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Abstract. We are interested in fundamental limits to computation im-
posed by physical constraints. In particular, the physical laws of motion
constrain the speed at which a computer can transition between well-
defined states. Certain time bounds are known, but these are not tight
bounds. For computation, we also need to consider bounds in the pres-
ence of control functions. Here, we use a numerical search approach to
discover specific optimal control schemes. We present results for two cou-
pled spins controlled in two scenarios: (i) a single control field influencing
each spin separately; (ii) two orthogonal control fields influencing each
spin.

1 Introduction

Computers operate under physical laws, which constrain their operation. In par-
ticular, the physical laws of motion constrain the speed at which a computer can
transition between well-defined states.

In the case of quantum systems, certain fundamental bounds on these transi-
tion times are known. The Margolus-Levitin bound [5] demonstrates the limit to
the speed of dynamical evolution of any quantum system with a time-independent
Hamiltonian as imposed by the energy expectation. This and other such speed
limit bounds have an interpretation in terms of the maximum information pro-
cessing rate of a quantum systems [4]. This bound complements the Mandelstam-
Tamm inequality [12], a bound to the speed of dynamical evolution of a quantum
system in terms of the energy uncertainty.

When considering a quantum computer, we consider a system A implement-
ing a computation and a system B producing the control fields specifying the
particular computation. Together these can be considered to be subsystems of a
larger quantum system A⊗B. This highlights that the control functions are im-
plemented by some quantum system, and the limits quantum mechanics places
on the dynamics of the system producing the control fields places limits on the
control fields themselves. Hence, as well as the computational system A, the
control functions B are also subject to physical constraints.

These constraints arise variously. The energy available for the production of
control fields limits is one obvious restriction. However there are other limita-
tions that arise from physical constraints, presented by physical laws rather than



engineering difficulties or limitations on resources, on the devices producing the
control fields. For example, allowing more energy to produce the control fields
could allow the production of fields with greater amplitudes, however, no amount
of energy could facilitate any part of the device producing control fields to move
faster than the vacuum speed of light; this can constrain the frequency of time-
varying fields. Ultimately the device producing the control fields is subject to
the laws of quantum mechanics and relativity, which limit the detail with which
a control field can be specified, and the rate at which it can change in time.

As a consequence, when attempting to understand the physical limits to the
speed of quantum computers, we must also take into account the limits placed
on computation speed by constraints on the control functions.

First we introduce an exemplar problem and certain plausible constraints
(§2). Next we describe the optimisation problem approach (§3). Then we describe
the numerical approach we use for finding optimal solutions (§4). We then apply
this approach to a two-bit chain, deriving specific results (§5).

2 The Exemplar Problem

2.1 Heisenberg spin chain

To investigate the effect of constraints on the control function, we consider an
exemplar problem relevant to quantum computation: a controlled Heisenberg
spin chain of N spins (with coupling constants Jx, Jy, Jz. This has Hamiltonian
[6]:
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where: σk is the kth standard Pauli matrix; the gn and hn represent the externally
generated, potentially time-dependant, control fields in the z and y directions
respectively. For the case of a single, z direction, control field per spin, the hn
are zero.

Two central problems in quantum optimal control are: 1) Determine whether
or not a specific system can implement a desired unitary time evolution (control-
lability); and, if so, 2) how quickly this desired transformation can be achieved
(time optimality) [11]. It is the second of these, specifically for a Heisenberg
model spin chain, that we address here.



2.2 Band-Limited Fourier Series For Representing Control
Functions with Bounded Rate of Change

In [8] we study geometric methods for determining speed limits on implement-
ing quantum information processing tasks in the presence of constraints of the
control functions of a constrained quantum system. There, no comment is made
about constraints on the time derivatives of the control functions. Such con-
straints represent the maximum rate at which a control function can change.
Here, we have chosen to represent control functions gk(t) (t ∈ [0, τ ], τ ≤ 1)
which have bounded rate of change by band-limited Fourier series:

gk(t) =
ak,0

2
+

M∑
m=1

(ak,m sin(mt) + bk,m cos(mt)) (2)

where the relationship between the Fourier coefficients {ak,m, bk,m} and the con-
trol function gk are given by the usual formula. (For simplicity in the following
discussions we ignore the orthogonal control field hk; they are either treated
analogously to the gk in the two control field case, or are zero in the one control
field case.)

We can easily find a bound on the magnitude of the derivative of each control
function gk in terms of its degree of band-limiting M and its largest Fourier
coefficient Ak = max{|ak,m|, |bk,m|}:∣∣∣∣ ddtgk(t)
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2.3 Band-Limited Fourier Series For Representing Control
Functions with Bounded Power

In this band-limited Fourier representation, the constraint that the total energy
used to produce each of the control fields individually (the power) is bounded



by κ takes a simple form due to Parseval’s theorem. The desired constraint is:∫ τ

0

g2k(t)dt ≤ κ2 (9)

which represents the constraint on the total power used in the production of the
control fields. Parseval’s theorem tell us that:∫ τ

0

g2k(t)dt =
1

τ

M∑
m=0

(
a2k,m + b2k,m

)
(10)

3 Optimisation problem

3.1 General optimisation

We wish to find control functions which maximise functionals (whose relevance
is described in [1] and elsewhere) of the form:

F [g] = <Tr(Ô†Ût) (11)

where g is the vector of control functions for a controlled quantum system, Ô is
a desired unitary transformation and Ût is the time-evolution operator obtained
from applying the control functions to the system in question.

Maximising such functionals is equivalent to minimising the euclidean dis-
tance between the operators Ô and Ût: ‖Ô− Ût‖2 = Tr((Ô− Ût)†(Ô− Ût)). This
can be see by expanding out the right hand side and discarding terms that are
constants as they have no effect on the optimisation.

3.2 Goal Operators

We need to choose specific unitary transformations as candidates for optimisa-
tion (the Ô transform in eqn (11)). Permutation matrices are clearly unitary as
they are orthogonal, and they are suitable initial candidates for goal operators.

As the n × n permutation matrices over C are a faithful representation of
the symmetric group of all permutations of n letters [7], there will be n! such
matrices. In the case of a system of N qubits, the time evolution operator is a
2N × 2N matrix, and thus we consider all permutation matrices of the same size
as potential goal operators.

There are (2N )! such matrices. For a N = 2 system, there are 24 such matri-
ces. The identity can be excluded from further consideration as it can be trivially
‘implemented’ by any quantum system: after no time, nothing happens!

4 Numerical Method

4.1 Gradient Descent

Consider the problem of optimising (minimising) a function f : RN → R (for
some N ∈ N). If one were performing gradient descent to minimise (assuming



Algorithm 1 Gradient descent pseudo-code

1: x := random vector
2: while f(x) ≤ threshold do
3: x′ := x + move size * random unit vector
4: ∆ := f(x′)− f(x)
5: if ∆ < 0 then
6: x := x′

7: end if
8: end while

the existence of at least a single minimum) such an f , starting from a randomly
chosen initial condition, then algorithm 1 would describe the method.

The ‘Grape’ (Gradient Ascent Pulse Engineering) algorithm for the discovery
of control schemes has been well studied in the context of quantum computing
and quantum optimal control in the presence of constrained control functions
[9], [10]. It facilitates applying an iterative gradient ascent (or descent depending
on the problems formulation, the two are equivalent) method to find control
functions which maximise functionals of the form of eqn.(11).

The control ‘landscape’ for such functionals has also been studied [2], and
has been found to potentially possess multiple optima. In the presence of local
optima, gradient ascent methods of optimisation can become ‘trapped’. Hence
one needs a more sophisticated search algorithm.

4.2 Simulated Annealing

Simulated annealing (SA) [3] is an alternative method to gradient descent for
optimising a (real valued, sufficiently smooth) function of several (finitely many,
real valued) variables that attempts to overcome the difficulty of local optima.

SA varies the gradient descent method by including a probabilistic accep-
tance of non-improving moves, in order to escape from local optima. In order to
achieve this, a ‘cooling schedule’ is introduced via the introduction of a global
‘temperature’ variable that decreases as the system ‘cools’. When the system is
‘hot’ there is a relatively high chance of accepting a non-improving move, but
after it has cooled significantly, this probability drops to zero. The probability
of accepting a non-improving move is given by the Boltzmann distribution.

Algorithm 2 describes the method. Here T0 is the initial temperature, and
δT controls the cooling rate. These parameters are to be chosen according to the
specific application; there is no known general principle for choosing the most
effective values and experimentation is frequently needed to find effective values
[3].

4.3 SA for constrained Fourier Series

In order to impose constraints, we augment standard SA with a rejection sam-
pling method; moves are allowed only if the proposed new state does not violate
the constraint.



Algorithm 2 Simulated Annealing pseudo-code

1: x := random vector
2: T := T0

3: while f(x) ≤ threshold ∧ 0 ≤ T do
4: x′ := x + move size * random unit vector
5: ∆ := f(x′)− f(x)
6: if ∆ < 0 ∨ rand(0, 1) ≤ exp(−∆/T ) then
7: x := x′

8: end if
9: T := T − δT

10: end while

Algorithm 3 Simulated Annealing for constrained Fourier series pseudo-code
1: repeat
2: G := random vector
3: until C(G)
4: T := T0

5: while f(x) ≤ threshold ∧ 0 ≤ T do
6: repeat
7: G′ := G + move size * random unit vector
8: until C(G′)
9: ∆ := f(G′)− f(G)

10: if ∆ < 0 ∨ rand(0, 1) ≤ exp(−∆/T ) then
11: G := G′

12: end if
13: T := T − δT
14: end while

Rejection sampling is implemented by repeating the generation of x′ in the
SA algorithm 2 (line 4) until the constraint is satisfied.

Let G be the relevant vector of Fourier coefficients {ak,m, bk,m}. Let C()
be the Boolean-valued constraint on the Fourier coefficients. Then algorithm 3
describes our rejection sampling constrained SA method.

We use constrained SA to search for the Fourier coefficients for each of the
control functions. We impose the following fidelity constraint:

φ =

∫ τ

0

g2k(t)dt =
1

τ

M∑
n=0

(
an

2 + bn
2
)
≤ κ2 (12)

and we arbitrarily choose κ = 1 for convenience.

4.4 The Fitness Function

We analyse the effectiveness of constrained SA in the discovery of time optimal
control functions that result in a spin-chain systems implementing a permuta-
tion of set of (orthonormal) basis vectors. This can be achieved by considering



functionals of the form:

F [g, τ ] = <Tr(P̂ †Ûτ )− τ2 (13)

where P is a permutation matrix (see § 3.2). Here we are maximising F ; the τ2

term is included to ‘punish’ slow implementations and reward faster ones.
In order to find time optimal solutions, we vary the Fourier coefficients of

the control functions as described in algorithm 3; we also vary τ (the time the
spin chain’s dynamics is evolved for in order to calculate the fitness function) by
a random amount between −0.001 and 0.001 with each iteration of SA. This is
performed at the same step of the algorithm as varying the Fourier coefficients
(algorithm 3, line 7). A similar method of rejection sampling is used to prevent
τ becoming negative.

The simulation was performed using a standard geometric integrator build
into the Matlab symbolic math package.

In the SA process, the termination criterion was chosen so that the algorithm
would terminate only if a fitness of F ≥ 0.7 was achieved (eqn.(13)), and a fidelity
of φ ≥ 0.92 was achieved (eqn.(12)), or 500 iterations had been performed.

5 Results

We present the results for six specific permutations (§3.2) in table 1. These
demonstrate all the behaviours exhibited by the SA algorithm during our exper-
iments.

Throughout our investigation we choose the Fourier band limit (eqn.(2)) to
be M = 5.

5.1 Two qubits, each with two orthogonal control fields

In the two control field case (hn 6= 0), we found the algorithm to exhibit a variety
of behaviours with the parameters chosen. We saw three types of run:

1. The matrices which achieved a fidelity of greater than 0.92 converged quickly
(in about 200 iterations). The reduction of the gate implementation time as
the SA proceeded did not seem to limit the progress towards a high fidelity
control scheme. This suggests that the algorithm did not find solutions ap-
proaching the time optimal ones, as no trade off between fidelity and time
optimality was observed. An example graph of the progress of fidelity during
such a run of SA can be seen in fig.1, and for the progress of implementation
time in fig.2.

2. Some of the matrices which did not achieve a fidelity of greater than 0.92
seemed to stagnate in their progress to increasing fidelity as the implemen-
tation time reached a critical low point. These ‘stagnation points’ occur at
a fidelity of around 0.5 − 0.6; after this little progress was made before the
algorithm timed out. This suggests that a point was reached where time op-
timality and fidelity were in direct conflict. An example graph of the progress



P 1 control field (g) 2 control fields (g, h)
max fidelity φ min time τ max fidelity φ min time τ

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
0.057 0.499 0.540 0.456

(
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
0.563 0.564 0.553 0.486

(
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
– – 0.92 0.679

(
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

)
– – 0.587 0.592

(
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

)
– – 0.92 0.693

(
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

)
0.078 0.854 0.92 0.693

Table 1. 2-qubit results with one and two control fields per qubit

of fidelity during such a run of SA can be seen in fig.3; and for the progress
of implementation time in fig.4.

3. Other matrices which did not achieve a fidelity of greater than 0.92 seemed
to be progressing but simply too slowly to achieve a suitable result before
the 500 iteration timeout. Further work will include extending the timeout,
with better “stagnation” detection.

This collection of behaviours suggest that a modification to the fitness func-
tion is needed. High fidelity is essential for the implementation of quantum gates,
and should be given a higher precedence over time optimality. A fitness function
that rewards both speed and high fidelity, but without allowing time optimality
to compromise fidelity, is needed. The search for such a fitness function will also
be the basis for further work.

Some of the optima found in the two control fields per qubit cases are close
to the global ones (in terms of the fidelity alone, not time optimality); in future
work the control schemes found with the SA method will be compared explicitly
to theoretical optima for time optimality. The cases this applies to are those
with two control fields per qubit which reached a fidelity of 0.92 or greater.

The results attempt to provide a minimum implementation time, given the
energy constraint or at least to demonstrate that the SA method is capable or
providing such information about a system. This will allow us to investigate the
tightness of speed limit bounds for specific quantum operations.



Fig. 1. Progress of fidelity φ in a two field case where convergence occurred

Fig. 2. Progress of implementation time τ in a two field case where fidelity convergence
towards 1 occurred

Fig. 3. Progress of fidelity φ in a two field case where stagnation occurred



Fig. 4. Progress of implementation time τ in a two field case where stagnation occurred

5.2 Two qubits, each with a single control field

In the case of two qubits each with a single control field, the results were found
to be less promising, and no fast, high fidelity schemes were found. What was
observed was either the SA converged to a solution with fidelity far from one,
or it failed to converge, with fidelity and implementation times remaining close
to their initial values until timeout (cases where this happened are marked −
in the results table 1). This may be because this system in question is simply
not ‘controllable’, and cannot implement the gate required, with the single field
constrained control functions of the form used. However, it is difficult to tell this
situation apart from a failure of the algorithm due to bad choice of parameters.

In the cases where convergence occurred, there was a similar pattern of search
behaviours as in the two control field case. Either a point where time optimal-
ity was hindering progress towards a higher fidelity solution was reached and
progress stagnated, or fidelity began to converge (frequently at about 0.5) as the
implementation continued to decrease the time, unhampered by the convergence
of fidelity. In the later cases the algorithm timed out, and it is apparent that a
higher timeout value is needed to probe this scenario further.

6 Conclusions and Further Work

We have introduced a form of SA, constrained SA, suitable for searching for
optimal solutions under constraints. We have found that this constrained SA
shows potential as an effective method for discovering optimal control schemes
for Heisenberg spin chains subject to constrained control functions. We have
also found that it opens many directions for future work. The approach is readily
extensible to other quantum computational systems, and to other constraints and
could be a good tool for studying constrained, quantum time optimal control.

The numerical results additionally provide information on the implementabil-
ity of specified gates using particular control schemes.

Next steps include:

1. a direct comparison of constrained SA to GRAPE



2. a comparison of the numerically discovered implementation time of optimal
control schemes to theoretical speed limit bounds

3. an investigation of the role of the Fourier band limit M on the time opti-
mality of control schemes discovered by constrained SA

4. an investigation of other relevant physical constraints
5. design of a better fitness function for SA so that fidelity is never compro-

mised.
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