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Abstract. We are interested in fundamental limits to computation im-
posed by physical constraints. In particular, the physical laws of motion
constrain the speed at which a computer can transition between well-
defined states. Here, we discuss speed limits in the context of quantum
computing. We derive some results in the familiar representation, then
demonstrate that the same results may be derived more readily by trans-
forming the problem description into an alternative representation. This
transformed approach is more readily extended to time-dependent and
constrained systems. We demonstrate the approach applied to a spin
chain system.

1 Problem and Motivation

The Margolus-Levitin bound [11] defines the limit to the speed of dynamical
evolution of a quantum system with time-independent Hamiltonian as imposed
by the energy expectation. This and other such speed limit bounds have an in-
terpretation in terms of the maximum information processing rate of a quantum
systems [10]. This bound complements the Mandelstam-Tamm inequality [16],
a bound to the speed of dynamical evolution of a quantum system in terms of
the energy uncertainty.

However, in the application of quantum optimal control to quantum comput-
ing, a time-dependent Hamiltonian is more common [15], and a more complete
analysis of the limit to the speed of quantum computers needs to take into ac-
count the time dependence of the Hamiltonian. A notable result analogous to the
Margolus-Levitin bound, applicable to time dependent systems in the adiabatic
regime, can be found in [1].

When considering the ‘ultimate’ physical limits to computation [10], one con-
siders a time-independent system as a model for the fastest possible quantum
computer. We can consider a time-dependent control system as a sub-system of
a larger time-independent system as follows. Let system A be the computational
system, and let another system B produce the control fields; these could be con-
sidered to be subsystems of the larger system A® B. If B is chosen to include all



of the environment of A that significantly affects A, then the combined system
could be described by a time-independent Hamiltonian, subject to the ‘ultimate’
physical limits. Since the control functions must be implemented by some quan-
tum system, the limits quantum mechanics places on the dynamics of the system
producing the control fields places limits on the control fields themselves. Hence,
in addition to time dependence, the control functions may be subject to further
physical constraints.

Geometric derivations [6, 16, 9] have been used to determine bounds for time-
independent systems. Specifically, [9] provides a strong connection between the
quantum speed limit and metric structures on unitary groups. Here we extend
the kind of analysis of [9] to time-dependent and constrained systems. We analyse
the relationship between constraints on the control functions and the quantum
speed limit using tools from Riemannian and related geometries.

The structure of the paper is as follows. First we summarise two complemen-
tary geometrical formalisms of quantum mechanics, and use these to rederive
known time bounds (§2). Then we further develop the approach, to cover time-
dependent and constrained systems (§3). We then apply these results to a specific
spin chain system (§4).

2 The Geometry of Finite Dimensional Quantum
Mechanics

Throughout this paper, su(n) refers to the special unitary Lie algebra of N x N
anti-hermitian matrices; SU(N) refers to the group of N x N special unitary
matrices.

Quantum mechanical states are typically formulated in term of a complex
Hilbert space of states [4]. Quantum time evolution is then typically formulated
by considering a unitary time evolution operator U, acting on the state space.
In the case of a Hamiltonian (always taken to be a Hermitian operator) with no
explicit time dependence, H , the time evolution is given by:

U = exp (—itﬁ) (1)

This solves the Schrodinger equation for the state if one defines the state after
time ¢ to be |1hy) = Uy|tho) for some given initial state |1). There are many
different approaches to representing the time evolution operator for an explicitly
time-dependent Hamiltonian; common methods include the Dyson series and the
Magnus expansion [2].

There are, however, other, more geometrical ways to formulate quantum me-
chanics. The space of states, in the case of a finite dimensional complex Hilbert
spaces, CV, can be formulated as a complex projective space [5]. This construc-
tion possesses no redundancy in its description of the state of a quantum system.
In the Hilbert space construction, physically distinguishable states correspond to
equivalence classes of vectors in Hilbert space (each class is comprised of a com-
plex line or ‘ray’). In contrast, a single point in the projective space description



corresponds to a single physically distinct state.The price for this minimality is
the increased difficulty of working with differentiable manifolds rather than with
vector spaces.

The space of all unitary operators acting on a (finite dimensional) complex
Hilbert space of states forms a Lie group [3], the Lie algebra of which consists of
all anti-Hermitian operators. Both of these constructions introduce differential
geometry into the picture of quantum dynamics.

2.1 Metrics on CP™

We do not attempt a full account of the material discussed in this section; [8] is
a clear and rigorous source for the mathematics relating to complex projective
spaces, projective Hilbert spaces, and the Fubini-Study metric.

The projective structure corresponding to CN*1, considered as a vector space
without any inner product or norm structure, is CPY, a differentiable manifold.
In quantum mechanics the standard inner product structure on CN*! is em-
ployed to form an inner product space (CN*1, (-|-)), where the standard inner
product is given by:

N
(ufv) = 3 Tevn (2)
k=0

After quotienting CN*1/{0} into equivalence classes to form CP", a natural
choice of Riemannian metric arises for CPY: the Fubini-Study metric. The in-
finitesimal form of this metric, the metric tensor, is given by [8]:
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where |¢) is the point on CPY that corresponds to the ray in (CNT1 (-|.))
to which [¢) belongs; |61) is an element of the tangent space at this point,
TiyyCPYN. (Where no confusion arises, we use the common abuse of notation
that does not distinguish between the vector |[¢) and the corresponding point
in CPN.) This is the unique metric tensor (up to overall scaling by a positive
constant) on C'PY invariant under all unitary transformations of |¢) [8].

Invariance under unitary transformations follows directly from the definition
of a unitary operator as an operator the leaves all inner products of states in
(CNFL (.|} invariant. This is the projective counterpart to the standard in-
ner product on CN*!; that is, it is compatible with the quotient into rays of
(CNF1 (.|} rather than the quotient of just the vector space structure. This is
readily verified: under the transformation |¢)) — Z|¢), for any Z € C/{0}, the



metric is invariant:
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The finite form of this metric is given by [14]:
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and in this metric, the manifold forms a metric space. The metric clearly has
the same invariance and uniqueness properties as its infinitesimal form, eqn.(3).
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2.2 Deriving the Mandelstam-Tamm inequality

Our following rederivation of the Mandelstam-Tamm inequality illustrates the
usefulness of Riemannian geometry in the context of quantum speed limits. From
eqn.(5) we have that V[),|¢) € CV (1|¢) = 0 implies v(|1b), |¢)) = arccos(0) =
%. Hence (if all states involved are initially normalised), if [+;) connects to
orthogonal state in time 7, i.e. (1;]1g) = 0, then:

Lile)] = / N (6)
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where L is the length functional for a curve on the projective space according
to the Fubini-Study metric. Here the inequality follows from the definition of a
geodesic.
In the case that [1;) solves the Schrédinger equation for a time-independent
Hamiltonian H we have'

) = o) = & exp (<ith ) [vo) = i exp(~itH) o) = ~iH ) (7

Substitutlng this into eqn.(6), we find:
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Here AFE)|y,)dt can be replaced by AFE)y,y in the last line since the Hamiltonian
is time-independent, which implies that the energy uncertainty is also. From this
follows the Mandelstam-Tamm inequality:

T
> (9)
24E)y,)

It is worth comparing our derivation to that in [6] (their equs. 22-25; note that the
‘Wooters distance’ is simply the finite form of the Fubini-Study metric applied
to normalised states). There the finite form of the metric is differentiated; here
we use the differential form of the metric immediately.

2.3 Metrics on SU(N)

There is a natural choice of metric tensor on the Lie group of all special unitary
operators acting on CV, SU(N). This is due to a general result about symmetric
bilinear forms on semi-simple Lie groups. (U (V) is not semi-simple, and so we
specialise from here on to SU(N), which is in fact simple.) Again, we do not
give a complete description of these constructions; specifically we do not discuss
adjoint representations and the general definition of the Killing form, but instead
specialise to SU(N) immediately. A good source for this material is [7].

The Killing form (denoted by B) is the unique symmetric bilinear form (up
to a positive constant multiple) on su(N) (which consists of all traceless, anti-
hermitian operators on C) satisfying Vz,y, z € su(N):

B([z,y],2) = B(z,y, 2])

[z, 9], 2)

B(s(x),s(y)) = (x, y) for any automorphism of s of su(n).

For su(n), the Killing form is given by:

B(z,y) = 20 Te(xy) (10)

Then g(z,y) = —B(z,y) = 2nTr(z'y) is a Riemannian metric on SU(n). The
length of a smooth curve (according to the metric g) on Uy SU(n) is now given

by:
t=r | au, o
LU, = o Tr —F L gt 11
(] /t=0 " a (11)

In the case that U, solves the Schrodinger equation for some (possibly time-
dependent) Hamiltonian Hy

d - .
aUt = *ZHtUt (12)

then the length of this curve can be written in terms of H,. This follows from
the Schrodinger equation and the unitary invariance of the Killing form (due to



the cyclic property of the trace):

AR 20 Tr —* 0 dt (13)
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Notice that the dependence on the operator U, has disappeared. This reduces,
in the case of time-independent H, to:

t=1
— / VonTr 12 dt = 7Von T 2 (14)
t=0

2.4 A bound on the orthogonality time

To illustrate the relationship between point to set distances on the special unitary
group and speed limits for state transfer problems, we include our deviation of a
bound on the orthogonality time (for time-independent systems) similar to the
Margolus-Levitin bound.

Consider the shortest time that (1g|1:) = (1o|Us|tbe) = 0 can be achieved.
This is the same as the shortest time in which the time evolution operator can
be driven from I to some U, achieving this. Any such U, achieving this, for a
time-independent system, must have the following form for some unitary change
of basis matrix V, some unitary A and some 6 € [0, 2r):

Uy = exp (—itH) = VIBV (15)

where

B=| 0 0 | (16)

Y

Consider the function f, : SU(N) — R (for p > 1) defined as:

fo(A) % 1 (Jlog(4)]) (17)




where |A| =V AT A . Applying this function to both sides of eqn.(15) gives:
Te(| — itH[?) = Te(| log(VIBV)|P) (18)
This implies:
t? Te(|H|P) = Tr(| log BIP) (19)
_ P AP
=108 (ntigy ) 1)+ T o AP

STr(|log< 0 em(%‘@) py = 27

Taking the p'* root of each side yields the bound:

. 2zjr 12;( 2 ) (20)
2Tr(|H|P)” Te(|H[?)

This is similar to, but not as strong as, the bounds given in [9]. As in [9], it is
possible to optimise this bound, to:
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by reassigning a new ground state energy.

This bound coincides with the Margolus-Levitin bound for a two level system
and p = 1. This bound with p = 2 corresponds to the bound arising from the
metric induced by the Killing form.

3 Speed Limits For Time Dependent Controls With
Constraints

A mathematical method for obtaining answers to the following questions about
a time-dependent quantum system with constrained control functions is relevant
to quantum computing:

1. Given two states, what is the least time the system can transfer between them
(if the constraint permits this transformation) and which control functions
cause this to happen?

2. Given a desired time evolution operator, what is the least time the system can
transfer from the identity on the unitary group to it (if the constraint permits
this transformation) and which control functions cause this to happen?

In many physically plausible cases, the time-dependent Hamiltonian for a can-
didate system for the implementation of quantum gates can be cast in the form:

M
H(t) = Hip + Y fu()H, (22)



where flint is the time-independent portion of the Hamiltonian; M is the num-
ber of control functions; f,, are control functions, and H,, is the n** control
Hamiltonian.

3.1 Constraints as Submanifolds of su (V)

Consider a system with Hamiltonian H(t) given as in eqn.(22). One can form
a geometric interpretation of a constraint on the control functions f, by con-
sidering the relationship between a constraint given (perhaps implicitly) by an
equation of the form F(f1,..., fa) = ¢ and submanifolds of the tangent spaces
to SU(n).

In cases where F : RM — R is a sufficiently smooth function the level sets
{(fr,o- oy fm) €ERM  sit. F(fi1,..., fu) = c} foliate RM. The intuitive picture
of a level set in this context is given by imagining the set of all vectors in a vector
space with the same length according to some norm. That is: each level set is
a disjoint submanifold of RM; each level set has the same dimension (M — 1);
the union of all levels sets is R™. These level sets can be carried over to the
tangent spaces to SU(N) at each point A € SU(N), T;SU(n), by considering
the submanifold of tangent vectors compatible with the constraint given. This
set can be expressed as:

M
Ap & {ZH €T SUn) st. H=Hip+ Y fuHn, F(f1,.... fur) = c} (23)

n=0

3.2 Sphere Bundles and Speed Limits

We now consider the relationship between speed limits arising from a constraint
F on the control functions and a special type of Riemannian metric on SU(n).
For the purpose of simplifying the statement of the following theorem, define:

Definition 1. A smooth parametrised curve U(t) € SU(n) (parametrised by
t € [0,7]) is said to be Constraint Compatible for a constraint function F if
Vt € [0,7], dU/dt € Ap.

Theorem 1. Each Riemannian metric g : TSU(n) x TSU(n) — R on SU(n)
s.t. VA€ Ap, g(A, A) <1 satisfies for each smooth, constraint compatible curve
on U(t) € SU(n):

LO@®] <7 (24)

Proof.

LIU®)] = /tt_T V(A A)dt < /t: ldt=r (25)

=0



4 Application To Spin Chains
We now apply these results to a specific quantum system of relevance in quantum

computing: a spin chain. A controlled Heisenberg spin chain of N spins (with
coupling constants J,, J,, J, has Hamiltonian [12]:

N—-2
2 Jk<§:f§"®ok®ok®f§N"2> (26)

ke{z,y,z} n=0

N-1 ’ N
+ (Z I @0 @IS )

n=0

Apply the constraint that the total energy used to produce the control functions
is less than 2, to obtain:

fa(t)? < K (27)
k=0

This implies (after some algebra) the following theorem:

Theorem 2. The Riemannian metric that is the largest multiple of the Killing
form of su(2N) such that all controlled Heisenberg model Hamiltonians (with N
spins) that obey the constraint satisfy gop(Hy, Hy) < 1 is given by:

z,Y) = 28
gop( y) 2N+1 ((N—l)(JI2+Jy2+J22)+K]2) ( )
_ Tr(zTy)
(N = 1)(J.2 + J,> + J.2) + K2
Proof. Omitted: simple but laborious.
This theorem, combined with eqn.(25), yields:
t=1 " -
T 2 / gop(Htv Ht) dt (29)
t=0

1 t=1 — —
SN (N D 0 ) ) /t:o VB, i)
(30)

_ ! ey a (31)

VW—U%fhﬁ+L%+Htﬂ

for any values of the control functions. We appeal to the following facts:

1. The one parameter subgroups of unitary groups are the geodesics of the
Killing form since it is (strictly —B is the metric) a bi-invarient metric [8].



2. Stone’s theorem [13] guarantees that the one parameter subgroups take the
form exp(—itH) for some hermitian H, which is nothing other that the form
of the time evolution operator for a time independent quantum system with
Hamiltonian H.

Using these, the known length of the appropriate geodesic (which can be readily
calculated by finding the length of the one-parameter subgroup connecting the
identity to the desired transformation according to the metric given by —B),
and statements made above, we get:

t=r1 1
T Z ! - / \/—B(—Zﬁt, —Z.ﬁt) dt
V@) (N = 1)(2 + J,2 + 1.2) + 52) =0

> i (33)

N-1)(J2+ 7,2+ 7.2 +R2
Yy

Thus we conclude that a Heisenberg spin chain with N spins, constrained as
described, cannot transfer from one state to an orthogonal state in less time
than:

T zw/\/(N—l)(J12+Jy2+J22)+n2‘ (34)

The uniqueness properties of the Killing form guarantee that this is the best
(largest lower bound on t) speed limit available from any bi-invariant, unitarily
invariant metric, as any such metric is a multiple of the Killing form and g,y is
the largest multiple meeting the premises of theorem eqn.(1).

5 Conclusions and Further Work

We have demonstrated the use of geometric formalisms in deriving time bounds
on quantum systems. We have used this approach to rederive known results in
a more compact and elegant manner. More importantly, the new formulation
allows us to extend the approach to time dependent and constrained systems, as
relevant to quantum computation. We have demonstrated this for a spin chain
system.

Next steps include:

— Determining which metric-like structures on unitary group can be used to
derive quantum speed limits, including an investigation into the possible
role of Finsler functions as these generalise Riemannian metrics but can still
produce speed limits.

— Understanding more clearly the relationship between problems 1 and 2 (as
discussed in §3). Understanding this relationship in terms of homogeneous
spaces (in the sense that CPY = SU(N)/U(N — 1)) and Riemannian sym-
metric spaces. Are metric-like structures on special unitary groups the best
method for deriving speed limits for state transfer problems 1 or do metrics
on complex projective spaces suffice.



— Extending the analysis of the relationship between constrained control func-

tions and geometric derivations of quantum speed limits, to determine which
classes of metric-like structures can yield speed limit theorems for which
classes of constraints.

— Extending the approach to other Hamiltonian systems, particularly to inves-

tigate how quickly one can transfer from a separable state to a maximally
entangled state in the presence of constrained constrol functions.
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