] defines a canalising function as “any Boolean function having
the property that it has at least one input having at least one value (1 or 0) which
suffices to guarantee that the regulated element assumes a specific value (1 or 0).”
So, for example, AND is canalising, because if one input is 0, the output is 0
regardless of the other input value; XOR is not canalising, because both inputs are
always needed to determine the output. Any function that ignores all, or all but
one, of its inputs is canalising.

Drossel [1, §2.B] categorises canalising functions further, into weak (where one
input has one value that determines the output, so the other input values are
irrelevant when the canalising input has its canalising value, for example, AND,
OR), strong (where one input completely determines the output, so the other
inputs are always irrelevant), and constant.

Kauffman argues that the canalising functions are important for establishing the
frozen core and ordered dynamics of K = 2 networks. The proportion of canalising
functions decreases rapidly with increasing K (see table 7.1). Kauffman [4, p.206]
states that “networks with K > 2 restricted to canalyzing functions . . . [have]
orderly dynamics in the entire network”.
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Figure 7.1 Visualisation of the time evolution of three typical K = 3 RBNs, with
N = 100, 200, 400. After 400 timesteps, the nodes are reinitialised to a new random
configuration, to explore another attractor. No structure is visible.



54 Chapter 7. Canalisation

K boolean canalising functions
functions number proportion

2 16 14 87.50%
3 256 120 46.88%
4 65536 3514 5.36%

Table 7.1 Proportion of canalising functions

7.2 Control case: K = 2

Figures 7.2 and 7.3 show, as a control case, K = 2 networks with no bias (using
all 16 boolean functions with equal probability), and all canalised (using only the
14 canalising functions) networks1. (See appendix B.6 for Matlab source code.)

The smaller networks (N = 100) show no obvious difference between the ordinary
and canalised cases. The large networks (N = 400) appear to show a reduction
in the number of active nodes, and in the attractor cycle lengths, in the canalised
case.

1 In this chapter we are always performing just a single run of a given network, so we choose to
start each run from the all “on” state. This has the advantage of giving a clear visual indication of
the start of the run, yet the results are qualitatively equivalent to those from random initialisation,
since the on/off states are symmetrical in the definition of the RBN (that is, no special meaning
is attached to either state, so the all “on” state is not a special case).
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Figure 7.2 Visualisation of the time evolution of typical K = 2 RBNs, with N = 100,
t = 60, initial condition all nodes “on”; the three columns on the left have no bias to
canalised nodes; the three on the right are entirely canalised.
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Figure 7.3 Visualisation of the time evolution of typical K = 2 RBNs, with N = 400,
t = 80, initial condition all nodes “on”; the column on the left has no bias to canalised
nodes; the column on the right is entirely canalised.
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7.3 The cases K = 3 and K = 4

Visualisations of the effect of canalising functions on the time behaviour of K = 3
are shown in figures 7.4–7.9, and on K = 4 networks in figures 7.10–7.12.

Examples of canalised N = 100 networks are shown in figures 7.4, 7.5 (K = 3)
and 7.10) (K = 4). Clearly, increasing the proportion of canalising functions does
make transients and attractors shorter, and establish a more “orderly dynamics”,
than in the uncanalised case, although the effect is much less pronounced for K = 4.

For larger N (figures 7.6–7.9, 7.11, 7.12), even with all functions canalising,
change in the chaotic behaviour is evident in only a minority of cases, and appears
to be decreasing as N increases.

For canalised networks that take longer to reach an attractor than the typical
K = 2 convergence time, figures 7.5, 7.7 and 7.9 show that this can be due to
longer transients, longer attractors, or both. These are nevertheless still more
ordered than the uncanalised K = 3 networks in figure 7.1.

So we can see that a canalising effect exists, resulting in more ordered dynamics,
but it is not strong enough to reduce the behaviour to the K = 2 case. It seems
that the highly ordered K = 2 behaviour is due to more than just the effect of
canalisation.
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Figure 7.4 Visualisation of the time evolution of typicalK = 3 RBNs, withN = 100, t =
80, initial condition all nodes “on”; columns have an increasing amount of canalisation,
with the following number of canalised nodes: (a) 47 (b) 64 (c) 84 (d) 90 (e) 92 (f) 95
(f) 100
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Figure 7.5 Visualisation of the time evolution of typical long cycle K = 3 RBNs, with
N = 100, t = 900, initial condition all nodes “on”, all nodes canalising. Left block of
two runs, 84 nodes canalised; right block of five runs, all 100 nodes canalised.
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Figure 7.6 Visualisation of the time evolution of 32 typical K = 3 RBNs, with N = 200,
t = 80, initial condition all nodes “on”, all nodes canalising.
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Figure 7.7 Visualisation of the time evolution of typical long cycle K = 3 RBNs, with
N = 200, t = 900, initial condition all nodes “on”, all nodes canalising.
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Figure 7.8 Visualisation of the time evolution of 12 typical K = 3 RBNs, with N = 400,
t = 150, initial condition all nodes “on”, all nodes canalising.
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Figure 7.9 Visualisation of the time evolution of typical long cycle K = 3 RBNs, with
N = 400, t = 900, initial condition all nodes “on”, all nodes canalising.
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Figure 7.10 Visualisation of the time evolution of typical K = 4 RBNs, with N =
100, t = 80, initial condition all nodes “on”; columns have an increasing amount of
canalisation, with the following number of canalised nodes: (a) 5 (b) 74 (c) 85 (d) 90 (e)
92 (f) 95 (f) 100



7.3 The cases K = 3 and K = 4 65

Figure 7.11 Visualisation of the time evolution of 32 typical K = 4 RBNs, with N =
200, t = 100, initial condition all nodes “on”, all nodes canalising.
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Figure 7.12 Visualisation of the time evolution of 12 typical K = 4 RBNs, with N =
400, t = 150, initial condition all nodes “on”, all nodes canalising.



Chapter 8

Discussion and conclusions

We have introduced a very simple algorithm to allow the time behaviour of RBNs
to be visualised in a manner that exposes the transient behaviour, and the struc-
ture of the frozen core and cycling nodes. The value of this approach has been
demonstrated by showing various examples of the behaviour of RBNs as certain
parameters are varied. The multiplicity of examples demonstrates the range of
typical behaviours.

Visualisation of the dynamics helps to prime intuition, and to suggest hypotheses
to explore. Some conjectures have been posed; more such conjectures could be
generated from larger numbers of examples; some of these may be worthy of further
investigation.
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Appendix B

Matlab code

B.1 Sorting on the frozen core

s = 0; % random seed, for reproducibility

rand(’state’, s);

k = 2; % number of connections, K

n = 200; % number of nodes, N

t = 100; % number of timesteps

m = 8; % number of runs

% the k random connections to each node n

% generate n random permutations of length n;

% select the first k items of each

[ignore,K] = sort(rand(n,n));

K = K(1:k,:);

% the random boolean function at each node n

B = dec2bin(floor(rand(1,n)*2^(2^k)))’-48;

Pow = 2.^sum(triu(ones(k),1)); % conversion function

%================================================

% initial conditions: 50% random initialisation

for i = 1:m

X0(i,:) = rand(1,n); X0(i,:) = X0(i,:) < 0.5;

end

% alternative initial conditions: all on

X0(1,:) = ones(1,n);
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%================================================

% sort the nodes

gr = 4; % number of runs to sort on, <= m

Totals = zeros(n,1);

for j = 1:gr

X = X0(j,:);

for i = 1:t

V = (Pow * X(K))+1; % input value (k bits as number)

X = diag(B(V,:)); % lookup boolean function

Totals = Totals + X;

end

end

[Totals,IX] = sort(Totals); % sort the Totals, get the indices

B = B(:,IX); % permute the boolean function

K = K(:,IX); % permute the inputs, as sorted order

IXS = repmat(IX,[1 n k]); % relabel the permuted indices

KS = repmat(reshape(K’,[1 n k]),[n 1 1]);

[I,Dummy] = find(IXS==KS);

K = reshape(I,[n,k])’;

X0 = X0(:,IX); % permute initial conditions,

% so later using the same ones as for sorting

%================================================

% plot m runs of same RBN

Img = zeros(n,m*t);

for j = 1:m

X = X0(j,:);

Img(:,((j-1)*t)+1) = X;

for i = 1:t

V = (Pow * X(K))+1; % input value (k bits as number)

X = diag(B(V,:)); % lookup boolean function

% <==== perturbation code (see later) goes here ====>
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Img(:,((j-1)*t+i)+1) = X;

end

end

imshow(im2bw(mat2gray(-Img)),’Border’,’tight’);

B.2 Plotting the boolean function order

The scatter plots in figure 3.5 are plotted before (open circles) and after (filled
circles) permuting the boolean functions:

hold on;

scatter([1:n], sum(B), 3, ’k’);

B = B(:,IX); % permute the boolean function

scatter([1:n], sum(B)+0.1, 3, ’k’, ’filled’);

B.3 Perturbing the state

B.3.1 Near the centre

Introduce a state perturbation somewhere in the middle 10% of the nodes, every
20 iterations.

if (i > 99 && mod(i,20) == 0 )

nn = n/2 + ceil(rand*n/10 - n/20);

X(nn) = ~X(nn);

end

B.3.2 In the frozen core

Introduce a state perturbation somewhere in the outer thirds of the frozen core,
every 20 iterations.

if (i > 99 && mod(i,20) == 0 )

nn = mod(ceil(rand*n*2/3 - n/3) , n) + 1;

X(nn) = ~X(nn);

end
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B.4 Mutating the wiring

Introduce a wiring mutation somewhere in the middle 10% of the nodes, every
20 iterations. The mutation is made to input wire 1. The resulting mutation is
required to result in a legal RBN: the new input node k1 must still be distinct from
wire 2’s input node k2 (this assumes a K = 2 network). However, the mutation is
allowed to be “neutral”, that is, to leave k1 unchanged.

if (i > 99 && mod(i,20) == 0 )

nn = n/2 + ceil(rand*n/10 - n/20);

k2 = K(2,nn);

k1 = ceil(rand*n);

while (k1 == k2)

k1 = ceil(rand*n);

end

K(1,nn) = k1;

end

B.5 Mutating the boolean function

Introduce a boolean function mutation somewhere in the middle 10% of the nodes,
every 20 iterations. The mutation is allowed to be “neutral”, that is, to leave the
function unchanged.

if (i > 99 && mod(i,20) == 0 )

nn = n/2 + ceil(rand*n/10 - n/20);

B(:,nn) = dec2bin(floor(rand*2^(2^k)),2^k)’-48;

end

B.6 Canalisation

B.6.1 Find the canalised functions, K = 3 example

function ans = is_canalised3

% k = connectivity = 3 = number of inputs to bool fn

% return boolean array of size 2^2^3 = 256

% entries: 1 = canalised; 0 = not canalised
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B = dec2bin([0:2^(2^3)-1])’-48; % the 2^2^3 boolean functions

B10 = B([1:4],:); % 1st input 0

B11 = B([5:8],:); % 1st input 1

B20 = B([1,2,5,6],:); % 2nd input

B21 = B([3,4,7,8],:);

B30 = B([1,3,5,7],:); % 3rd input

B31 = B([2,4,6,8],:);

not(any(B10,1)) | all(B10,1) | not(any(B11,1)) | all(B11,1) ...

| not(any(B20,1)) | all(B20,1) | not(any(B21,1)) | all(B21,1) ...

| not(any(B30,1)) | all(B30,1) | not(any(B31,1)) | all(B31,1) ;

B.6.2 Initialise boolean function array, K = 3

% the random boolean function at each node n

% replace the line ...

% B = dec2bin(floor(rand(1,n)*2^(2^k)))’-48;

% by ...

% numbers of canalised functions for k=3

Canalised = find(is_canalised3)-1;

b_can = size(Canalised,2);

% numbers of non-canalised functions for k=3

NonCanalised = setdiff([0:255],Canalised);

b_non = 256 - b_can;

% of the n nodes, proportion p are canalised

p = 0.92;

n_can = ceil(p * n);

n_non = n - n_can;

% the random boolean function at each point n

Bcan = dec2bin(Canalised(ceil(rand(1,n_can)*b_can)),8)’-48;

Bnon = dec2bin(NonCanalised(ceil(rand(1,n_non)*b_non)),8)’-48;

B = [Bcan, Bnon];


