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Abstract
This chapter provides a broad overview of the field of unconventional
computation, UComp. It includes discussion of novel hardware and embodied
systems; software, particularly bio-inspired algorithms; and emergence and
open-endedness.

1.1 Introduction

Before we start examining unconventional computing, it is useful to contrast it with
conventional computing, also called classical computing, or Turing computing.

Convention is what is generally done, here: designing an algorithm that instructs
the computer in precisely what it should do, one step at a time acting on digital data,
to produce a well-defined output; coding that algorithm in a programming language
like C or Python; running that program on typical commercial computer hardware
such as a PC, tablet, smartphone, or even a supercomputer accessed through the
cloud; and viewing the output as text or images.

Unconventional computing (UComp, also called non-standard computing)
challenges one or more of these conventions. There are many aspects to challenge,
and so there are many forms of UComp. The mathematician Stanislaw Ulam said:

using a term like nonlinear science is… like referring to the bulk of zoology as the study of
non-elephant animals.

Campbell et al. (1985)
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The situation is analogous for UComp: one can argue that it is a much broader
domain than conventional computation, although admittedly less deeply explored.
In this chapter, we focus on three main areas of UComp:

• hardware and embodiment—computing is a physical process and can exploit
the physical properties of material, from quantum systems to slime moulds, and
more

• software, particularly bio-inspiration—biological systems can be modelled
computationally and can be considered to be performing computation, but in
ways different from our ‘crisp’, digital approaches

• emergence and open-endedness—the result of the computation is an emergent
property of all the components in the system, not a single well-defined output,
and the system has the possibility to generate novelty

For further reading on UComp, covering a wider range of aspects, see, for
example, (Adamatzky 2017a, b; Cockshott et al. 2012; Copeland 2004; Stepney
2008, 2012a, b; Stepney et al. 2008). Given the unconventionality of some of the
systems proposed and used, it is not necessarily clear whether those systems are
indeed performing computation, or merely ‘doing their own thing’
non-computationally. Horsman et al. (2014a, b) address this issue.

1.2 Embodied in Unconventional Hardware

1.2.1 Quantum Computing

That computing is a physical process is demonstrated par excellence by the exis-
tence of quantum computing. Classical computing appears to be a highly abstract,
mathematical process, that is independent of the laws of physics. However, quan-
tum computing (Nielsen and Chuang 2000) has demonstrated that classical com-
puting incorporates underlying assumptions about the physical properties of the
computing system; quantum physics supports different computational models, with
abilities that (almost certainly) exceed those of classical computers.

Turing hoped that his abstracted-paper-tape model was so simple, so transparent and well
defined, that it would not depend on any assumptions about physics that could conceivably
be falsified, and therefore that it could become the basis of an abstract theory of compu-
tation that was independent of the underlying physics. ‘He thought,’ as Feynman once put
it, ‘that he understood paper.’ But he was mistaken. Real, quantum-mechanical paper is
wildly different from the abstract stuff that the Turing machine uses. The Turing machine is
entirely classical, and does not allow for the possibility the paper might have different
symbols written on it in different universes, and that those might interfere with one another.
… That is why the resulting model of computation was incomplete.

Deutsch (1997)
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Classical desktop PCs are, of course, quantum devices; semiconductor transis-
tors rely on quantum properties. However, these quantum physical properties are
used to implement purely classical logic devices: Boolean switches. The compu-
tational model is classical.

The quantum circuit computational model is different, in that it relies on and
exploits the specifically quantum properties of superposition and entanglement.
Classical bits, that are either 0 or 1, are replaced by qubits (quantum bits) that can
exist in a superposition of 0 and 1. Quantum algorithms using qubits can be run
directly on a suitable quantum computer. Classical logic gates, such as AND,
NAND, and NOR, which perform basic computations on bits, are replaced by
quantum gates, such as ‘controlled not’ and ‘Hadamard’, which perform basic
computation on qubits, and are furthermore reversible, in that they do not lose
information and so can be run backwards. Quantum circuit models can also be
simulated, often with considerable overhead (Feynman 1982), on a classical
computer.

An alternative quantum computing approach is that of quantum annealing, as
exploited by the commercial D-Wave quantum computer (Johnson et al. 2011;
Lanting et al. 2014). The quantum annealing algorithm is discussed in Sect. 1.3.1.

1.2.2 Embedded Computing

Conventional computers are stand-alone devices, that are programmed, fed with
data, and which output their symbolic results to the external user. The computer is a
classical disembodied ‘brain in a vat’.

Some computers are embedded in physical systems, usually to monitor or
control them. Examples abound, from washing machines, cars, and robots to smart
buildings and spaceships. Here, the input is directly from sensors (for light and
sound, temperature, speed, heading, etc.), and the output is directly to actuators
(sound production, heaters, motors, etc.). The underlying computation may nev-
ertheless be relatively conventional: classical algorithms process input and produce
output. The computer brain is separated from, although embedded in, the body.

Embedded systems do have one fundamental distinction from the purely clas-
sical model, however: they typically include feedback loops, where their actuators
change the system or environment, and this change is fed back into the system
through the sensors ready for the next round of computation. (Hence, such systems
are necessarily real-time systems, as they must respond on a timescale dictated by
environmental changes.) This ‘guided’ feedback structure is contrasted with the
‘ballistic’ model of non-interactive classical programs.

In both these cases, the model of classical computation is realised by some
physical device, yet the immediate properties of that device are essentially unrelated
to the computational model. The model is an abstract virtual layer of digital logic,
with a large semantic gap to the underlying physical implementation: that is, there
is a large difference between the form of description of the computational model
and the form of description of its physical implementation.
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This semantic gap between the computational model and its physical imple-
mentation is evidenced by the many physical substrates that can be engineered to
support classical computation. All that is needed is for the material to be engineered
to implement a digital switch, irrespective of the material it is made from. Hence,
the classical model can be executed with silicon transistors; with radio valves, as in
early presilicon computers; and even with brass wheels and cogs, as in the Babbage
engine (Swade 1995).

1.2.3 Analogue Computing

Embodiment reduces the semantic gap between the computational model and the
physical implementation. The physical properties of the computational device
contribute directly to the computation being performed. Analogue computers are
often an example of this embodiment. These devices function ‘by analogy’ to the
way the problem functions.

For example, a particular electrical circuit can be built that behaves in a way
analogous to a swinging pendulum: the oscillations of the electric voltage are
analogous to the oscillations of the pendulum bob and so can be used to predict the
pendulum’s behaviour.

Another example is Monetary National Income Analogue Computer (MONIAC),
built as a model of the UK’s economy, where the flow of water is an analogue of the
flow of money.

The MONIAC was capable of making complex calculations that could not be performed by
any other computer at the time. The linkages were based on Keynesian and classical
economic principles, with various tanks representing households, business, government,
exporting and importing sectors of the economy.

Water pumped around the system could be measured as income, spending and GDP. The
system was programmable, and experiments with fiscal policy, monetary policy and
exchange rates could be carried out.

(Reserve Bank Museum)

Analogue computers can be a special purpose (such as an orrery, computing
planetary positions for one specific solar system), or they can be a general purpose
(Rubel 1993; Shannon 1941). Programming can be a combination of designing the
necessary circuit in terms of differential equations and then implementing that
circuit in hardware, via a patch panel connecting basic electrical and electronic
components in the general-purpose devices built in the 1950s and 1950s, or via a
digital interface in the case of the more recent electronic field-programmable ana-
logue arrays.

Analogue computation is embodied, because it depends on the actual physical
properties of the circuit. Because most analogue computers use continuous vari-
ables, such as voltage or position, the word ‘analogue’ has also come to mean
continuous, as opposed to the discrete, digital representations used in conventional
computers.
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1.2.4 Unconventional Substrates: In Materio Computing

Analogue computing uses a specific substrate where that substrate has known
analogous behaviour to a specific problem in question. Unconventional substrates
can also be used to perform computation intrinsic to their own behaviours: this is
often called in materio computing. A multitude of complex substrates have been
examined for computational properties: here, we survey a few of the more devel-
oped approaches.

One such approach is chemical substrates, designed to be reaction–diffusion
systems. Chemicals diffuse through a medium, and chemicals react. The combi-
nation of these two processes can result in spatial patterns, including waves of
activity (Turing 1952). Systems can be designed to solve specific problems, such as
computing Voronoi diagrams (Adamatzky 1994) and navigating mazes (Steinbock
et al. 1995). The waves and their interactions can be used to implement a wide
variety of computations (Adamatzky et al. 2005).

Other complex materials, such as liquid crystals (Adamatzky et al. 2011;
Harding and Miller 2004), carbon nanotubes (Dale et al. 2016; Mohid et al. 2015),
and even conductive foam (Mills et al. 2006), have also been investigated as
potential substrates for unconventional computing. The underlying rationale is that
sufficiently complex materials can exhibit complex dynamics when provided with
various inputs. Under certain circumstances, these dynamics can be interpreted and
observed as computations performed on the inputs (Horsman et al. 2014b).

Biological materials are of special interest as unconventional computing sub-
strates: they are complex1 and highly evolved, and biological systems appear to
perform intrinsic computation to some degree (Horsman et al. 2017).

Cells contain DNA, which contains genes. These genes code for proteins. Some
proteins are transcription factors, binding to DNA and affecting how other genes
are expressed, by inhibiting or promoting their expression. This complex interaction
between genes and their proteins forms a regulatory network. Synthetic biology
makes changes to DNA (modifying genes and their expression) in order to program
small logic circuits into the gene regulatory system, usually in bacterial cells (Pease
2013). For example, a gene might be added that is ‘switched on’ (its expression is
promoted) when two specific transcription factors are present. In this way, the
engineered gene can be thought of as implementing a computational AND gate: it
outputs a protein only when both input proteins are present. By linking several such
gates together, a small logic circuit can be constructed. Hence, cell genomes can be
engineered to compute functions of their inputs and to perform specific actions
(expressing an output protein) depending on the result of that computation.

DNA is an interesting unconventional computing substrate, not just for its
information storage and expression properties in living cells, but also for its con-
struction abilities outside the cell. Short strands of DNA are relatively rigid and can

1The biological sketches given here are extremely simplified descriptions of highly complex
processes.
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be designed with ‘sticky ends’ that selectively glue to complementary ends on other
strands. These can be used to implement self-assembling DNA ‘tiles’ (Winfree
2004) and compute a range of functions, by building microscopic patterned
structures. Similar self-assembling computations can be programmed into macro-
scopic tiles made of other materials, where the tile assembly is mediated through
mechanical or magnetic hooks.

At a larger biological scale, slime moulds can be used to perform certain
computations (Adamatzky 2010). Their growth and movement behaviours are
exploited for the specific computational purpose, including music production
(Braund and Miranda 2015; Miranda and Braund 2017).

1.2.5 Embodied Environmental Interaction

Bringing together the concepts of embedded computing (computation controlling
an active system, Sect. 1.2.2) and in materio computing (computation exploiting
the material substrate properties, Sect. 1.2.4), we can get fully embodied comput-
ing: the material substrate of the system is being used computationally to help
control the system itself.

An embodied computer is closely coupled with its environment in some way.
The relevant environment might be any of: (i) the computational substrate, (ii) the
system’s ‘body’, and (iii) the local external world. The aim often is to use the
complexity of the coupling and environment to provide some of the computational
power for the computing device.

When embodied in an unconventional computational substrate, the aim is for
computation to be handed over to the specific physics of the device: the substrate’s
behaviour naturally performs (some of) the desired computation, as explored in
Sect. 1.2.4.

When embodied in a system ‘body’, such as a robot body, the aim is for some of
the computation to be handled by the physical or mechanical properties of the body,
rather than all aspects of the body’s behaviour being brute force computed as in
classical embedded systems (Sect. 1.2.2). For example, in ‘passive dynamic
walker’ robots, the entire process of locomotion is offloaded to the mechanical
design (Collins et al. 2005).

When embodied in the local external world (Stepney 2007), the aim is for some
of the computation to be handled by the properties of the world. An example from
nature is stigmergy, where a mark left in the environment by an agent is later used
to stimulate some other action, by that agent or another one. Ants laying pheromone
trails that slowly evaporate are using stigmergy to communicate best paths to food
to their nestmates. People writing shopping lists are using stigmergy to offload their
memory burden. Other forms of embodiment offload a model building burden:
robots build up a model of their environment to help navigation; some robot
architectures ‘use the world as its own model’ (Brooks 1991).
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1.2.6 Massively Parallel Substrates

One feature many of these unconventional substrates have is massive parallelism.
Classical Turing computation is sequential: computational steps are taken one after
the other. In parallel substrates, different portions of the material can be performing
computations simultaneously, in parallel with other portions. Multicore PCs have a
few tens of processors acting together; massively parallel devices have thousands,
millions, or more parts acting in parallel. For example, slime moulds and reaction–
diffusion systems are massively parallel.

Cellular automata, familiar through the example of Conway’s Game of Life
(Gardner 1970), are a well-known massively parallel computational model. A large
grid of very simple computing devices operate in parallel; each simple grid element
communicates with its nearest neighbours to decide how to behave. All grid ele-
ments have the same program, but behave differently due to the differing states of
their neighbourhoods. The time behaviour of 2D CAs, like the Game of Life, is
typically presented as animations. The time behaviour of 1D CAs can be visualised
statically (see Fig. 1.1). Suitably designed CAs can perform any classical compu-
tation (Rendell 2002) and can generate complex and beautiful patterns (Adamatzky
and Martinez 2016; Owens and Stepney 2010). CAs are usually implemented using
classical computers, where their massive parallelism is only simulated.

CAs live in a discrete space. Field computing assumes a continuous space and
computes with combinations of mathematical fields to produce dynamic patterns
(Beal and Viroli 2015).

1.2.7 Programming Unconventional Materials

Classical computing has a programming model: a process for designing instructions
for the computer so that it will perform the desired computation. These instructions
are given in a high-level language that provides useful abstractions far removed
from the low-level bits and logic gates provided by the underlying physical
implementation. For the most part, unconventional substrates have no such model,
or even if there is a model [such as differential equations, CAs, field computing, or
reservoir computing (see later)], there are few or no equivalents of high-level
languages.

An alternative to systematic construction (programming) is search. Rather than
constructing a particular program, one hunts through possible programs until one
finds an acceptable solution. Bio-inspired search is often used, as discussed in the
following section.
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1.3 Computation Inspired by Nature

This section deals with unconventional algorithms. Although often implemented on
a classical computer in a standard programming language, these algorithms are
inspired by the way natural processes work, which are often fuzzy, inexact, and
suboptimal, in contrast to ‘crisp’, exact classical algorithms.

1.3.1 Inspired by Physics

The simulated annealing search algorithm (Kirkpatrick et al. 1983) is inspired by
the physical processes that occur when a metal is slowly cooled so that it reaches it

Fig. 1.1 Visualisation of the time evolution of a one-dimensional CA, with the grid cells arranged
in a line. The CA’s behaviour is shown over multiple timesteps. Each horizontal line shows the state
of the line of grid cells; subsequent lines down the page correspond to subsequent timesteps. Top the
CA ‘rule 30’ runs from an initial state that has one black cell and all the others white. Bottom the CA
‘rule 110’ runs from an initial state where each cell is randomly either black or white
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ground state of minimum energy. In the algorithm, the minimum energy state
corresponds to the desired solution, and a temperature analogue is used to control
movement around the search space.

Quantum circuit algorithms (Sect. 1.2.1) are the most obvious form of compu-
tation inspired by nature, the physical laws of quantum mechanics. Quantum circuit
algorithms include Shor’s factorisation algorithm (Shor 1997) and Grover’s search
algorithm (Grover 1996).

Quantum annealing (Kadowaki and Nishimori 1998; Santoro and Tosatti 2006)
works in a different way from quantum circuit algorithms. A quantum state is
gradually (‘adiabatically’) changed, and quantum tunnelling allows the system to
find the ground state. It is a quantum analogue of simulated annealing, exploiting
quantum tunnelling through barriers in the landscape, rather than thermal energy to
jump over barriers. In simulated annealing, temperature and energetic analogues are
simulated in a digital computer; in quantum annealing, physical energetics and
quantum tunnelling are exploited in a quantum computer.

These examples are inspired by branches of physics. Most nature-inspired
algorithms are, however, inspired by a wide range of biological processes.

1.3.2 Population-Based Computation

Population-based computation draws its inspiration from a wide range of biological
systems. In population-based computation, there is usually a population of
‘organisms’ or ‘cells’ working in competition or collaboration to search for a
sufficiently good solution. The populations and their search process include evo-
lutionary algorithms, based on a population of creatures competing for survival
(Mitchell 1996), immune algorithms, based on a population of antibodies com-
peting to recognise an intruder (de Castro and Timmis 2002), particle swarm
optimisation, based on flocks of birds cooperating in the search for food (Kennedy
and Eberhart 1995), and ant colony optimisation, based on a nest of ants cooper-
ating to find a short path (Dorigo et al. 1996). Cooperative swarm intelligence
algorithms, based on flocks and social insect swarms, are also used in other
cooperative behaviour applications, such as a swarm of small robots cooperating to
perform a particular task.

The population-based search algorithms differ in how much inspiration they take
from nature. Underlying them all is a similar form of process (Newborough and
Stepney 2005): each member of the population is at a position in a ‘fitness land-
scape’; fitter members of the population have more progeny; and progeny resemble
their parents (hence fitter solutions survive) with some variation (hence the fitness
landscape is explored). Differences between members of this class of algorithms are
mainly in the variation stage, differing in exactly how the next generation is created
from the current one and hence in exactly how the fitness landscape is explored.

The key to using these algorithms successfully is to balance exploration (moving
around the landscape) with exploitation (sticking with, and improving on, discov-
ered solutions). Too much exploration and the search do not converge (the search is
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essentially random); too much exploitation and it converge on a local, but not
global, optimum (the search gets stuck on a local peak and never finds Everest).

The inspiring biological systems evolve in parallel: each member of the popu-
lation lives, reproduces, and dies alongside the others. The resulting algorithms are
usually sequentialised.

Evolutionary search can be exploited to program unconventional substrates. The
main form of this is evolution in materio (Broersma et al. 2017; Miller and
Downing 2002; Miller et al. 2014). Configuration voltages are evolved such that,
when applied to the specific material, it performs the desired computation.

Key to evolutionary search and its brethren is the fitness function (alternatively
called the cost function, or the affinity, depending on the specific algorithm type).

In well-defined optimisation problems, the fitness function is relatively easy to
define. It is known what is a ‘good’ solution and how to quantify it so that solutions
can be ranked one better than another. However, for problems where the evaluation
of solutions requires human judgement, making an algorithmic ranking difficult or
impossible to define, such as judging visual art or music, it may be necessary to
include a ‘human in the loop’ to act as the (subjective) fitness function. In such
cases, small populations (tens rather than hundreds) and few generations (hundreds
rather than thousands) tend to be used, because of user fatigue. This can be done to
provide a single good result, or used in an interactive manner, such as to generate
music where the user’s subjective fitness evaluation may change as the composition
develops (Hickinbotham and Stepney 2016).

Alternatively, in these more creative situations, a fitness-function-free novelty
search (Lehman and Stanley 2011) can be used. This prioritises exploration over
exploitation, by requiring new solutions simply to be different from current ones.
This supports an open-ended (Banzhaf et al. 2016) exploration of the possibility
space, rather than trying to home in on a specific ill-defined optimal solution.

1.3.3 Network-Based Computation

Network-based computation draws on a rich suite of biological processes. A net-
work comprises a collection of nodes joined by edges. A biological network might
be physical (a neural network, where the nodes are the soma or cell body, and the
edges are the axons and dendrites that connect neurons together). However, the
network is more often abstract: the nodes are typically physical objects, but the
edges are abstractions of different kinds of interaction. Examples include genetic
regulation networks (the regulatory interaction between genes via their expressed
proteins), metabolic networks (the interactions between metabolic molecules,
mediated by enzymes), signalling networks (interaction pathways as signal mole-
cules propagate from the outside to the interior of a cell, mediated by proteins), food
webs (who eats whom), and social networks (who are friends with whom). Most
work has focussed on neural-inspired models (Callan 1999). Although these net-
works are diverse, some with physical, some with virtual connections, they have
common underlying properties (Lones et al. 2013).
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Many network-based algorithms are learning algorithms. The network is pre-
sented with ‘training’ data. The algorithm adjusts network parameters (often
weights in the nodes and edges) in response to the data so that, when it see the same
or similar data in the future, it outputs some relevant response. So it is trained to
‘recognise’ patterns in data.

As an alternative to using a learning algorithms to train a network, it is possible
to use evolutionary search to find good weights. One well-established approach to
evolving networks is NeuroEvolution of Augmenting Topologies, or NEAT
(Stanley and Miikkulainen 2002), which evolves both the weights and the network
topology. Compositional pattern-producing networks (CPPNs) can be used to
produce spatial patterns (Stanley 2007). These two techniques, NEAT and CPPNs,
have been combined in the HyperNEAT approach (Stanley et al. 2009), allowing
the evolution of pattern-producing networks.

A recent development with using neural networks to produce haunting images is
Google’s Deep Dream (Mordvintsev et al. 2015). There are two steps. First, a
neural network is trained to recognise and classify images. It is then given a new
image and asked to recognise features in it from its training (that cloud looks a little
like a face); these features are enhanced slightly (to make the cloud look a little
more like a face); and the enhanced image fed back into the network (the face is
even more recognisable and so gets further enhanced). This iterative feedback
process can lead to weird and wonderful images.

The choice of training images affects the resultant pictures. The original work
seems to have used training images of dogs and eyes, leading to eerie surreal
pictures with dogs and eyes everywhere. It may be the first example of artificial
pareidolia (Roth 2015), that until now purely human tendency to see faces where
there are no actual faces.

The Deep Dream approach trains on many images. Using a related approach that
trains on only a single images allows the production of one picture in the style of
another (Gatys et al. 2015), resulting in less surreal, more ‘artistic’ images; see
Fig. 1.2.

1.3.4 Generative Computation

The processes of iteration and feedback, components of the Deep Dream image
production (Sect. 1.3.3), are also key components of generative computing. The
result is generated, or constructed, or developed, or ‘grown’, through a repeated
series of steps. Each step uses the same growth rules, but in a context changed by
the previous growth step. This changed context, fed back into the computation,
potentially produces new details at each step.

Artificial Chemistries (Banzhaf and Yamamoto 2015; Dittrich et al. 2001) are
algorithms inspired by the way natural chemistry assembles atoms into large
complex molecules through reactions. Computational analogues of atoms, mole-
cules, and reaction rules are defined; these analogues can have similar properties to
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Fig. 1.2 One picture in the style of another (images generated at deepart.io). The four original
pictures (shown down the main diagonal) are a portion of: da Vinci’s Mona Lisa, van Gogh’s The
Starry Night, Hokusai’s The Great Wave, woodland scene photograph by the author. Each row
shows one original in the style of all the other pictures; each column shows all the pictures in the
style of one original

natural atoms, or might be related by only a tenuous analogy. These components are
combined using the reaction rules to generated complex structures.

Lindenmeyer’s L-Systems (Prusinkiewicz and Lindenmayer 1990) were origi-
nally invented to model plant growth. They are one of a class of rewriting rules, or
generative grammars, where parts of a structure are successively rewritten (‘grown’)
according to a set of grammar rules. If the structures being rewritten are graphical
components, the resulting L-System can mimic plant growth, or geometrical con-
structions. The rewriting rules can be applied probabilistically, to provide a natural
irregularity to the constructions (see Fig. 1.3). The rewritten structures can be types
other than graphical components, including musical notes and phrases (Worth and
Stepney 2005).
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The ideas of evolutionary algorithms can be combined with growth rules to form
an ‘evo-devo’ (evolution of development), or morphogenetic, system. In the sim-
plest cases, a ‘seed’ (initial state) is evolved and then ‘grown’ into an adult form. In
more advanced cases, the growth rules may also be evolved. This approach allows a
sophisticated set of related adult forms, varied by changing parameters, starting
conditions, and random seeds. Such complex forms would be harder to evolve
directly, as the growth process can coordinate development of related structures, for
example, making a regular pattern of legs (Hornby 2004). Evo-devo approaches can
produce remarkably ‘organic’-looking images (Doursat et al. 2012; Todd and
Latham 1992).

It has been suggested that a combination of evo-devo systems and synthetic
biology (evolving rules to program into biological cells), and other UComp
approaches, could be exploited to grow architectural structures (Armstrong 2015,
2017; Stepney et al. 2012).

1.3.5 Dynamical Systems Computation

The classical Turing model has a single output when the computation halts. That
output may have a complex structure, but is essentially a static view of the final
state of the computation. Considering a computation as being a dynamical system,
as being about the computed movement of the system through its state space, allows
a more dynamical view of the process and its outputs over time (Stepney 2012a). It
also encompasses interactive computing (Wegner 1997), where inputs are given to
the system during its execution, inputs that may be a feedback response to previous
outputs.

Cellular automata (Sect. 1.2.6) are an example of a discrete dynamical system.
A related system is that of random Boolean networks (RBNs). While CAs have a

Fig. 1.3 A stochastic L-system: the same generative rules, applied probabilistically, produce a
family of related pictures
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uniform grid of cells, and each cell follows the same rule, RBNs have their nodes
wired together randomly, and each cell has its own randomly chosen rule. Despite
all this randomness, certain RBNs display well-defined patterns of dynamics (see
Fig. 1.4).

Dynamical systems can be described as traversing trajectories through their state
spaces (space of all possible configurations). Trajectories may wander throughout
the entire state space, or they may converge to certain smaller regions of the state
space, called attractors. [For more detail, see Stepney (2012a).] These attractors
form a higher level emergent structure to the system. Some attractors are merely
single points in the state space. A pendulum, no matter where started, will end up in
the same final resting state: it has a single point attractor. Some attractors are cycles:
the system repeatedly cycles through the same sequence of states. The RBN in
Fig. 1.4 demonstrates three different cyclic attractors. Some attractors are strange:
although many trajectories are attracted to a given region of the state space, within

Fig. 1.4 Visualisation of the
time evolution of a typical
RBN where each cell receives
input from two of its
neighbours. This RBN has
200 randomly connected
cells, which are arranged in an
order that exposes the
dynamical structure. Three
different initial conditions of
this network illustrate three
different final behaviours, that
is three different attractors
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that region the trajectories diverge from each other. Such systems display sensitive
dependence on initial conditions: two systems started in very similar states will,
after a while, be displaying very different behaviours (albeit in the same restricted
part of their state space). The detailed structure of a strange attractor is usually
fractal (Mandelbrot 1997).

Reservoir computing is a model of a form of dynamical computation. It com-
bines three methods for creating and training neural networks: echo state networks
(Jaeger 2001), liquid state machines (Maass et al. 2002), and the
backpropagation-decorrelation online learning rule (Steil 2004). The underlying
model is a neural network (Sect. 1.3.3), although set up and used differently from
the more traditional classifier style of these networks. Node connections and
weights are set up randomly, and only the output weights are trained. Reservoirs
can be simulated with classical computers or implemented in novel hardware. It can
be used as a model for a variety of forms of novel hardware (Dale et al. 2017). The
hardware itself can be configured to form a ‘better’ reservoir, which acts as a
low-level virtual machine for programming the hardware (Dale et al. 2016). Neural
network-based dynamical systems can also be used to underpin other UComp
paradigms (Stovold and O’Keefe 2017).

Music is, of course, fundamentally temporal and multidimensional (pitch, tim-
bre, etc.). A multidimensional dynamical system may form a suitable computational
basis for generating novel music and musical styles.

1.4 Beyond Classical Thinking

1.4.1 Emergent Computation

Emergence is variously defined, but has the idea of something coming out of a
system that was not explicitly or deliberately put into, or part of, the system.

Aristotle (1924) has one of the earliest definitions of what we now call emer-
gence: ‘things which have several parts and in which the totality is not, as it were, a
mere heap, but the whole is something beside the parts’, now commonly phrased as
the whole is more than the sum of its parts. Anderson (1972) coined the phrase
‘More is different’ to describe emergence in physical systems.

One feature is that the concepts used to describe an emergent system are
somehow different from, even at a higher level than, the concepts used to describe
the underlying system. For example, consider cellular automata (Sect. 1.2.6) and
Conway’s Game of Life in particular. The underlying system is simply a grid of
cells that are either ‘alive’ or ‘dead’ and which evolve through time according to a
simple rule. From this underlying system emerge blocks, gliders, and a whole host
of other macroscopic patterns.
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Classical computation with its classical algorithms is not considered emergent in
this sense.2 The functionality that comes out is precisely what was programmed in
(unless there are bugs). Something like music, however, can be considered as
emergent from the series of individual notes and other sounds that make it up.

Many forms of UComp support forms of emergent computation, where the
resulting global pattern or dynamics is an emergent or implicit property of the
system, rather than having been explicitly programmed. In particular, many
dynamical systems (Sect. 1.3.5) have such kinds of emergent properties, including
the structure of their attractors.

1.4.2 Novelty and Open-Ended Computation

Emergence and other forms of novelty are desirable properties of art. Art itself
should be ‘open-ended’, in that new forms are constantly possible.

Open-endedness, like emergence, is variously defined. Most definitions come
down to ‘the continual production of novelty’. Banzhaf et al. (2016) define types of
novelty and open-endedness with respect to some domain of interest. Novelty in an
observed system is classified into three kinds, with increasing complexity:

1. Variation: novelty within an instance of the domain. Variation changes an
instance of the domain, such as a new painting in a particular style, without
changing the domain itself. Variation explores a predefined state space, pro-
ducing new values of existing ideas (in Fig. 1.2, each new entry in a particular
column is a variation in a particular style).

2. Innovation: novelty that changes the domain. Innovation changes the domain:
for example, by adding a new style of painting (e.g. expressionism was an
innovation in this sense). Innovation changes the combinatorics and the
size/structure of the domain, thereby growing the possibilities of variation (in
Fig. 1.2, each new column is a novel style).

3. Emergence: novelty that changes the type of the domain. Emergence changes
the type of the domain: a change that adds a new concept or dimension to the
domain. For example, adding a third dimension, or movement, or sound, to
pictures is the emergence of a new type of art.

Open-endedness is then defined as the ability to continually produce innovative
or emergent events. Variation alone is not enough: there needs to be some kind of
‘breaking out of the box’, and then breaking out of the new box, and so on.

2Although certain properties of classical systems, such as security and performance, can be
considered to be emergent, this emergence is one of the things that makes such properties hard to
engineer.
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1.5 Conclusions

Unconventional hardware and unconventional software allow us to re-examine
concepts, constraints, and assumptions of computation. Unconventional hardware
that supports dynamical, growing, evolving, and feedback processes offers a vast
array of possible devices and ways of thinking about computing. UComp provides a
rich source of novelty, which can be used for many applications, including the
creation of novel artworks.

1.6 Questions

1. What analogue and digital properties does music have?
2. What are the similarities and differences between a musical score and a com-

puter program?
3. Music has temporal structure, but can be represented spatially, such as in a

score. How many different ways can you find to map spatial patterns of UComp
substrates into spatial musical representations? What properties does this
suggest the UComp spatial patterns should exhibit?

4. Discuss ways you could map a population-based search (Sect. 1.3.2) onto a
musical structure.

5. This chapter suggests that searching for aesthetic pieces, such as music,
requires a ‘human in the loop’ to act as the fitness function (Sect. 1.3.2). What
are the advantages and disadvantages of this? How might at least some of the
task be automated?

6. Discuss ways you could map the spatial and temporal structure of a
network-based system (Sect. 1.3.3) onto a musical structure.

7. Generative computation (Sect. 1.3.4) is used to grow mainly spatial structures.
What are the similarities and differences in growing a temporal structure?

8. Music has been claimed to have a fractal structure. What is meant by this? What
more is needed for music, in addition to such structure?

9. Describe a range of existing forms of variation, innovation, and emergent
novelty as they occur in music (see Sect. 1.4.2). How might such novelties be
built into a UComp music system?

10. Can music be exploited as a form of UComp?
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