Analysing Systems:

determining requirements for object oriented development

(Web edition)

Roy MacLean, Susan Stepney, Simon Smith
Nick Tordoff, David Gradwell, Tim Hoverd, Simon Katz

First published in 1994 by

Prentice Hall International (UK) Ltd
Campus 400, Maylands Avenue
Hemel Hempstead

Hertfordshire, HP2 TEZ

A division of

Simon & Shuster International Group

(© Logica Cambridge Ltd and Data Dictionary Systems Ltd

Permission is granted to make copies of the whole work for any purpose except
direct commercial gain. The copyright holders retain all other rights, including
but not limited to the right to make translations and derivative works, and the
right to make extracts and copies of parts of the work. Fair quotation is permitted
according to usual scholarly conventions.

ISBN 0-13-301433-9

This version typeset 26 July 2004

Contents

Preface

I Introduction to ORCA

1 Why ORCA?

1.1
1.2
1.3
1.4

The ORCA method
Analysis and design
An analysis method
Other OO methods

2 ORCA by example

2.1
2.2
2.3
24
2.5
2.6
2.7

Introduction

Preliminary analysis
Finding out what’s wrong
Prescribing a remedy
Specifying a solution
Change and development
Conclusion

3 ORCA'’s key ideas

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

An analysis process needs to be tailorable

A system has purposes as well as behaviour

A system is a network of co-operating roles

A system may exhibit pathologies

Models can describe the Old World, or a New World
A system is embedded in an environment

IT systems are ways of implementing behaviour
Models can express different levels of abstraction

vi Contents

3.9 Overview of ORCA

II The Basic Process

4 Introduction to the case study
4.1 Introduction to Part II
4.2 Overview of the ORCA Basic Process
4.3 Brief description of the case study

5 Preliminary Analysis
5.1 Introduction
5.2 Initial understanding of the client’s world
5.3 Establish the terms of reference
5.4 Identify sources of information
5.5 Define the contractual task

6 Process Design

7 0OIld World Purpose
7.1 Introduction
7.2 NIMWeC as a manufacturing organisation
7.3 Investigating NIMWeC
7.4 Further investigation

8 OIld World Behaviour
8.1 Introduction
8.2 The weaving of name tapes
8.3 Orders, batches and the batching process
8.4 From orders to name tapes

9 Pathology and Prescriptions
9.1 Introduction
9.2 Adding in the development objectives
9.3 Structuring pathologies, positing prescriptions
9.4 Evaluating the prescriptions

10 Specifying the New World
10.1 Introduction

10.2 What the New World looks like
10.3 Onward into development?

IIT Using the Modelling Languages

33

35

37
37
38
40

45
45
45
46
50
50

52

54
o4
95
29
66

71
71
72
82
85

89
89
90
91
97

103
103
104
112

113

11 Purpose and Behaviour
11.1 Why use models?
11.2 Purposive entities and Behavioural entities

12 Behavioural modelling
12.1 Histories and Frameworks
12.2 Object characterisation
12.3 Dynamic behaviour
12.4 Levels of abstraction
12.5 The Class and Framework constructs
12.6 Structural frameworks and temporal frameworks
12.7 Behaviours and Services

13 Do’s and don’ts
13.1 Introduction
13.2 Process
13.3 Modelling
13.4 Diagrams
13.5 Abstraction
13.6 Classification and specialisation
13.7 Naming

IV Tailoring the Process

14 Introduction to tailoring
14.1 Why do we need to tailor the process?
14.2 Overview of tailorings

15 Organising the organisation—National Parks
15.1 Analysis parameters
15.2 Preliminary analysis
15.3 Modelling the Old World
15.4 Determining the system pathology
15.5 Drawing conclusions—the Analysis Report

16 Shaking up the business—Just in Time
16.1 Analysis parameters
16.2 Preliminary analysis
16.3 Describing the Old World
16.4 Determining the Pathology
16.5 Specifying a New World
16.6 Prescribing Change
16.7 Behavioural requirements

vil

115
115
116

121
121
124
129
140
146
147
148

150
150
150
151
151
152
152
153

155

157
157
157

159
159
160
162
164
167

170
170
171
172
174
175
177
178

viii Contents

16.8 Development and transition

17 A new Purpose in life—the Paperless Map
17.1 Analysis parameters
17.2 Preliminary analysis
17.3 New World behaviour
17.4 Development strategy
17.5 Enhancing our kitbag

18 No Old World—spreadsheets and telephony
18.1 Analysis parameters
18.2 Why omit the Old World?
18.3 Modelling or design?
18.4 No Old World processes
18.5 Summary

19 Nothing new under the sun—a lending library
19.1 The analysis strategy
19.2 A lending library
19.3 Other uses, other models

20 No-one to talk to—Ahab applied to NIMWeC
20.1 The need for tailoring
20.2 Balderdash
20.3 Ahab
20.4 Applying Ahab to NIMWeC
20.5 Outputs from Ahab
20.6 Adding Ahab to the analysis process

V Wider Issues

21 Putting together an analysis project
21.1 Planning, monitoring and estimation
21.2 Validation
21.3 HCI requirements
21.4 ‘Non-functional’ requirements
21.5 Configuration management
21.6 Tool support

22 Life after ORCA—onward into development
22.1 Design and implementation considerations
22.2 Design methods
22.3 The ORCA method

181

183
183
184
185
186
187

190
190
190
192
193
194

196
196
197
204

210
210
210
211
212
216
218

221

223
223
224
225
225
228
228

232
232
234
236

X

VI Appendices 237

A Defining modelling languages 239
A.1 Introduction 239
A.2 Syntax 239
A.3 Semantics 242

B Grampus—the Purposive modelling language 244
B.1 Introduction 244
B.2 Roles and services 244
B.3 Cluster and co-operation 246
B.4 Formation, delegation and promotion 249

C Beluga—the Behavioural modelling language 252
C.1 Beluga models 252
C.2 Classes 252
C.3 Frameworks 257
C.4 Framework statics 258
C.5 Framework class relationships 261
C.6 Framework dynamics 262
C.7 Diagrammatic concrete syntax 270
C.8 Generalisation and abstraction 283

D Glossary 286

E Bibliography 292

F Index 294

Contents

Preface

About this book

This book describes and explains ORCA (Object Oriented Requirements Capture
and Analysis). It is aimed at all those interested in the description and analysis of
complex systems such as businesses, social organisations, and so on. In particular,
it is aimed at those responsible for producing strategies for the use of Information
Technology (IT) and requirements for software development.

Although we refer to ORCA as a ‘method’, this book is not a manual to be
followed slavishly during the analysis process. The usefulness of such a manual
would in any case be questionable. Rather, this book presents and explains a set
of ideas about analysis, together with ways of using these ideas. We hope that
these ideas will be useful to the practising analyst. Consequently, the ideas are
presented primarily through worked examples, rather than in a generalised, ‘text
book’” manner. We believe that this illustrates better how the ideas can be used in
practice, and avoids the impression of a rigid, prescriptive method.

Producing and analysing models is a primary activity in ORCA and two com-
plementary modelling languages are provided for this purpose. These languages
are illustrated by example models throughout the book. In addition, formal syntax
definitions, together with explanations of each language construct, are provided in
appendices.

The other aspect of ORCA is its view of the analysis process. This is presented
as a basic process together with a number of process variants that are appropriate
in different analysis situations. ORCA includes a stage where the analyst should
decide on the kind of process required for the given analysis situation. The different
processes illustrated in the book (using various case studies) can be used to help
in this choice of approach.

One of the example analyses (the weaving factory, in Part II) is considerably
more substantial than the others. This is intended to illustrate the analysis of
a system that is complex and unfamiliar—the very situation for which we want

xi

xii Preface

an analysis method. Using only ‘toy’ examples would not convey the difficulties
encountered (and, we hope, overcome) in real analyses.

Overview of the book

In Part I we introduce ORCA; this part can be read as a stand-alone overview of the
method. Chapter 1 sets the scene, and provides the motivation for developing an
analysis method, and for ORCA in particular. Chapter 2 illustrates ORCA using
a simple example based on a petrol filling station. The example is not intended
to be realistic either in scale or level of detail. However, most of the features of
ORCA are covered. Chapter 3 summarises the key ideas of ORCA, including some
that are not illustrated fully in Chapter 2.

In Part IT we illustrate ORCA’s Basic Process in a weaving factory case study.
The various chapters introduce the main ORCA concepts in the context of the
example; they should be read in sequence. Chapter 4 introduces the weaving
factory case study, and gives an overview of the Basic Process. Chapter 5 con-
cerns Preliminary Analysis—gaining an initial understanding of the client’s world,
establishing the terms of reference of the analysis, and identifying sources of in-
formation. Chapter 6 concerns the activity of deciding on an appropriate analysis
process; in this case, the Basic Process is assumed to be adequate. Chapters 7 and
8 develop and analyse models of the Old World—the existing situation with the
weaving factory. Chapter 9 discusses pathologies (what is fundamentally wrong
with the current world) and prescriptions to remedy these. Chapter 10 specifies
a New World for the weaving factory—this includes both organisational changes
and IT developments.

In Part IIT we show, in some more detail, how the modelling languages can
be used. Chapter 11 discusses the difference between purposive and behavioural
models; Chapter 12 discusses behavioural modelling in depth; Chapter 13 offers
some general heuristics on using ORCA.

In Part IV we show how ORCA’s Basic Process may be tailored to suit different
analysis situations, using a variety of example case studies. Many of these are
inspired by real-world examples, but have been modified for explanatory purposes.
These examples can be used to provide a starting point for a specific tailoring.
Chapter 14 introduces the idea of tailoring the Basic Process. Chapter 15 considers
the analysis of a loose organisation of semi-independent units—in this case, a
federation of National Parks trusts. Chapter 16 looks at an example of radical
restructuring of a manufacturing business—a change from traditional stock control
to ‘just-in-time’ delivery. Chapter 17 examines the case where the overall mission of
an organisation changes and the existing world has to be re-engineered in the light
of the new purposes. Chapter 18 considers analysis situations where there does not
seem to be an Old World, because a radically new product is being developed, or the
world is developing into new areas. Chapter 19 considers an analysis process that

xiil

involves reuse, by adapting pre-existing generic models, rather than constructing
bespoke models from scratch. Chapter 20 provides a technique for analysis of
textual documents, for use when these are the only source of information for an
analyst. Chapters 15-20 are independent of each other.

In Part V we discuss wider issues concerning ORCA analysis. Chapter 21
considers issues such as planning and monitoring, validation, requirements for
human—computer interaction, ‘non-functional’ requirements, configuration man-
agement and tool support. Chapter 22 discusses how to proceed into software
design and development after an ORCA analysis has concluded.

In Part VI we give a more formal description of ORCA’s modelling languages.
This part is for reference, and is not intended to be read sequentially. Appendix A
describes how we go about defining the modelling languages. Appendix B defines
Grampus, the purposive modelling language, and Appendix C defines Beluga, the
behavioural modelling language. These appendices are intended for those inter-
ested in delving deep into the corners of the modelling language, for example in
order to build tools. Appendix D is a glossary of ORCA terminology and other
supporting terms.

The ORCA project

The ORCA method was developed during a three-year project that took place be-
tween mid-1990 and mid-1993. This project was part-funded by the United King-
dom’s Department of Trade and Industry (DTI) and Science and Engineering Re-
search Council (SERC) under the IED programme (project number IED4/1/2134);
this support is gratefully acknowledged.

The project collaborators are Logica UK Ltd, Data Dictionary Systems Ltd,
and the Department of Computer Science, University of York.

We would like to thank Roy Flowerdew of Wovina Woven Labels for permission
to use the case study contained in Part II of this book. Unlike many other texts
on systems analysis, this case study represents a real problem for which a real
implementation has been carried out. Some specific features were enhanced for use
in this book, but the spirit of the example is very much in line with the Wovina
system and its implementation.

We would also like to thank Simon Bennett, Alan Brown, Peter Hitchcock,
Jennifer Stapleton and Dave Whitley for their ideas, comments and contributions
during the course of the project.

xiv Preface

Part 1

Introduction to ORCA

Chapter 1

Why ORCA?

1.1 The ORCA method

ORCA aims to be an effective, flexible and usable method for requirements capture
and analysis, based on object oriented concepts. ORCA defines and supports an
analysis process, provides appropriate modelling languages, and provides guidance
concerning their use.

ORCA’s preferred mode of use is for performing analysis that leads into object
oriented (OO) design and implementation using existing methods. ORCA can also
be used where Information Technology (IT) development will not—for whatever
reasons—use OO technology. It can even be used for analysis where no I'T develop-
ment is foreseen. In fact, an analysis should never start with the assumption that
IT development will take place (with all due respect to those clients who ‘want to
computerise X’).

Successful analysis is difficult, and no method can take the practitioner me-
chanically through the activities involved—there is no substitute for experience
and insight. However, ORCA attempts to provide both conceptual and practi-
cal equipment for carrying out the analysis task, building on existing ideas and
methods.

1.2 Analysis and design

1.2.1 Why are we interested in analysis?

The purpose of analysis is to provide a context, a rationale, and a specification
for change to part of the world. Informally, we analyse a delimited and coherent
portion of the world, such as a business, a manufacturing or control process, or a
social organisation. We often refer to such a portion of the world as a ‘system’.
Change may or may not involve the development and installation of I'T com-

4 Chapter 1. Why ORCA?

ponents: computer hardware and software, communications links, and so on. In
this book, we assume a general intention to carry out IT development, but this
does not affect our approach to analysis. It is a fundamental principle that, where
possible, analysis should question the need for I'T development.

Where IT developments are being carried out, both the client and the developer
have an interest in knowing the following:

e Why is the development taking place?

e What problems are the I'T components going to solve?

e What, in general terms, are they going to do? Why do we think this is going
to solve the problems?

e What changes to the client’s world are necessary, other than the development
and installation of IT components?

These are the questions the the analysis activity should address. In some cases, the
answers may seem to be obvious, or they may be given as unquestionable dictates.
The dangers of either situation should be readily apparent. We should seek to
pursue an analysis process.

1.2.2 The analysis process

The analysis process needs to take us through the following tasks:
e determining the scope of the analysis—what is relevant, and what isn’t
e identifying problems and diagnosing the underlying causes
e proposing remedial changes, and justifying why we believe they are going to
have the desired effect
e specifying I'T components that implement the changes, and saying why these
are necessary to support the remedial changes
The specification of each IT component has two aspects:
e the changed world’s view of the I'T component—who or what interacts with
the IT component? when? how?
e the IT component’s view of the world—what does it need to ‘know’ about
the outside world? what events does it need to respond to?

A fundamental tenet of ORCA is that such specifications should be produced
as part of an analysis process that also provides a context and a rationale for
development. This process cannot assume any ‘initial inputs’, such as an informal
statement of requirements—it must proceed from the earliest familiarisation with
a client’s world. The ORCA process therefore seeks to link Business Analysis with
System Development.

1.3 An analysis method 5

1.2.3 Analysis versus design

Once we have an initial specification of an I'T component, we are into the process
of design and implementation. There is a fundamental difference between analysis
and design that is worth a short digression.

Analysis is concerned with what is essential—what is essential to the client’s
world and its environment, what it is necessary to change, what we need to say
about how the changed world behaves. In contrast, design is concerned with what
is adequate—what mechanisms for information handling and interaction with the
outside world are adequate for the task being supported, what level of programming
will ensure that a component works in the intended manner.

If we were talking about office buildings, say, the distinction would be obvious:
on the one hand the descriptions of the essential ambient conditions, and on the
other hand the air conditioning system that is adequate to ensure these condi-
tions, are clearly different things. In contrast, software components are expressed,
throughout their development, using ‘artificial’ specification and programming lan-
guages. Because the same languages may also be used as tools for thought within
the analysis process, the distinction between the products of analysis and the prod-
ucts of design is not so clear.

This has benefits and dangers. One benefit is that similar concepts serve for
both analysis and design—mno fundamental change of mental apparatus is required.
Another benefit is that the models built up during the analysis process can poten-
tially provide material inputs to the design process. Existing methods for object
oriented development place considerable emphasis on this—the ‘information model’
that results from analysis defines the principal classes within the software, often
with little or no adaptation. The danger is that the major design decision involved
in this step passes unnoticed and unquestioned. We therefore need to be very
careful about the interpretation of models as analysis models or design models,
especially when they use similar languages.

1.3 An analysis method

1.3.1 Requirements of an analysis method

An analysis method should support the basic process set out in Section 1.2.2:
e determining the scope of the analysis
e identifying problems and diagnosing the underlying causes
e proposing remedial changes
e specifying IT components that implement the changes

The principal technique supporting this process is the construction and analysis of
models. An analysis method should therefore provide one or more modelling lan-

6 Chapter 1. Why ORCA?

guages, together with guidelines for their use. The nature of the analysis activity
gives rise to several requirements for these modelling languages. These require-
ments are outlined below; Chapters 11 and 12 provide details of ORCA’s response
to them.

When we start to analyse the world, we do not, in general, know what level of
abstraction we need to deal with—if we are told, we should question the assertion.
For example, is the problem with the Wonder Widget Company in its relationship
with its customers, or with the way its divisions are organised, or with the widget
manufacture process, or with the efficiency of the widget-pressing machines, or...?7
Finding the right level of abstraction for expressing problems and solutions is an
essential aspect of analysis. Consequently, our modelling languages need to offer
facilities for expressing and relating descriptions at different levels of abstraction.

Our modelling languages should allow us to distinguish between what people
believe ought to be happening in the world, and what actually does happen (at
present or in some future changed world). These can be seen as descriptions of
purpose and behaviour respectively. We will have more to say about this distinction
in subsequent chapters.

In analysis we cannot assume that we have a single, reliable source of infor-
mation. In general, we will want to capture multiple local viewpoints. This is
particularly relevant to descriptions of purpose, since different people can hold
different, and perhaps inconsistent, views of what a given component is for, even
if they agree on what it actually does. On the other hand, incompatible views
of behaviour are resolvable, in principle if not in practice, by further information
gathering or observation.

Another ‘fact of life’ for analysis is that behaviour happens over time and is
inherently concurrent—different strands of behaviour can be going on at the same
time. It is often important in analysis to describe when certain events happen,
relative to other events, and how concurrent strands of behaviour interact. We
therefore need a modelling language that allows us to express and analyse dynamic
behaviour.

As the discussion in Section 1.2.3 indicates, analysis is concerned with what is
essential regarding change to the world. The analyst should seek to give the IT
developer the loosest specification that will result in an acceptable product. In
other words, an analyst should not make ‘premature design decisions’ that would
restrict the developer’s options. We therefore need a modelling language that allows
us controlled ‘don’t care’ lack of constraints, specifically in describing behaviour.
The opposite is the case in the design process—we need eventually to be as precise
as possible, explicitly making decisions between implementation alternatives.

1.3.2 Why object orientation?

Many of the approaches to IT systems development in use today have their roots
in the times when computing power was expensive. Then, it made sense to have a

1.4 Other OO methods 7

‘system-centred’ architecture, where a system’s behaviour is specific for a particular
business situation, and the system drives the user’s responses.

Now, the thrust of systems development is towards ‘user-centred’ systems. This
is most obvious in the area of graphical user interfaces (GUIs), which put more
freedom and responsibility into the hands of the users—allowing them to control
the system and exercise their skills more effectively. User-centred systems are
typically structured as a number of software components that respond to specific
user events, the sequence and structure of which is necessarily unknown to those
components.

Object orientation (OO) is a particularly appropriate technology for the devel-
opment of user-centred systems, since a collection of objects responding to user
events, through the mechanism of the operations provided by those objects, is ex-
actly the structure required. A ‘client—server’ approach to systems development
has all of the components of a system, not just the user interface, structured as
components that respond to external requests. The client of a particular server is
the ‘user’ of that component. Hence, OO is a key technology in the development
of modern, responsive computer systems.

Developing these more flexible systems carries with it a new problem. With
traditional computer systems, the computer processes are driving all of the sys-
tem’s activity, so everything about the system is in the domain of the development
method, and thus it is possible to have a prescriptive development method. User-
centred systems do not have this property because they are directly responsive
to a wider range of input stimuli—the user of a particular component might do
anything next. It is no longer possible to define significant completeness and con-
sistency rules for a development method. This book presents a flexible approach
to requirements definition for user-centred systems.

ORCA’s modelling languages, defined and used in the rest of this book, provide
the analyst with a way of looking at and talking about the world in terms of
system components that respond to user-originated events. They also allow for the
definition of a system’s requirements in terms of the functionality that is delegated,
as a collection of available services, to various system components.

Transition from analysis into design should be easier if they share a common
conceptual basis. We therefore need an analysis method based on object oriented
concepts, in order to complement object oriented development approaches. Even
if the software technology used for IT development is not object oriented, the
usefulness of OO for modelling makes it worth while as the basis of an analysis
method.

1.4 Other OO methods

There are various methods for ‘object oriented analysis and design’. Broadly speak-
ing, these other methods do not fully support the analysis process as described in

8 Chapter 1. Why ORCA?

Section 1.2.2. In particular, the idea that IT development is part of wider change
is not explicit in most of these methods. An ORCA analysis encompasses the en-
vironment and context, and may not identify which components, if any, are to be
the subject of I'T development until relatively late in the process.

Some methods presuppose the existence of a ‘requirements specification’ doc-
ument or ‘problem statement’—the precise term varies—as the starting point for
development. Such a document describes the required IT system informally. ‘Anal-
ysis’ is then largely a formalisation of the requirements specification, not an analysis
of the real world. For example, noun phrases within the specification can be used
to suggest candidate classes in an OO model. This model is a primary input to the
design process. However, much work may be needed to produce a good ‘require-
ments specification’, which is, by definition, not covered by these methods. In any
case, a developer is unlikely to receive from a client a requirements specification
that is detailed and comprehensive enough to act as the sole source of information,
so the developer will still need to carry out ‘real’, rather than documentary, anal-
ysis. While a textual statement of requirements might be needed for contractual
purposes, it seems sensible to derive this from the analysis models, not the other
way round. A significant part of the ORCA process is dedicated to the analysis
necessary for eliciting requirements.

A further problem with existing OO methods’ support for analysis is that tradi-
tional object orientation, on which these methods are based, does not fully satisfy
the requirements outlined in Section 1.3.1. ORCA goes beyond these other meth-
ods by providing the additional support needed to satisfy these requirements.

Chapter 2

ORCA by example

2.1 Introduction

In this chapter we illustrate ORCA using a simple example based on a petrol filling
station. The example is not intended to be realistic either in scale or level of detail.
Consequently, the analysis process and the models used within it are presented only
in outline. Chapter 3 summarises the key ideas of ORCA, including some that are
not illustrated fully in this chapter. In Part II we describe ORCA’s basic process
in greater detail, using a much larger example.

2.2 Preliminary analysis

We have been called in by the owner of a petrol station because of poor sales.
Our client believes that customers are going elsewhere because of the unacceptable
frequency with which pumps have to be taken out of service while waiting for
deliveries of petrol from the supplier.

Our first activity is to conduct a preliminary analysis, in which we get our
bearings on the problematic situation, and determine the scope of the analysis. No
formal modelling is involved at this stage.

Currently, orders to the supplier are made on a regular basis (weekly, at the
moment), but the variability of demand means that stocks of petrol often run out
before the next delivery. When this happens, the ordering cycle can be brought
forward, but there are inevitable delays before the petrol is received. Since the
supplier makes a charge for each delivery, it is not acceptable simply to increase
the frequency of orders.

We summarise the situation as the ‘rich picture’ shown in Figure 2.1.

10 Chapter 2. ORCA by example

U K G:N'E e men"'

—
Uonm
Yo bﬂ " =))
Service J Tax ii
A
“ I —_

(- o
PQS mﬂnl"‘

D.l;"-{e n(-
——\) beel
&a :

] Coshier
Cu;i‘cmeﬂm agshie

rd

~ %" 5"_ Fakan g

4

/ \ petrel

Trons ackia

details

———
/1/-;\‘(< rwn::m
"c:es ate:/_})

u,teﬂdga Oviro U..

Figure 2.1 Petrol Station rich picture

2.3 Finding out what’s wrong 11

Customers Petrol Station
Supplier
pay for petrol petrol dispensed
dispensed is paid for
payment handle _petrol deliver
is handled payment delivered petrol to
promptly promptly to order order
volume and register

volume and
cost accurately

cost registered
accurately

petrol is
dispensed
on demand

dispense
petrol on
demand

Figure 2.2 Service provision relationships

2.3 Finding out what’s wrong

In order to find out what is wrong, we first need to establish what is essential to
the system—what it is ‘about’. In an ORCA analysis, a system is viewed as a
network of service provision relationships: both the arrangements that exist with
regard to service provision, and the actualities of service provision.

In the case of the Petrol Station, the system is in a typical customer—retailer—
supplier situation. The essential services seem to be as follows:

e The Petrol Station provides petrol to Customers on demand.
e Customers pay Petrol Station for petrol dispensed /received.

e Petrol Station registers the volume and cost of petrol dispensed accurately,
and communicates this to Customers.

e Petrol Station handles Customers payment promptly.
e Supplier delivers petrol to Petrol Station as per order.

The first four of these services relate to transactions with Customers, and the fifth
to transactions with the Supplier.

We can fairly say that all these services are essential to the petrol station system.
If any of them are not agreed to by the parties concerned, or if the services do not
happen behaviourally, then the system as a whole will not ‘work’.

Figure 2.2 shows the service provision relationships between Customers, Petrol
Station and Supplier. The three roles in the system are shown as rectangular
boxes, and the service provision relationships as links between these. Each service
provision relationship has a ‘guarantee’ end and a ‘rely’ end. A guarantee is shown
as a smaller pointed box pointing out of a role box; a reliance is shown as a

12 Chapter 2. ORCA by example

Customers

pay for petrol volume and cost
dispensed registered
accurately

payment is
handled
promptly

petrol is
dispensed
on demand

Figure 2.3 Customers’ view of services

smaller pointed box pointing into a role box. The text within a pointed box is a
description of the service involved, from either the active (guarantee) or passive
(rely) viewpoint.

For example, Customers guarantee to pay the Petrol Station for petrol dis-
pensed /received; the Petrol Station relies on this being the case. At least, this is
the essential situation—an assumption on which the whole system is founded. In
practice, this arrangement might not work, due to large numbers of absconding
customers, and this would clearly be a problem. For the purposes of our example
analysis, we assume that this is not the case.

Each of the three roles has its own view of the world, in terms of the services
that it is supposed to provide to other roles, and the services that other roles are
supposed to provide to it. For example, Customers expect petrol to be provided on
demand, expect the pumps to be accurate, expect prompt handling of their pay-
ments, and agree to pay for petrol received (Figure 2.3). A minimum requirement
for the system to work properly is that all the local views of service provision are
consistent. For every role that relies on a service, some other role (or group of
roles) should guarantee to provide it. Such roles are then in a co-operation with
respect to that service.

In our model, the co-operations between the three roles seem to be valid, but in
practice we would like more precise definitions of the service qualifiers— promptly’,
‘accurately’, ‘on demand’, and so on. For example, the petrol station cashier
might interpret ‘promptly’ to mean ‘when I’ve finished my cup of tea’, whereas the
customers might prefer it to mean ‘within a few seconds’.

An important point to note is that a co-operation is not a ‘flow’ of physical items
or information. Co-operations are requirements placed on behaviour; behaviour
that is deemed to realise a service may sometimes fall into a ‘producer—item—
consumer’ pattern, but this is not necessarily the case. For example, Petrol Station
provides the service ‘handle payment promptly’ to Customers, even though money
(in some form) ‘flows’ from Customers to Petrol Station. As we noted above, there
is also a qualitative aspect to service provision: timeliness, accuracy, availability,
and so on.

In the preliminary analysis we recorded the client’s informal problem description.

2.3 Finding out what’s wrong 13

This suggested that the problem of falling sales was due to the frequency with which
pumps are out of service while waiting for deliveries of petrol from the Supplier.
Using the model we have built, we can check this hypothesis.

Sales are falling because customers are switching to other petrol stations in
the area. So, presumably, some of the services that they rely on from the Petrol
Station are not being provided adequately. The client assures us that neither
payment handling nor the accuracy of the pumps is at fault, so the ‘provide petrol
on demand’ service must be deficient.

In order to find out why this is so, we need to know more about the Petrol
Station. We do this by finding out how the reliances and guarantees of the Petrol
Station as a whole correspond to the reliances and guarantees of ‘subroles’ within
it. Our investigations lead us to suggest the following subroles:

e Petrol Dispensing—providing petrol on demand and registering volume and
cost accurately

e Payment—requiring and handling customer payment
e Ordering—requiring delivery of petrol to order

In addition to the reliances and guarantees that correspond to those of the Petrol
Station role, the following co-operations link these three roles:

e Petrol Dispensing guarantees provision of transaction details (volume and
cost) to Payment, so that appropriate payment can be requested from Cus-
tomers.

e Ordering guarantees availability of petrol to Petrol Dispensing.

The relationship between Petrol Station and its subroles is shown in Figure 2.4.
The subroles of Petrol Station identified above, and the co-operations between
them, are a rationalisation of the petrol station system, in terms of service provi-
sion. They are not a model of its organisational structure. If the petrol station
is ‘well organised’, there should be a close correspondence between the roles and
co-operations in our model, and the actual organisational structure. However, it
is quite likely that the petrol station has a different organisational structure, or
perhaps no explicit organisation at all (a handful of employees doing various jobs
as necessary).

We can now return to the problem analysis. Given that the ‘provide petrol
on demand’ service is deficient, either Petrol Dispensing is at fault (for example,
the pumps keep breaking down), or the reliance on Ordering is not being satisfied.
Again, the client assures us that the pumps are reliable, so the problem lies with the
availability of petrol. Either there is something wrong with the way that ordering
is done, or the supplier does not deliver to order. Since the performance of the
supplier is not at fault, we conclude that the ordering behaviour is the source of
the problem.

Notice that the co-operation between Petrol Dispensing and Ordering is valid:
there is agreement about what ‘ensure availability of petrol’ means. In this case,
it means that the pumps should never be out of service through lack of petrol;

14 Chapter 2. ORCA by example

Payment
petrol dispensed
is paid for
handle transaction
payment details provided
promptly promptly
]
Ordering
Petrol Dispensing
register provide § |_petr(zjl
volume and transaction flver(rje ;
cost accurately details promptly ensure o orde
I petrol is
dispense - available
petrol is
petrol on .
available
demand

Figure 2.4 Petrol Station and its subroles

deliveries should be made before stocks (in the storage tanks) are exhausted. The
problem lies with the way in which the service is currently realised. It just doesn’t
work well enough.

Having localised the problem, we now need to examine the deficient behaviour—
the current procedures for monitoring stock levels and generating orders. In this
case, the current behaviour is simple enough not to require explicit modelling. The
essence of the problem is that a regular ordering cycle is too crude a strategy to
cope with the existing variability in demand.

2.4 Prescribing a remedy

At this point in the analysis process a combination of insight and experience is
required. No method can generate solutions mechanically.

Currently, the ordering behaviour takes no account of the rate at which petrol
is being dispensed, or the cumulative quantity dispensed. Given this information,
it is feasible to predict when a storage tank will be exhausted. If the typical
time between placing an order and receiving the delivery is known, orders could
be generated pre-emptively. The aim might be for deliveries to arrive when the
storage tank concerned is 5 per cent full (thus allowing a suitable margin for error).

As it happens, Petrol Dispensing already guarantees to Payment that informa-

2.4 Prescribing a remedy 15

Payment
petrol dispensed provide .
is paid for transaction
P details
handle transaction
payment details provided
promptly promptly
|
Ordering
Petrol Dispensing
transaction
details atrol
register provide provided d l_p d
volume and transaction :elve(rje
cost accurately details promptly ensure o order
| petrol is
dispense - available
petrol is
petrol on .
available
demand

Figure 2.5 The prescribed remedy. The additional co-operation is shown in bold outline

tion about transactions is provided. This information includes the grade of petrol
and the volume dispensed. In addition, the payment handling behaviour records
the date and time of the transaction. If this information is then made available to
the ordering behaviour, there is a basis for predicting future consumption. We sim-
ply need an additional co-operation between Payment and Ordering (Figure 2.5).
Notice that Ordering does not require the transaction information promptly, unlike
Payment. To be more precise, Ordering needs the information ‘promptly’ relative
to the timescale of ordering petrol (days), rather than relative to the time that
customers are happy to wait (seconds).

What Ordering needs to do is to monitor consumption and generate orders
at appropriate times (rather than on a regular basis, regardless of consumption).
It can do this on the basis of the transaction information (and perhaps other
information as well). The quantity and complexity of information involved in this
task makes I'T support desirable. We therefore propose to our client that

e a new, more sophisticated ordering strategy be adopted

e the ordering activity be automated

16 Chapter 2. ORCA by example

2.5 Specifying a solution

The next stage of the analysis is to model those aspects of behaviour that are
relevant to our new ordering strategy. Aspects that are not relevant (for example,
to do with customer payment) are not modelled. The model identifies the kinds
of object involved in the behaviour and their inter-relationships (statics), and the
patterns of events within the behaviour (dynamics). This model forms the basis
for a statement of requirements with regard to I'T development. It is a behavioural
model, using ORCA’s Beluga language. In contrast, the earlier models, which deal
with views of service provision, are purposive models, using ORCA’s Grampus
language.

The distinction between these two kinds of model is fundamental to ORCA.
A purposive model describes the way that roles within a system are linked by
arrangements to co-operate with respect to particular services. A behavioural
model describes the objects and events that exist (or need to exist) in order to
realise the services.

At this stage of analysis, we do not distinguish between ‘real world’ objects
and software objects within some proposed IT system. It is for the statement of
requirements, ultimately produced by the analysis, to make clear which elements
of our models need to be handled by IT components. It is also worth pointing out
that we could have used behavioural modelling in the ‘finding out what’s wrong’
stage, in order to investigate the original deficient behaviour, but this was not
necessary in our simple example.

2.5.1 Static structure

First, we need to characterise the objects involved in the behaviour, in terms of
their classes (types of object) and features (attributes of, and operations on, objects
of a particular type). In looking for behavioural entities, we need to go back and
examine the service descriptions (the reliances and guarantees) in our purposive
models.

Basic physical objects, such as pumps and storage tanks, are a good place
to start our modelling (Figure 2.6). The diagram says that each Pump must
be connected to exactly one Tank, and each Tank may (dashed line) have any
number of Pumps connected to it (indicated by the crows-foot). The features
mazxContents and fuelGrade are fixed attributes of a Tank; currentContents is a
variable attribute. Note that the type of an attribute is given after the colon. There
is a constraint (not shown in the diagram) that currentContents must always be
less than or equal to maxContents:

invariant : currentContents < maxContents

The features fill and take are operations that change currentContents. The effect

2.5 Specifying a solution 17

Pump connected'l;o_ o Tank
» fuelGrade : GRADE

« fill
e take(VOLUME)
* maxContents : VOLUME

» minContents : VOLUME
e currentContents : VOLUME

Figure 2.6 Pumps and Tanks

Pump Transaction Record

* priceForGrade : MONEY * new

» fuelGrade : GRADE

* volumeDispensed : VOLUME ?
-+ setVolumeDispensed(VOLUME)
* dateTime : DATE ?

* setDateTime(DATE)

* totalPrice : MONEY ?

I~ setTotalPrice(MONEY)

Figure 2.7 Transaction Record

of a fill operation is to make currentContents equal to maxContents:
fill //guarantee : currentContents = maxContents

The take operation must be given a VOLUME as a parameter, and decreases current
Contents by the specified amount:

take(v) //guarantee : currentContents’ = currentContents — v

(currentContents’ refers to the value of the attribute after the operation has been
performed.) This operation can be invoked by any connected Pump (curved arrow).

The information concerning a transaction is modelled as a TransactionRecord
(Figure 2.7). A TransactionRecord is created by a Pump every time it is used
(shown in the diagram by the curved arrow to the new operation). The fuelGrade
is that of the Tank to which the Pump is connected. The wvolumeDispensed and
the totalPrice of the dispensed petrol are recorded by the Pump (shown by the
curved arrows to the various set operations). The dateTime of a TransactionRecord
is set within Payment before Ordering receives the TransactionRecord. Notice
the convention whereby the attributes such as volumeDispensed are not directly
modifiable—they can be changed only by the appropriate set operation. The at-
tributes of a TransactionRecord may or may not be set to some value, depending on
where it is in its life cycle; this is indicated by the ‘7’ suffix, indicating optionality.

18 Chapter 2. ORCA by example

Supplier | to Order

« creationDate : DATE

« deliveryDate : DATE ?

» volumeDelivered : VOLUME ?
- complete

for

Tank

Figure 2.8 Orders

The behaviour also deals with Orders. These are created by Ordering, and
communicated to Supplier. Some time after an Order has been placed, Supplier
fulfils the order by making a delivery; the complete operation on an order records
delivery details using deliveryDate and volumeDelivered (Figure 2.8). The diagram
says that each Order must be made to a single Supplier (we know that there is
only one), and must be for a single Tank; Suppliers and Tanks may be associated
with many Orders. The complete operation is instigated by Supplier when they
make a delivery. The deliveryDate and volumeDelivered attributes are set by the
complete operation, some time after creation of an Order. Thus, these attributes
are initially not set, and this is indicated by the ‘7’ suffix.

2.5.2 Dynamics

The dynamics of the ordering-related behaviour involves three kinds of episode
(Figure 2.9):
e Transaction: transactions in which pumps take petrol from tanks, for dis-
pensing to customers

e TankEmpty: tanks running low on petrol, causing the connected pumps to
be taken out of service

e OrderDelivery: orders for more petrol, and deliveries by the supplier

There are many occurrences of each kind of episode, indicated by the ‘*’s after the
episode name. The occurrences can, in general, happen concurrently. For example,
OrderDelivery cycles will be going on while petrol dispensing Transactions are
happening. However, as we see below, the different kinds of episode are not totally
independent. One of the reasons for modelling dynamics here is to find out how
the different kinds of episode interact.

In a Transaction, a Pump takes a quantity of petrol from its Tank, a Trans-
actionRecord is created and the transaction details are recorded; the Pump must

2.5 Specifying a solution 19

Transaction *
TankEmpty *

OrderDelivery *

Figure 2.9 Dynamics

. . aRecord :
l aTank : Tank l l aPump : Pump I
|
inService :

O > O

setVolumeDispensed
setTotalPrice

Figure 2.10 Transaction

be inService—that is, its Tank must have petrol (Figure 2.10). The constituent
sets aTank, aPump and aRecord, drawn as round-cornered rectangles, are the
stereotypical objects that take part in a Transaction behaviour. The type of each
constituent set is given after the colon; these types are the classes Tank, Pump
and TransactionRecord shown earlier in the static models. In this case, the be-
haviour involves only single instances of Pump, Tank and TransactionRecord, but
constituent sets can, in general, contain more than one instance.

The vertical lines in the diagram are timelines. These are drawn with time
progressing down the page. Timelines are used to show temporal dependency:
ordering of behaviours in time. The circular blobs indicate that a constituent
set participates in some bit of the behaviour. Curved arrows indicate an interact
event: a source participant invoking some operation on a target participant. In
this example, aPump interacts with aTank, by invoking the take operation. At the
same time (more or less), the pump creates aRecord by invoking the special new
operation. The dotted portion of the timeline for aRecord, and the blob-with-dot,
indicate that this is the first thing that happens to aRecord.

20 Chapter 2. ORCA by example

[aTank : Tank] [connectedPumps :]
Pump +

aTank.currentContents

< aTank.minContents
()ﬁ\ﬁb inService___
outOfService

Figure 2.11 Taking Pumps out of service

After aRecord has been created, and the take operation has finished, the volume
of petrol taken and the total price are recorded. Some time later, the date Time is
recorded (by Payment, although we choose not to show this here).

When a tank runs out of petrol (the currentContents reaches minContents), the
connected pumps are taken out of service (Figure 2.11). In practice, this happens
automatically. A TankEmpty episode happens only when the condition shown on
the left of the diagram is true. The state of the tank causes all the connected
pumps to be taken out of service. In this case, the constituent set connected Pumps
is a set of one or more (‘+’) Pumps. All members of the set change state from
mService to outOfSeruvice.

An OrderDelivery behaviour has two stages, as its name suggests (Figure 2.12).
Some time after anOrder is created, it is completed when theSupplier fills the
appropriate tank, aTank. Filling aTank puts the connectedPumps back in service,
if they had previously been taken out of service due to an empty tank. Notice
that the model does not say what creates Orders; this is an issue to which we shall
return.

We are potentially interested in the elapsed time between anOrder being created
and its completion; this is labelled tDelivery. The conditional bit of behaviour that
puts pumps back in service is shown in a box, separated from the NULL alternative
by a horizontal line. Thus, if the connectedPumps are outOfService, their state
will be changed to inService; if the connectedPumps are already inService, nothing
needs to happen.

anOrder is created if and when certain conditions hold. Determining when the
appropriate conditions hold is one of the principal tasks of the proposed IT system.

In this model, the three kinds of episode are linked directly by Tanks and in-
directly by TransactionRecords. In the first case, Transactions take petrol from
Tanks; in the absence of deliveries, this will ultimately cause a TankEmpty be-
haviour; deliveries counter the depletion process by filling the Tanks. In the second
case, the information accumulated from the TransactionRecords allows orders to
be generated at appropriate times.

2.5 Specifying a solution 21

anOrder : theSuppller : aTank - Tank connectedPumps :
Order Supplier Pump +

tDeIiveryI fill
complete)/>\(R

I
connectedPumps.outOfService

inService

connectedPumps.inService

NULL

Figure 2.12 Order Delivery

2.5.3 Analysis issues

The analysis so far has raised several issues that need to be addressed before we
proceed further.

The proposed solution assumes that the typical delivery time, tDelivery, is small
relative to the time that a tank-full of petrol typically lasts. This allows the
ordering behaviour to accumulate information from some initial portion of a fill-
depletion cycle, and then generate an order, in the expectation of delivery before
the end of the fill-depletion cycle.

If this assumption does not hold, then OrderDelivery episodes need to be over-
lapped; order n 4+ 1 needs to be placed before the delivery for order n has been
received. In this case, orders would need to be placed on a regular basis, rather
than generating them for individual cycles. Monitoring of consumption could be
done to adjust the frequency of ordering, rather than the times of individual orders.

For our proposed solution to work well, the time between placing an order and
receiving the delivery, tDelivery, should have low variability. If this is not the
case, the ordering behaviour will need to allow a large margin for error in deciding
when to place an order (since it will need to assume the worst case delivery time).
One possibility is for delivery times to be monitored, and taken into account in
deciding when to place orders. As it happens, a completed Order already holds the

22 Chapter 2. ORCA by example

necessary information, in the form of its creationDate and deliveryDate attributes.

The ordering behaviour will thus use two bodies of historical information: infor-
mation about consumption of petrol from the TransactionRecords, and informa-
tion about delivery times from completed Orders. Do we need to take into account
any other bodies of information? For example, it is probable that consumption
would increase following price cuts (relative to the prices of neighbouring petrol
stations). Such changes in consumption could be anticipated, given notice of the
price changes. We might thus want the ordering behaviour to have access to a
body of ‘plan’ information, documenting future events and their predicted effects.

2.5.4 A statement of requirements

The analysis process outlined above has led us to a solution of the problems with the
petrol station—essentially, a change in the way that ordering is done. This altered
behaviour is to be supported by a new I'T system, which will largely automate the
process. The models developed in our analysis allow us to give a usefully precise
statement of requirements for this I'T system.

Basically, the I'T system is to accumulate information about petrol consumption
from the TransactionRecords, which need to be made available after completion by
the payment handling behaviour. The IT system is also to accumulate information
about delivery times from completed Orders. For each Tank, there will be a
current ‘fill-depletion cycle’. The IT system needs to monitor the consumption
within each current cycle, and periodically predict the date when the Tank will
run out of petrol. A new Order needs to be created when the time until the
predicted empty-date is close to the estimated delivery time (we need to define
precisely what we mean by ‘close’).

We can now extend our model to make the statement of requirements more
precise (Figure 2.13). The start of a FillDepletionCycle (FDC') is recorded by its
fillDate. An FDC must be associated with a Tank; a Tank is associated with a
succession of FDC's. An FDC' is also associated with a set of TransactionRecords;
this set contains all the records for the associated Tank that have been completed
since the fillDate. The volume dispensed so far in the current cycle can be derived
from the volumeDispensed attribute of the TransactionRecords, and used to predict
the predicted TankEmpty date.

A FillDepletionCycle is also associated with the collection of CompletedOrders;
the diamond symbol in the diagram indicates that CompletedOrders collects in-
stances of Order. The estimatedDelivery Time is an attribute derived from the date
information in all the completed Orders—for example, it might be the maximum
or the median value. At an appropriate time, an FDC' creates an Order (indicated
by the curved arrow to the new operation).

The dynamic view of this is shown in Figure 2.14. When a Tank is filled, a
new FDC is created (new) for that Tank—the curved line joining the aTank and
anFDC' timelines indicates that they become associated. The fillDate is recorded

2.5 Specifying a solution

Completed Orders

« estimatedDeliveryTime : TIME

|
A

Fill Depletion Cycle has Order
« fillDate : DATE * new

« predictedEmptyDate : DATi_}/
/

completedRecords ~ for
/
/
/
, |
/ |
Transaction Tank
Record

theSupplier :
Supplier

Figure 2.13 The fill-depletion cycle

_ anFDC :
CaTank ~ Tana GillDepletionCycIQ C

anOrder :
Order

)

)/)\(for
(fill new

closeTo

(anFDC.predictedEmptyDate — NOW)

completedOrders.estimatedDeliveryTime

5/’\@

new

Figure 2.14 Fill-depletion cycle dynamics

23

24 Chapter 2. ORCA by example

by the new operation. Some time later, when the ‘trigger condition’ holds, the
FDC' creates an Order. Notice how this behaviour links the previously mod-
elled Transaction and OrderDelivery behaviours, and shows what it is that creates
Orders.

If this were a real analysis, there would of course be much more detail and
supporting information in the statement of requirements.

2.6 Change and development 25

2.6 Change and development

Having produced a sufficiently precise statement of requirements, we have reached
the end-point of the analysis process. The client now needs to decide whether to
proceed with the specified changes to the business and with development of the
proposed IT system.

An important issue for the design of the new IT system is how the basic and
derived information is to be stored and accessed. For example, the payment han-
dling behaviour writes completed TransactionRecords to some data store, which is
also accessed by the ordering behaviour. Since the ordering behaviour accumulates
information from TransactionRecords as they are produced, storing the records in
sequential files may be adequate.

One of the relevant factors in designing information storage is the quantity and
complexity of the information to be handled. This is something that should be
addressed during the analysis activity. For example, it will be useful to know how
many transactions typically take place within a fill-depletion cycle.

As developers, we also need to determine the tasks undertaken by or with the
IT system, and when these are performed. A simple option would be to run a
batch process at the start of each day. This process would:

e collate information from the previous day’s TransactionRecords

e for each current FillDepletionCycle (one for each Tank), calculate the pre-
dictedEmptyDate, and determine whether an Order needs to be placed

e generate Orders, both as internal information, and as concrete outputs (for
example, paper forms)

Updating the estimatedDeliveryTime would probably be done on a less frequent
basis, depending on how often deliveries occur—perhaps once a week.

We also need to consider user interaction, generation of management reports,
whether there needs to be manual over-ride in case the system doesn’t work prop-
erly, and a variety of other issues.

2.7 Conclusion

This relatively simple example illustrates the process of analysis, from the very
earliest stages through to a precise statement of proposals for change and (in this
case) requirements for an IT system. The analysis, if done in full, would provide a
firm basis for proceeding into I'T systems development.

The next chapter summarises the key ideas of ORCA, and presents them in the
context of this example.

Chapter 3

ORCA’s key ideas

3.1 An analysis process needs to be tailorable

Different analysis situations require different analysis processes. In some situations,
particular aspects of the analysis process need to be emphasised, while other aspects
are de-emphasised or omitted altogether. It is not necessary, or even desirable, to
use all of ORCA on every analysis! For example, some aspects might be entirely
absent where the client’s world is developing into new areas, or is responding to
external change. One of an analyst’s first tasks is to assess the nature of the given
analysis situation, and determine the kind of analysis process that is appropriate.

An analyst therefore needs to respond to different situations by tailoring the
analysis process. Part II illustrates ORCA’s Basic Process by working through an
example analysis in detail; Part IV presents a variety of process tailorings, and
discusses their applicability.

This approach to analysis is reflected in the ORCA method itself. Although we
refer to a ‘method’, this does not denote a set of procedures to be worked through
mechanically. Rather, ORCA offers a set of ideas and techniques that we hope is
both coherent and practical.

3.2 A system has purposes as well as behaviour

A system is not just a ‘naturally occurring’ combination of objects and interac-
tions—we assume that it is the subject of various purposes. For the petrol station’s
owner, the purpose of the petrol station is to make money; for the customers, it is to
supply petrol to them, when they want it, at a reasonable price; for the attendant,
to provide employment; for the supplier, to buy its petrol. These purposes are
what gives a system its raison d’étre.

The various purposes of a system may or may not be compatible with each other.
This is something that the analysis process needs to discover, since incompatible

26

3.3 A system is a network of co-operating roles 27

purposes may be a root cause of observed problems.

The analysis process also needs to investigate the degree to which the behaviour
of a system satisfies its purposes. In the case of the petrol station, the system is
deficient in the degree to which it satisfies its purpose with respect to the customers
(providing petrol, ...). As a consequence, via the problem of falling sales, it is
deficient in the degree to which it satisfies its purpose with respect to the petrol
station owner (make money).

It follows from this view that analysis is concerned not only with behavioural
modelling; purposive modelling is also needed, in order to understand what a sys-
tem is supposed to be doing. ORCA provides two modelling languages to support
this dual approach.

3.3 A system is a network of co-operating roles

The purposive view of a system is as a network of co-operation relationships be-
tween roles with regard to the provision of services. These co-operations exist (or
should exist) in order to achieve the various purposes within a system.

A co-operation between two roles exists when one role guarantees to provide
some service to the other role, and the second role relies on the provision of that
service. In general, multiple guarantees may combine to satisfy a single reliance.
ORCA’s purposive modelling language allows co-operations between roles to be
stated explicitly. The models in Sections 2.3 and 2.4 show how a system can be
described by a network of co-operations.

In a properly functioning system, each co-operation is realised by some be-
haviour. Objects can interact either directly, or via ‘shared’ objects. Objects
can become mutually associated, and conversely dissociated, at different times.
ORCA’s behavioural modelling language allows patterns of interaction and associ-
ation between objects to be described, using the framework construct.

In the purposive view of a system, each role can have its own local view of
the world, in terms of that role’s guarantees and reliances, and the co-operations
in which it is involved (either as guarantor or relier). The analysis process may
thus need to check the compatibility of multiple viewpoints, and reconcile incom-
patibilities where these exist. ORCA’s purposive modelling language supports the
description multiple viewpoints. Section 2.3 gives a local description of Customers,
but in that simple example we do not have the problem of incompatible viewpoints.
We might have had the situation shown in Figure 3.1. There are three problems,
shown in the diagram by using dashed lines for the co-operations. Customers want
cheap petrol, and will presumably go elsewhere to find it, whereas the petrol sta-
tion provides petrol at a price that is determined by factors other than customer
demand (such as OPEC agreements and excise duties). The petrol station secks
to gain customers from its competitors by offering tokens for attractive ‘free gifts’.
There is a problem here because customers don’t actually want these—they would

28 Chapter 3. ORCA’s key ideas

Customers Petrol Station

provided with -
cheap petrol | — — T T 7 provide petrol

<:" o provide ‘free
gift' tokens

provided with

toilet facilites | ~ ~ ~ <:

Figure 3.1 Problematic co-operations

rather have cheap petrol. Customers also want the petrol station to provide toilet
facilities, but the petrol station seems unaware of this.

The petrol station’s view that it should provide gift tokens is an intrinsic descrip-
tion (what the petrol station believes about itself). The petrol station’s belief that
customers want gift tokens is an extrinsic description of Customers. In Figure 3.1,
this is shown by the guarantee box adjacent to (not overlapping) the Customers
box. Similarly, the customers’ belief that the petrol station should provide toi-
let facilities is an extrinsic description of Petrol Station. In ORCA’s purposive
modelling language, extrinsic guarantees or reliances are shown only if there is no
matching intrinsic description. For simplicity, Chapter 2 assumes that extrinsic
and intrinsic descriptions match, and that all co-operations are valid (indicated by
a solid connecting line).

3.4 A system may exhibit pathologies

The aim of analysis is to determine the requirements for change to the world. The
old adage ‘if it ain’t broke, don’t fix it” suggests that proposals for change should
arise from an analysis of what is wrong with the world. Using a medical metaphor,
we refer to the latter as a pathology; the proposals for change are referred to as
the prescription.

A pathology might reflect internal defects, such as inappropriate organisation or
incompatibilities between components. Alternatively, the previously viable world
might be inadequate in the face of external changes, or might have inherent limi-
tations that are preventing desired change. With the petrol station, the problems
are internal-—ordering is not working effectively.

ORCA’s dual view of the world, in terms of both purpose and behaviour, allows
us to characterise the following different kinds of pathology:

e Disagreements between roles about what they should be doing: that is, faulty
co-operations. In ORCA purposive models, these show up as reliances that

3.5 Models can describe the Old World, or a New World 29

are not met by guarantees, or unmatched extrinsic descriptions.

e Faulty realisation of co-operations by behaviour: the services that should be
provided are not provided adequately.

e Faulty or inefficient interactions, due to behavioural incompatibilities, lack
of coordination or insufficient resources.

A prescription proposes changes to the world in order to remedy a pathology. These
changes might involve any of the following:

e reorganisation

e reallocating responsibilities between components
e changes in manual procedures

e improvements in communications

e increases in resources

o staff training

e capital purchase of equipment or facilities

e computer support

With the petrol station, the prescription is basically for a change of procedures
together with computer support, but capital purchase and staff training might
also be involved. The examples in Part IV illustrate different prescriptions.

For a given pathology, a number of alternative prescriptions can be produced.
These may then be assessed against relevant criteria, such as the time and cost of
implementation, running and maintenance costs, or level of risk involved. With
the petrol station, we might have decided that it would be simpler and cheaper to
install additional storage tanks.

3.5 Models can describe the Old World, or a New World

Given that a prescription is a proposal for change to the world, we potentially have
two kinds of model: of an Old World that exhibits a pathology, and of a New World
that exists after implementing a prescription. In Sections 2.3 and 2.4 we have Old
World and New World purposive models of the petrol station. These indicate the
need for an additional co-operation between Payment and Ordering.

The behavioural model of tanks, pumps, transaction records and orders is com-
mon to both Old and New Worlds. This is because our proposed solution is essen-
tially to do with decision making and scheduling (creating orders at more appro-
priate times), rather than the introduction of new kinds of object. However, the
‘intelligent’ fill-depletion cycles belong only to our New World (and implementing
the computational aspects of these objects is a task for the software designers).

Just as we may have alternative prescriptions, so we may have alternative New
Worlds. In some cases, we might want to have an explicit description of an ‘ideal’

30 Chapter 3. ORCA’s key ideas

world, regardless of the practicalities of realising this. Alternative ‘pragmatic’ New
Worlds could then be assessed against this ideal.

Although the basic ORCA process covers the four related ideas of Old World—
Pathology—Prescription—-New World, these are not equally applicable in all situa-
tions. Where the client’s world is developing into new areas, for example, there may
be nothing useful to say about the Old World. Where external changes are forcing
re-evaluation of a previously viable system, the Old World will not be pathological
in itself but only in the context of the external changes.

3.6 A system is embedded in an environment

The ‘real world’, which analysis seeks to describe, is a continuum—there are no
hard boundaries between different areas. In contrast, a model of a system is nec-
essarily ‘closed’: it is a statement of what is relevant for the purposes of analysis.
Things not stated explicitly are by implication irrelevant.

What this means in practice is that analysis should investigate the ‘environment’
of a system, in order to determine what is actually relevant. From a given ‘core’
system, chains of purposive and behavioural relationships can be followed outwards.
At some stage, a decision must be made that the ‘system boundary’ has been
reached, and that everything outside this boundary is viewed as irrelevant (for the
particular analysis).

In Chapter 2, the petrol station itself is the ‘core’ system. However, the prob-
lems that the analysis is investigating require customers and petrol suppliers to be
included in the system. We could have cast the net wider still, and looked at how
suppliers get petrol from producers, or how national taxation authorities affect
the price of petrol. There is thus no a priori boundary to a system: it must be
determined by analysis, for a particular analysis situation.

The ‘core’ system from which the investigations start typically corresponds to
that part of the world over which the client has direct control. In our example anal-
ysis, this is the petrol station as a commercial unit. Radical changes (including
IT developments) are potentially feasible. In contrast, the petrol station’s envi-
ronment contains customers and supplier, which are not under the client’s direct
control. Changes to the system involving such ‘environmental’ entities are going
to be much harder to implement, although it might be possible for the client to
influence them, in various ways. In practice, there may be constraints on what
can be changed within the client-controlled world, for political, financial or prac-
tical reasons. What is or is not open to change may become apparent only during
analysis.

3.7 IT systems are ways of implementing behaviour 31

3.7 IT systems are ways of implementing behaviour

The analysis process may need to talk about ‘IT systems’, either as part of the Old
World (existing data processing or control systems, say), or as part of a proposed
New World. For the petrol station, we propose a computerised ordering system as
part of the New World.

Such IT systems are different in nature from the ‘systems’ that are the subject
of analysis. The latter kind of system is a view of what is essential about some
area of the world (in both purposive and behavioural terms). IT systems are a way
of implementing some aspects of essential behaviour.

In the case of the petrol station, the proposed New World involves more ‘intel-
ligent’ ordering behaviour, using information about customer transactions. This
new behaviour needs to be implemented using some combination of human, phys-
ical and computational resources. The idea of an ‘IT system’ is an I'T developer’s
view of this: ‘users’; input/output devices, communications links; software data
and functionality.

For the purposes of analysis, we are concerned with the capabilities of existing
or proposed IT systems, rather than their actual design (although it is difficult to
divorce the two entirely). As with all prescriptions for system change, specifica-
tions for IT developments need to be practicable, given some set of development
resources and constraints. The aim of analysis should be to define a solution that
is both effective and practicable, while not unduly restricting the ways in which
the solution can be implemented.

3.8 Models can express different levels of abstraction

Both purposive models and behavioural models can express different levels of ab-
straction. By this we mean whether a modelled entity is viewed as a single unitary
entity (a role or an object) or as a composite of multiple simpler entities (a cluster
of subroles, or a population of subobjects).

Within a purposive model, a role can be modelled as a cluster of roles; each
component (sub)role can in turn be modelled as a cluster of (subsub)roles, and so
on. A service guarantee offered by a role can be delegated to guarantees of one
or more of its component roles. Conversely, the need of a role to rely on a service
can be promoted to its enclosing role. Examining how guarantees and reliances
are propagated between roles at different levels is an important part of purposive
modelling in ORCA.

This is illustrated by the petrol station example, in which services involving the
petrol station as a whole are delegated to (or promoted from) its component roles.
For example, Petrol Station guarantees to Customers to ‘provide petrol’, and this
is delegated to Petrol Dispensing (Figure 2.4).

Within a behavioural model, unitary objects are treated as instances of classes,

32 Chapter 3. ORCA’s key ideas

Pump

» startDispensing
» stopDispensing
* currentVolume
e currentCost

Figure 3.2 Pump as a class

Pump
Nozzle Trigger Display
° remove * squeeze * currentVolume
« replace * release e currentCost
* clear

Figure 3.3 Pump as a framework

where the class of an object defines its features (attributes and operations). In the
second case, objects are treated as populations of subobjects, described by frame-
works, which define organisational structure and patterns of dynamic behaviour.

Suppose that we are interested in a customer’s interaction with a pump. We
could characterise pump objects by the class Pump (Figure 3.2). startDispensing
and stopDispensing are operations performed by a Customer on a Pump. current-
Volume and currentCost are visible attributes, shown on the pump’s display.

Alternatively, we could treat a pump as composed of its parts (Figure 3.3). The
diagram says that a Pump consists of one Nozzle, one Trigger, and one Display—
there would in practice be other parts as well.

The features defined by the Pump class can be mapped to the constituents
and behaviours defined by the Pump framework. In this case, the startDispensing
operation on Pump maps on to a combination of operations: removing the nozzle
from its holster, then waiting for the display to be cleared, then depressing the
trigger. A similar situation holds for stopDispensing. The currentVolume and
currentCost attributes are mapped to equivalent attributes of Display.

Within analysis, models are used to investigate a system, and to provide some
definitive description of it. In the first case, it is important that an analyst has the
conceptual and notational tools to explore different levels of abstraction. ORCA

3.9 Overview of ORCA 33

attempts to provide these tools. In the second case, it is important for an analyst
to find an appropriate level of abstraction at which to describe the system. A
sufficient, but not excessive, amount of detail needs to be provided.

The petrol station example is too simple for this dimension of analysis to be
very evident, but the larger case study in Part II illustrates it in more detail.

3.9 Overview of ORCA

In summary, the key ideas of ORCA are:
e An analysis process needs to be tailorable.
e A system has purposes as well as behaviour.
e A system is a network of co-operating roles.
e A system may exhibit pathologies.
e Models can describe the Old World, or a New World.
e A system is embedded in an environment.
e [T systems are ways of implementing behaviour.
e Models can express different levels of abstraction.

The second and third items in this list concern the conceptual basis of ORCA.
The key concept is that of a service: a system is seen as a set of interrelated
services. ORCA offers two views of services (and thus of systems): purposive and
behavioural. This is illustrated in Figure 3.4. This dual view of systems is explored
more fully in Part III.

34

Chapter 3. ORCA'’s key ideas

Role

Role

L > L

I co-operation

‘ guarantee
S |

Role

reliance

concerns

realises

behaviour

(E/—\O
association

O—>—0

interaction

Figure 3.4 ORCA conceptual framework

time

4_____

Part 11

The Basic Process

Chapter 4

Introduction to the case study

4.1 Introduction to Part II

In this part, we work through a substantial, realistic case study. This case study
is used to introduce and illustrate the main aspects of ORCA. Details of the
modelling languages are explained in the context of the example material, while
general discussion of modelling concepts is left until Part III.

The chapters in this part take the case study through the whole analysis process.
The reader might wonder why such an extensive example is required. There are
two reasons. Firstly, analysis typically deals with complex situations. This is
precisely when the assistance of an analysis method is needed. If this book were to
deal only with ‘toy’ examples, it would appear as if we were using the proverbial
sledgehammer to crack a nut. Secondly, it would be difficult to illustrate the
time dimension of the analysis process using a small example. Analysis proceeds
by integrating different partial views of a system into a coherent picture, and
constructing a specification and rationale for change. This aspect of the process
would not be illustrated by simply presenting a finished ‘solution’.

The subject matter of the case study—a weaving factory—is deliberately unfa-
miliar, and comes with its own (somewhat bizarre) terminology. As with complex-
ity, this reflects the real world situations with which analysis typically deals. The
method would not be sufficiently exercised if we ‘analysed’ a familiar, unproblem-
atic situation.

The analysis case study, as written up for this book, is necessarily a rationalised
and tidied-up version of what was produced in actually doing the case study. Nev-
ertheless, the chapters in this part do provide a fair illustration of how ORCA can
be used in practice.

This introductory chapter serves two purposes. Firstly, it provides a preview
of the ORCA Basic Process, which is used for the case study. (Variants of the
Basic Process are illustrated in Part IV.) Secondly, it provides a brief description
of the analysis situation addressed by the case study, in lieu of real information

37

38 Chapter 4. Introduction to the case study

gathering.

4.2 Overview of the ORCA Basic Process

We use a basic version of ORCA’s analysis process for the case study described in
this part. This Basic Process covers most of the products and activities that make
up ORCA, and does so in a fairly straightforward sequence. In practice, no single
process is suitable for all analysis projects, so it is likely that the Basic Process
will always be tailored to some extent. Examples of such tailorings are described
in Part IV.

All ORCA projects, whether using the Basic Process or a tailored one, begin with
the following activities:

Preliminary Analysis; Information Gathering

A problem statement, whether a formal proposal or an informal musing, can express
discontent with a current situation, or a desire for things to be different. Such a
statement forms the starting point for an analysis project. Some consideration of
the problem statement is needed in order to understand whether anything useful
may be done at all.

If the project is to proceed, a common understanding of the scope and aims
of the project is necessary for the client and analyst. The project’s scope should
give an indication of which areas are to be investigated, and how thoroughly.
The project’s aims are likely to be given in relation to development objectives—
removing a problem or building something new. An agreement achieved in this
activity can form the basis for a formal (contractual) definition of the project.

Process Design

To be effective, the process to be used by the analysis project has to be designed
with regard to the expected characteristics of the project—the scope and aims
of the project, and its participants. A process describes a bundle of activities
and their products, and a plan for the execution of this process. The plan covers
resource management and monitoring throughout the project. The Basic Process
covers most of ORCA’s activities and products.

The Basic Process continues as follows:

Modelling Old World Purpose and Behaviour

Faced with a complex or novel situation, the analyst may feel the need to model
the way things currently are, in order to understand the situation better. Two
aspects of the world can be modelled: purposes, and the behaviour supporting

4.2 Overview of the ORCA Basic Process 39

those purposes. Only as much modelling should be done as is needed to clarify the
situation, or to identify problems with the current situation, or to identify parts of
the world that are affected by development objectives.

Determining Pathology; Prescribing Change

The Old World model provides a basis for determining system pathology: the iden-
tification of fundamental problems with the current situation, particularly with
regard to any new demands imposed by the development objectives. The conse-
quences of these problems can be traced throughout the system, their seriousness
assessed, and courses of action prescribed for resolving the problems. A prescrip-
tion can encompass changes to the existing system and the development of new
system components.

Modelling New World Purpose and Behaviour

A set of prescriptions that are compatible with each other can be considered as
one bundled course of action. Several alternative bundles might be evaluated with
regard to how well they achieve the development objectives, and what other benefits
and costs are associated with them. One of these bundles may be chosen as the
one to be implemented.

Models of the bits of the New (post-development) World that the analyst is
interested in are built. These can again be in terms of purposes and the behaviour
supporting those purposes. These models form the New World specification, and,
unless the proposed changes are extremely radical, will be derived in part from the
Old World models. The specification is the main tangible ‘product’ of the Basic
Process, although the confidence in the chosen course of action given by a thorough
understanding of the Old World, and of the problems and possible changes that
could be made, is also important.

Development and Transition

After these activities comes system development, which involves implementing the
New World specification, and so making changes to the real world. This activity
is shaped both by the characteristics of the project as identified in the initial
activities, and by the nature of the prescriptions chosen. It is even more unlikely
that one process covers all eventualities here, and so this activity must begin with
choosing a process that is effective in allowing the chosen New World to be built.
The activity continues as detailed in the chosen process.

This activity is strictly outside the scope of the Basic Process, being the activity
during which the Basic Process stops being used, and something else begins to be
used. For a successful project, the two have to be compatible. Most directly,
the New World specification must be appropriate as raw material for the chosen
process—or the process that is chosen must be appropriate for the New World
specification that has been produced. More is given on this post-ORCA activity

40 Chapter 4. Introduction to the case study

model Old World
behaviour (8)

model New
World behaviour
(10)

gather
information (5)

determine
pathology (9)

prescribe
change (9)

development and
transition (10)

model Old World
purpose (7)

model New
World Purpose (9)

preliminary
analysis (5)

Figure 4.1 ORCA’s Basic Process. The bubbles represent activities, the arrows rep-
resent dependencies. The numbers point to chapters in this part where the activity is
described

in Chapter 22.

The Basic Process is summarised in Figure 4.1. An iconic ‘road map’ form is used
to head each remaining chapter in this part, to indicate which activities are being
described there. Also, variants of the diagram are used in Part IV to indicate which
parts of the process the tailorings affect.

4.3 Brief description of the case study

The case study described in this part concerns a (real) small weaving company.
Since this is, unusually for a weaving company, based nowhere near Manchester,
we have dubbed it NIMWeC: the ‘Not In Manchester Weaving Company’.

Below, we give a brief description of the analysis situation for NIMWeC. This
provides some basic information on the business and the manufacturing process,
which the analysis will attempt to clarify. It also provides an initial statement
of the client’s current concerns and aims for the future, which the analysis will
address. A glossary defines some of the weaving-specific terminology.

This description is provided in lieu of actual information gathering: talking

4.3 Brief description of the case study 41

to the client and the employees, observing the manufacturing process, studying
paperwork, and so on. This is a necessary ploy for the purposes of this book,
since it would be difficult and tedious to mimic actual information gathering (for
example, by giving transcripts of hypothetical interviews). The description below
is mot an initial ‘problem statement’ given to us as analysts. The case where a
documentary ‘problem statement’ is the only source of information is dealt with
in Chapter 20.

4.3.1 NIMWeC

NIMWeC is a narrow fabric weaving factory. There are two main products, which
are kinds of woven label:

e name tapes, sold mainly to parents for sewing into their children’s school
clothing

e shirt size labels, sold to shirt manufacturers

Name tapes make the money, but are seasonal. Shirt size labels are ‘loom fodder’
to keep the factory and staff employed when the name tape business is slack.

4.3.2 How name tapes are ordered and processed

Orders for name tapes come from two sources:

e Books of 50 order forms for name tapes are sold to school clothing shops. A
customer buys an order form from the shop, fills it in, and the shop sends it
to NIMWeC.

e Adverts containing an order form are placed in magazines. A customer fills
in the order form and sends it, along with payment, to NIMWeC.

A correctly filled-in order form contains five items of information:

e the customer’s address

e the name to be woven—there are no limits on length

e the quantity, in multiples of 72 (a repeat)

e the letter colour—red or blue

e the style required—Ilarge or small
Orders are batched into numbered groups of about 30 repeats, each batch composed
of orders that as far as possible all have the same style and colour. These batches
are sent to the factory floor.

Sometimes an urgent order subverts the batching process by being sent straight
to the looms. This is done, for example, when an order has been woven incorrectly,
and needs to be rewoven.

There is a busy period towards the end of the summer, as a consequence of
the school year beginning in September. All orders are woven within 14 days—

42 Chapter 4. Introduction to the case study

NIMWeC’s big competitive advantage.

4.3.3 How labels are woven

The current factory is based around two looms and their control systems. Some
characteristics of the loom are:

e Each loom has one operator.

e Each loom weaves 72 pieces at a time (hence name tapes are ordered in
multiples of 72).

e Each loom runs at about 100 picks/minute.

e FEach loom has a ‘warp end breakage detector’, which stops the loom should
a warp end break. A warp end breaks every half hour or so during weaving.

e Each loom has two electromagnetic jacquard machines, which lift or drop
warp threads to allow a shuttle to be passed through.

e Each loom has an electromagnetic lifting box, which selects whether a brocade
or a ground shuttle should be used on the next pick.

e Fach loom has a cam arrangement whereby the jacquard can detect what
stage of weaving the loom is at, and so whether to lift or drop threads.

e Each pair of jacquards is connected to a control box, which tells the jacquards
which warp ends to lift or drop for each pick.

Only one jacquard machine would be needed for each loom if the height of the
loom were increased by a couple of feet and some new harnesses fitted.

A white ground warp is used. A loom weaves only one colour at a time (so all
the brocade shuttles have the same colour in them). Changing the colour of a loom
takes about an hour.

The warps on the looms last about a year. The warps must not run out during
the busy season, as it takes about two weeks to re-warp a loom.

Each of the looms is controlled by a control box, the front of which has four
patch panels, each of which allows the operator to set up one name to be woven.
Each of the control boxes controls one font: style large (loom 1) and style small
(loom 2).

4.3.4 Name tape dispatch

Special marker patterns are woven into the ribbon: a mark to show the beginning
of each batch; a fold mark to show where to fold the ribbon when sewing it into
clothing; a mark at the boundary between different names and the boundary be-
tween repeats of the same name. A tie-mark is woven along with the fold mark;
this ties the brocade thread to the back of the ribbon to stop it pulling out of the
cloth when the ribbon is cut up.

The ribbons that come off the looms are cut up into individual packs of names

4.3 Brief description of the case study 43

and put in plastic bags, one batch to a bag. They are then returned to the orders
office.

4.3.5 Problems and worries

e Patch panel: the operator can be at the most three names ahead of the loom.
Setting the correct plugs in the correct holes sufficiently ahead of the loom
is a major problem requiring significant staff effort. Customers do return
incorrectly woven orders to NIMWeC.

e Control box: these machines are very expensive and very unreliable, and so
no more should be bought.

e Orders are sometimes sent to the wrong address.

e As the majority of the factory’s work is done during the summer holidays it
is essential that everything works reliably during this period.

4.3.6 The client’s idea of a desirable state of affairs

The broad requirements are:
e double production of name tapes (there is sufficient market demand)

e more statistics about the process (this should allow better prediction of future
activity)

e fewer incorrectly woven name tapes

e the ability to expand into the Israeli and Swedish markets

4.3.7 Weaving glossary

jacquard: the mechanism responsible for forming the correct sheds for the letter
being woven. NIMWeC’s looms have an electromagnetic arrangement con-
nected to the control box. Each jacquard machine detects where in the loom’s
cycle it is, so that it knows when:
e the jacquard electromagnets should be energised

e the lifting box electromagnets should be energised
lifting box: controls which shuttle (ground or brocade) is used on the following
pick.
narrow fabric loom: weaves ribbons with 64 threads, about 1 cm wide. Each of
NIMWeC’s looms weaves 72 ribbons at a time.

patch panel: a panel on the control box into which an operator puts pegs, each
peg corresponding to a letter of the alphabet, to weave a particular name.

pick: one loom cycle.

piece, ribbon: a strip of cloth woven by a narrow fabric loom.

44 Chapter 4. Introduction to the case study

shed: the pattern of warp threads picked up or dropped down at each pick.

shuttle: used to hold a bobbin of weft thread and pass it between the separated
warps. The ground and brocade wefts are each mounted in a bobbin in a
single shuttle; there are two shuttles per ribbon.

warp thread, warp end: the thread that runs in the direction of weaving, along
the length of the ribbon.

weft thread: the thread inserted across the direction of weaving. There are two
kinds of weft:

ground weft: thread that is the same colour as the warp, making the ‘body’
of the ribbon.

brocade weft: red or blue brocade, inserted to make the letters. When the
brocade is inserted the loom does not move the ribbon on, in order to
avoid unsightly gaps in the ground ribbon.

Chapter 5

Preliminary Analysis

5.1 Introduction

This chapter is about the preliminary activities that need to be performed in order
to set the scene for the main analysis activities. This ‘preliminary analysis’ involves

e gaining an initial understanding of the client’s world
e establishing the analyst’s terms of reference

e identifying the sources of information

e defining the contractual task

The rest of this chapter looks at these activities in more detail.

5.2 Initial understanding of the client’s world

It is important for an analyst to get an initial understanding of the situation to be
analysed. Although this understanding might well change in the course of analysis,
it provides necessary orientation during the early stages of the process. Initially,
an informal overview of the client’s world should be built up in discussions with
the client.

A useful technique is to use a Soft Systems Methodology rich picture [Checkland
1981], [Patching 1990]. A rich picture is an informal pictorial description of a
system, suitable for constructing interactively on paper or whiteboard. This allows
a description of the client’s world to be captured in a way that allows discussion to
take place, and consensus and conflict to be identified. There are no rules for rich
pictures—it is up to the writer to determine how to capture information. Hence
rich pictures are not intended for other people to read (although they could be
‘talked through’ by the writer); it is the process of drawing the picture that is

45

46 Chapter 5. Preliminary Analysis

important, rather than the end-result.

During initial discussions with the NIMWeC client we draw the rich picture shown
in Figure 5.1. This rich picture includes the things that seem most important to
the client, such as looms, control boxes, customers, warps, orders, and so on.

5.3 Establish the terms of reference

A project’s terms of reference establish the framework in which the analyst and
client operate. The terms of reference should define the nature and extent of the
analysis, the aims of the analysis and subsequent development, and the people to
whom the analyst is responsible. It is impossible to give an exhaustive list of the
contents of the terms of reference, as they will vary according to the nature of the
project.

For the NIMWeC analysis, we consider the following issues:
e drawing the analysis boundary
e determining the political and social context
e identifying the development objectives

e identifying the analysis objectives

5.3.1 Draw analysis boundary

Setting the analysis boundary delimits the areas of the client’s world to be inves-
tigated. This boundary must encompass all areas that may be subject to change
and development.

The initial problem presented by our NIMWeC client is expressed in terms of
problems associated with the control boxes for the looms. These are expensive and
unreliable, and the client wants to replace them with a new control system in order
to be able to expand production by operating more looms. So, the manufacturing
process is to be our primary area for investigation.

However, after discussion, we agree with the client that the scope of analysis
should be widened to include NIMWeC'’s interactions with its customers and sup-
pliers. This allows us to investigate the wider consequences of an expansion in
production, both with regard to the other parts of NIMWeC, and with regard to
the outside bodies that it deals with (Figure 5.2).

This set of concerns corresponds to a high level view of manufacturing, with
customers and suppliers, and NIMWeC in the middle.

It is important to establish what falls outside the analysis boundary, as well
as what falls within it. In this case, the client excludes financial matters, pricing

5.3 Establish the terms of reference 47

Compel-}i-ors

Firances
i1 Pricing & ‘K % E

mﬂrkt";ﬂj

-1k -] T
rraduc.hon {-as'rtl‘ SU?PhErf
St‘ﬂ"’l;hft. Furn -ﬂfnund [

d-u‘)lf
F(n.ulue'r iow L

I.\'''‘'‘'‘'---r"----"\-_--"---l-"*""'

m-r_Lm

(Q—{;,r_ull-
Opqra\-af' % M:r/))

5«&7’ \
Loorm |— i{ Loeam Fithe e

—_— .
37| s Ta] et <y
B#K an

Un rt‘m'ﬂc

rd
grders Pﬂt‘t‘..'n Pu. AEI

f- Ocdece bed Gorweank
=R leun's Lﬂhqrt

gedarcs Cul-h!r uk‘a
H {)u‘inqﬁlr & pﬂﬁ‘ﬂﬂ‘ A @
i—u;-et

Mony E'oc’rurer.c

e Clo“\iuj gt\-ri

—
nosvtme f:_t tape s SL.P cuskemear s
Q

reoder ey L
ol %:, Kn:::c-.alfnl-ee'! o ‘*'-2 %'i'

e M S

Figure 5.1 NIMWeC rich picture

48 Chapter 5. Preliminary Analysis

ComPel—.\—ors

Firances Xs ;‘ i
Pricin
1 1 murkjt:i-nj P
———— /’

Prhdor:hca ﬁ“"\"r 3 ,/ gu?Plﬁerc
i ' Furn =orsund !
shabisghcs — /B(‘.mae
devhle U;_,.o haw I.\ ;' & vaep (B
preJ:c.HOa'f '“"'“""‘-'-/) Horead
\“_\-_'\-_' ’
N A L,

Boss -7 (e

emmm = (a%&m:i,/)
- Fo W
O(-Qra'rbr -X—

- \
1/ Laktche ¢ \
/ A
Log-- Fithe e \\
/f i‘ Bul’:."\ *9 %{ - A
/ l”' J :YGCWUI’J Conteol Ex{‘“‘wo !
/ [} and \
. . k Uncelioble! [
; grdert Parct Panel ,
/
17' Goru@.n"
% O'd'" 4 R Wens Labele /'
|'
I grdarcs Cuttec pockcJ \
! K poymant & Cacker \ na-e % Y\
I \'c‘m.: !
| Monubacturers
! Clawminy Shags /

\ ﬂose-r.-'ng {::::’:.{‘“ S'L.? cuskomar /1’
\\ reodars O (sheuld be o g % %* ’
Voef fe® (gecvrere d ’

Mo e

-
- -
- -
e e
_—— - . —

Figure 5.2 NIMWeC analysis boundary

policy and marketing activities. In other words, the analysis is to look at NIMWeC
as a manufacturing system, rather than as a commercial system. Also, although
the boss (our client) acts as a source of information and objectives, his role within
the company is not open to examination. Proposals that NIMWeC be turned into
a workers’ co-operative will not be welcomed!

5.3.2 Determine the political and social context

An analyst needs to understand the political and social context within which in-
vestigations and changes are to take place. The following questions give an idea of
what an analyst should find out.

e Who has the authority to implement changes in different areas?
e Who resolves conflict if this occurs?
e Who wants change to happen? Who doesn’t?

5.3 Establish the terms of reference 49

e Are certain kinds of change going to provoke opposition? If so, why?
e Are particular ways of doing things valued?
e Who ought to be involved in the analysis process?

An analyst also needs to consider the motivation for the analysis project itself. A
common scenario is that one faction within an organisation obtains the services
of external consultants to reiterate their own views to other factions (perhaps
to senior management). Disinterested opinions from an external source are often
assumed to carry greater weight in internal disputes (‘and if they're this expensive,
they must be right’). In such a situation, a particular conclusion may be expected
from the analyst. This clearly presents problems if the analysis points to another
conclusion.

Formulating a strategy in the light of these investigations will help to steer a
course through the often murky political and social waters of a client organisation.

For NIMWeC, we establish that the company is under the ownership of a single
person. The owner—our client—manages the company directly and takes all major
decisions.

There is a small workforce made up mostly of long-term employees. Some of
the staff have valuable skills and many have extensive knowledge of the operation
of NIMWeC. The client is adamant that these staff should not be deskilled if at
all possible—they should retain a high degree of control over the weaving process.

There is dissatisfaction with the looms’ control boxes, and a desire for a more
up-to-date working environment. It seems that any prescription is unlikely to be
considered unless it addresses these problems. However, the client also feels that
the character of the factory (dark, noisy and generally with a feel of the workhouse
about it) and many of the traditional aspects of the weaving process should be
retained.

5.3.3 Identify development objectives

Clients typically expect the analysis and resulting developments to assist in achiev-
ing specific development objectives, and possibly also to achieve more general ob-
jectives for the organisation as well. It is important that the analyst understands
all these expectations. In particular, the solutions recommended must support
both sets of objectives, and not undermine them.

Our client wishes to improve profitability by reducing errors in name tape weaving,
by selling twice as many name tapes, and by being better able to predict demand.
The strategy that the client is pursuing is to increase production and efficiency,
and perhaps to sell into foreign markets (Israeli and Swedish) in the future, if all
goes well.

50 Chapter 5. Preliminary Analysis

5.3.4 Identify analysis objectives

Analysts and clients must have a common understanding of the expected outcome
of the analysis. If the analyst is intending to generate only a high level strategic
analysis of the organisation and the client is expecting a detailed specification of
new I'T systems, then there are going to be severe problems.

In this case, our client requires

e a specification for a new control system for the looms, with a view to increas-
ing and ideally doubling production, and eliminating the error-prone parts of
the process

e an analysis of the consequences of increased production for other parts of
NIMWeC

e recommendations on the feasibility of selling into foreign markets

5.4 Identify sources of information

At an early stage, it is necessary to establish what access to information the analyst
is going to have. This probably entails access to people working in the area,
domain experts, documentation, observation, and so on. The political nature of
the organisation also has an effect on how the analysts can go about the process
of information gathering.

For NIMWeC, the client is an expert in all aspects of the operation of the company.
The analysis is to be carried out by means of a series of interviews with this one
person, together with a guided tour of the factory floor.

5.5 Define the contractual task

Much of the preliminary analysis is about reaching a shared understanding of the
client’s world, the developments envisaged and the analysis project to be carried
out. A record of any agreement is usually necessary for a variety of commercial
and legal reasons. This may include summaries of the points mentioned above, as
well as estimates of cost and effort. Such a contractual agreement may be possible
only after the process for the analysis project has been designed, an activity that
is described in the next chapter.

The term analysis project has been used so far rather loosely to mean any
kind of analysis endeavour. Once the stage of contractual agreement is reached,
however, this agreement defines the analysis project as a particular piece of work

5.5 Define the contractual task 51

to be carried out.

For NIMWeC, since the client seems like the right sort, we simply shake hands on
the deal, roll up our sleeves, and set to work.

Chapter 6

Process Design

For NIMWeC, we choose to follow the Basic Process. Although this choice is
convenient for expository purposes, the Basic Process is indeed suitable for the
NIMWeC project. We have agreed in the preliminary analysis that we need to
gain an understanding of the Old World, look at pathologies and prescriptions, and
produce a specification of a New World NIMWeC that achieves its development
objectives. The need to do all this suggests that we should be following the Basic
Process, described in Chapter 4.

The Basic Process is summarised in Figure 4.1. We emphasise that the depen-
dencies do not imply strict sequentiality. For example, ‘model Old World’ depends
on ‘gather information’. This does not mean that there has to be an Information
Gathering ‘phase’ that has to take place before an Old World Purposive modelling
‘phase’. Rather, the diagram should be read as ‘Old World purposive modelling
depends on gathering information’. In practice, modelling and gathering informa-
tion happen side by side, with information gathering being driven (to some degree)
by the needs of the modelling activities. Some information gathering may still be
opportunistic, as sources become available to us or as observations are made.

If we were not to perform all of these activities, or if the situation were in some
way different—if, for example, we were already well acquainted with the weaving
process—then we would need to consider which parts of the ORCA process were
needed. Now would be the time to do it.

There is no ideal or best process. A process that is effective on one project
may be entirely inappropriate on another project. The nature of the process must
reflect the nature of the problem being addressed, and the background of the people
addressing the problem.

Although the ORCA process is split into three—preliminary activities, process
design, process execution—the last two are not sequential: there is feedback from
process execution to process design, in order to ensure that the process remains
effective for the specific project. For example, if the domain is thought to be well
understood, and a suitable tailoring is chosen, but unexpected complications are

92

23

subsequently unearthed, it might be necessary to modify the process to include
more Old World modelling. The designed process should include the means for
handling such process redesign issues, as well as a plan covering products—both
intermediate and deliverable—and the activities that generate and check those
products.

The issue of process design is explored more fully in Part IV.

For NIMWeC, spurred on by an eager client, we move straight on to the task of
understanding the Old World, with the plan of following the Basic Process until
the job is done.

Chapter 7

Old World Purpose

7.1 Introduction

In order to eliminate problems in the organisation, and to develop the organisation
to achieve the objectives of the client, we need a thorough understanding of what
the organisation is trying to achieve and how it currently goes about achieving it.

A good way of gaining such an understanding, particularly if the organisation
is complex, is to model the Old World—the organisation as it currently is—using
the ORCA modelling languages. The models that are produced should describe
enough of the purposes and behaviour of the part of the world that makes up the
organisation for us to understand what it is about, and should help to locate the
cause of any current problems. In addition, attempting to achieve the development
objectives is likely to have various consequences. The models will form the basis
for understanding such consequences.

For this example, we do not expect to find major problems, since NIMWeC is
currently working adequately, though not perfectly. The main aim of Old World
modelling is to provide a context for future developments.

It should be emphasised that modelling the Old World is driven by our need to
investigate and understand the situation. There is no notion that we are trying
to produce a ‘complete’ model of the Old World. What is actually produced is
at the discretion of the analyst, according to the circumstances and course of the
analysis. All the modelling activities are iterative, with models being revised or
extended in the light of subsequent investigations.

This chapter and the next describe the process of modelling NIMWeC’s purpose
and behaviour respectively. The analysis both of current problems and of the
consequences of ‘perturbing’ the models with the development objectives is dealt
with in Chapter 9.

In these chapters, we get to grips with the detail and terminology of the NIMWeC
system. This may seem daunting at first, but it is necessary to show how ORCA
deals with a reasonably complex analysis situation. Reference should be made to

o4

7.2 NIMWeC as a manufacturing organisation 55

Customer Manufacturer Suppliers
Base
supplied supply supplied supply
with finished finished with raw raw
goods goods goods goods

| |
provided with provide provided with
orders for orders for orders for raw
finished goods raw goods goods

provide orders
for finished
goods

finished
goods
paid for

raw
goods
paid for

pay for
finished
goods

Figure 7.1 A simple manufacturing business

Chapter 4 for background information on the example.

7.2 NIMWeC as a manufacturing organisation

Modelling the purposes of the organisation involves modelling the roles that make
up that organisation. The roles are described in terms of how they co-operate to
achieve purposes, and how their components allow them to achieve their purposes.
The ORCA language for describing this is Grampus, illustrated in Chapter 2 and
described more thoroughly in Appendix B.

Throughout this chapter, it should be remembered that we are talking about
the service provision arrangements within the system. The behaviour that realises
these arrangements is the subject of the next chapter.

7.2.1 From a general model to a model of NIMWeC

The initial modelling is done on the basis of the preliminary analysis (Chapter 5)
and talks with the client. As is often the case in analysis, these are not the only
sources of material. Here, recognising that NIMWeC is a manufacturing business,
we bring to the project an idea of what a simple manufacturing business should
look like: a business with both customers and suppliers (Figure 7.1). There are
three co-operations between Manufacturer and its Customer Base: Manufacturer
guarantees to supply finished goods to Customer Base; Manufacturer relies on Cus-
tomer Base to provide requirements for the goods; Manufacturer relies on Customer
Base paying for the supplied goods. In this ideal model, Customer Base’s reliances
and guarantees match Manufacturer’s: Customer Base guarantees to provide the

56 Chapter 7. Old World Purpose

Customer NIMWeC Suppliers
Base
supplied supply supplied supply
with woven woven with raw raw
labels labels goods goods

I I
provided with provide provided with
orders for orders for orders for raw
woven labels raw goods goods

provide orders
for woven
labels

pay for
woven
labels

woven
labels
paid for

raw
goods
paid for

e Customer Base; supplied with woven labels in a timely manner
o NIMWeC; supply woven labels in a timely manner

Figure 7.2 A top level model of NIMWeC

requirements for finished goods, and to pay for them, and relies on Manufacturer
to supply them. A similar collection of customer/supplier co-operations exists
between Manufacturer and its Suppliers.

Within Manufacturer, we assume that some behaviour occurs which turns the
raw goods that it relies on into the finished goods that it guarantees to provide.
This is what makes it a manufacturing business.

We construct a top level model of NIMWeC based on this simple model, with
the goods identified as being woven labels (Figure 7.2). The italicised guarantee
and reliance names indicate that these have been qualified. The qualifier states
requirements on the guaranteed or relied-upon service, here that the woven labels
be supplied ‘in a timely manner’.

When applying a general model to a specific situation, service descriptions need
to be considered carefully to decide if they really are intrinsic to the roles to which
they are ascribed. For example, if we were unsure about the suppliers’ ability to
supply the material that NIMWeC relies on, we would have to do further work—
some form of market research—to establish what their intrinsic purposes are. Such
work is outside the scope of this analysis, and so on the assurance of the client we
show the services in this model as intrinsic.

Having identified the roles and co-operations at this level, the next step is to
identify co-operations that seem to be of interest. Here, the most interesting co-
operations, from what we can gather so far, seem to be those between Customer
Base and NIMWeC (Figure 7.3). Some of the co-operations are justified. The
justifications, labelled in the connector boxes and shown in the footnotes, are to
do with the financial and contractual nature of the co-operations. This is indeed the

7.2 NIMWeC as a manufacturing organisation 57

Customer Base NIMWeC
supplied with M) supply
woven labels =4 woven labels
provide orders for provided with orders
woven labels for woven labels

pay for
woven labels

woven labels
paid for

®

Customer Base: supplied with woven labels in a timely manner

Manufacturer: supply woven labels in a timely manner

(1) labels must match the customers’ requirements at reasonable cost to the customer,
and at reasonable profit to NIMWeC

(2) payment must fit into the cashflow requirements of both customers and NIMWeC

Figure 7.3 Co-operations between Customer Base and NIMWeC

extent of NIMWeC’s dealings with its clients. The co-operations between NIMWeC
and Suppliers do not seem so interesting; in fact, our client tells us that there are
no problems or limitations with the suppliers, and so we pay no further attention
to that role.

This done, the next stage of the modelling is to look more closely at each of the
roles.

7.2.2 Investigating the surrounding roles

NIMWeC has two kinds of customer: name tape customers and shirt size label
customers. Taken together, these constitute NIMWeC'’s customer base (Figure 7.4).
In this case, the structure seems straightforward. The services of Customer Base
are delegated to its subroles, Name Tape Customer Base and Shirt Size Label
Customer Base. The co-operations between Customer Base and its two subroles
are not in question, so the guarantees and reliances of the subroles are shown as
being intrinsic.

Neither of the new subroles adds any new services. However, the nature of the
co-operations with Customer Base is different in each case. The main differences are
captured in the justifications of the co-operations. Since each higher level service
is delegated to more than one lower level service, we have to demonstrate how the
lower level services ‘add up’ to the higher level service. The justification points out
the particular contribution that each delegated service makes to the fulfilment of
the delegating service. So, for example, the reliance on Customer Base to pay for

o8

Chapter 7. Old World Purpose

Customer Base

Name Tape
Customer Base

supplied with
name tapes

provide orders
for name tapes

supplied with
woven labels

pay for
name tapes

provide orders for
woven labels

Shirt Size Label
Customer Base

supplied with
shirt size labels

provide orders for
shirt size labels

pay for
woven labels

pay for shirt
size labels

e Customer Base (and subroles): supplied with woven labels in a timely manner
e (1) The Name Tape customers require customised name tapes in a range of colours and

and letter styles. The Shirt Size Label customers require a small range of shirt size
labels.

(2) Fulfilling name tape orders is profitable and the market has potential for growth.
Fulfilling shirt size label orders is not profitable, but more than covers marginal costs
and therefore contributes towards fixed costs. It allows production to be stable through-
out the year, contributing to overall stability.

(3) Payment for name tapes is in advance, with collection of payments being almost
cost-free, and is highly seasonal. Payment for shirt size labels is requested by invoice,
with an associated credit cost, and is constant throughout the year.

Figure 7.4 NIMWeC’s Customer Base

7.3 Investigating NIMWeC 59

labels is fulfilled by both subroles. However, the nature of payment is different in
each case, orders for name tapes being pre-paid and orders for shirt size labels being
invoiced after they are woven. Together, these two payment methods satisfy the
need for labels to be paid for. The combination has the additional complementary
property that the payments balance out over the year. Payments for name tapes
arrive during the summer whereas those for shirt size labels arrive more regularly
throughout the year, but principally during the winter which is when most of the
shirt size label weaving is done.

Here, the justification is given in quite plain terms. Later, we see a more struc-
tured argument.

7.3 Investigating NIMWeC

So far, we are happy with the simple high level view that we have of the roles that
NIMWeC interacts with. The next step is to look inside NIMWeC itself. To do
this, we need to decide on the following:

e what roles make up NIMWeC
e what the intrinsic guarantees and reliances of these roles are

e how the guarantees and reliances of the higher role are delegated to the
component roles, and the justification of the delegations

e how the component roles co-operate, and the justification of the co-operations

Few of these decisions can be made in isolation; making one decision can limit the
possibilities for other decisions, or demand the making of new decisions. Moreover,
the decision-making process is an iterative one; making one decision may affect the
validity of previous decisions. This aspect of the process is not discussed further.

7.3.1 Choosing a structure

Choosing roles that constitute one level of abstraction has so far been guided either
by our prior knowledge of manufacturing (giving us Customer Base, Manufacturer
and Supplier) or by explicit statements given to us during the preliminary analysis
(giving us Name Tape Customer Base and Shirt Size Label Customer Base). Now,
we face some more difficult decisions about the way in which to model NIMWeC’s
formation (a role’s structure in terms of subroles, promotions and delegations).
There may be many possible formations of any given role. What we are look-
ing for in choosing between different formations is their explanatory power. For
example, it would be possible to form NIMWeC from two roles: a shirt size label
production role and a name tape production role. However, this would not be sat-
isfactory for our purposes. NIMWeC is focused on the production of name tapes,
and the production of shirt size labels is a means of supporting this. Separating
these two activities would not help in understanding NIMWeC. Another kind of

60 Chapter 7. Old World Purpose

formation could be based on its financial components, perhaps identifying those
units that raise revenue, those that dispose of it and those that control the flow of
revenue. However, the client has excluded the issues related to finance from our
terms of reference.

The formation we choose is a basic one, reflecting the two major activity areas
of the company—order processing/invoicing, and manufacturing. It is important
to note that the way we choose to model the company in terms of roles may or may
not coincide with the actual organisational structure. The roles and co-operations
are a rationalisation of NIMWeC. In practice, an organisational division may fulfil
many roles; a single role may be spread across several divisions. As it happens,
the organisation of NIMWeC is basically by activity area, along the lines that we
are suggesting.

7.3.2 Constructing intrinsic services

Deciding on intrinsic guarantees and reliances involves a consideration of what the
role is intended to do without regard, for the moment, for any other role. For
NIMWeC, the services are derived from the preliminary analysis and from further
talks with the client.

Manufacture in NIMWeC is responsible for the production of name tapes, and
relies on the provision of weaving requests. Orders & Invoicing is responsible for
taking customer orders for woven labels, providing weaving requests and collecting
payments. It relies on a customer base that both places orders and makes payments,
and also relies on the provision of woven labels (Figure 7.5).

7.3.3 Constructing delegations and promotions

The process of constructing delegations and promotions involves the following two
steps:

e identifying the component roles as targets for the higher level guarantees and
reliances

e matching each higher level guarantee and reliance with the guarantees and
reliances of the component roles, and justifying the resulting delegations

Identifying the target roles is straightforward for NIMWeC. It has one guarantee
and two reliances. Each of these can be associated with the Orders & Invoicing
role, and is shown (temporarily) by placing an extrinsic service description on it
(Figure 7.6). This identification is straightforward, since the formation is based on
the activity areas of NIMWeC, and these activity areas are reflected in the services
we ascribe to NIMWeC. That is not to say, however, that it is an automatic
process.

Next the extrinsic guarantees and reliances have to be matched with intrinsic
services. Again, we find that this is a straightforward step for NIMWeC. In

Order Processing & Invoicing

woven labels
provided

collect payments |

process orders
from customers

7.3 Investigating NIMWeC

Manufacturing

weave
labels

orders for "

woven labels proviae

provided weaving
instructions

woven labels
paid for

flow of weaving
requests
provided

61

e Manufacturing:

manner)
Orders & Invoicing:

with their order

— process orders from customers: in a timely manner

— weave labels accurately, to requirements, in a timely and cost-effective manner

— flow of weaving requests provided: the requests are well ordered (minimising down-
time due to colour changes), and frequent (minimising down-time due to lack of
instructions, but not so frequent that name tapes cannot be woven in a timely

— woven labels provided in a timely manner, and in a way that they can be matched

Figure 7.5 Manufacturing and Orders & Invoicing

particular, we decide that the two NIMWeC reliances have direct counterparts
in Orders & Invoicing, and our confidence in these delegations is reflected in the
lack of a justification. The delegation of the NIMWeC guarantee is more complex,
however, and a justification is given which emphasises the role that each service
plays in the fulfilment of NIMWeC’s main business (Figure 7.7).

7.3.4 Constructing co-operations

The process of constructing co-operations is similar to that for delegations and

promotions, and involves the following similar steps:

e for each role, identifying roles as service providers or receivers

e matching each extrinsic service description with one or more intrinsic service
descriptions of the identified roles, and justifying the resulting co-operation

62

Chapter 7.

OIld World Purpose

NIMweC

supply a
range of
woven labels

orders for
woven labels
provided

woven labels
paid for

Manufacturing

weave :
labels flow of weaving
requests
provided
Order Processing & Invoicing
supply a
range of
woven labels
woven labels
provided
dispatch labels |
l provide
process orders weavin
from customers . 9
instructions

orders for
woven labels
provided

woven labels
paid for

orders for
woven labels
provided

woven labels
paid for

e qualifiers as in Figure 7.5

Figure 7.6 NIMWeC’s delegations and promotions

7.3 Investigating NIMWeC 63

NIMweC

Manufacturing

weave flow of weaving
labels requests provided

Order Processing & Invoicing

woven labels

provided
dispatch labels |
supply a
range of | orovide
woven labels process orders weaving
from customers instructions
orders for woven orders for woven
labels provided labels provided

woven labels
paid for

woven labels
paid for

e qualifiers as in Figure 7.5
e (1) NIMWeC manufactures labels for sale in response to customer requests

Figure 7.7 Matching NIMWeC'’s delegations and promotions

For Orders & Invoicing, the only possible target role in the current model is Man-
ufacture. Its reliance on the weaving of labels seems to be obviously met by the
Manufacture guarantee to weave labels. Each service, however, mentions the idea
of ‘timely’ production of name tapes. It is important that the same definition of
‘timely’ applies to each service. We decide that as far as we know the same defini-
tion is used, but make sure to mention this assumption in the justification of the
co-operation (Figure 7.8).

If NIMWeC were interested only in supplying the name tapes and not in weaving
for its own sake, the possibility of solutions such as out-sourcing the weaving to
other weaving companies could be considered. The fact that it is not is captured
by its co-operation with Manufacturing.

64 Chapter 7. Old World Purpose

Manufacturing

weave
labels

Order Processing & Invoicing

woven labels
provided

e qualifiers as in Figure 7.5
e (1) weaving must be done in such a time that Orders & Invoicing can meet its timeliness
qualifier

Figure 7.8 The ‘weave labels’ co-operation

Manufacturing

flow of weaving
requests provided

Order Processing & Invoicing

provide
weaving
instructions

e qualifiers as in Figure 7.5
e (1) Orders & Invoicing is responsible for ensuring that there is a proper flow of weaving
instructions

Figure 7.9 The ‘provide weaving instructions’ co-operation

7.3 Investigating NIMWeC 65

Manufacturing

weave flow of weaving
labels requests provided

Order Processing & Invoicing

woven labels provide
provided weaving
instructions

Sales & Marketing

generate a
customer base

e Manufacturing:
— weave labels accurately, to requirements, in a timely and cost-effective manner

— flow of weaving requests provided: the requests are well ordered (minimising down-
time due to colour changes), and frequent (minimising idle-time due to lack of
instructions, but not so frequent that name tapes cannot be woven in a timely
manner)

e Orders & Invoicing: woven labels provided in a timely manner, and in a way that they
can be matched with their order

e Sales & Marketing: generate a customer base so that the customer base will provide
orders in the future

e (1) Orders & Invoicing is responsible for ensuring that there is a proper flow of weaving
instructions in the short term. Sales and & Marketing is responsible for generating a
customer base, ensuring that there are orders in the long term.

Figure 7.10 The amended ‘provide weaving instructions’ co-operation

Orders & Invoicing’s guarantee to provide weaving instructions seems at first
sight to match the Manufacture reliance on a flow of weaving instructions (Fig-
ure 7.9). Thinking hard about the nature of a flow of weaving requests, however,
we understand that Orders & Invoicing provides only a short-term flow of requests,
and that we have missed out a crucial aspect of the NIMWeC business—Sales &
Marketing. This is the role that generates the customer base in order to ensure
that NIMWeC can rely on orders. Our initial thought is that this generation of

66 Chapter 7. Old World Purpose

the customer base will be a guarantee made to Orders & Invoicing. The Orders &
Invoicing reliance on the provision of orders would be met both by this guarantee
from Sales & Marketing and, through delegation, by the guarantee to NIMWeC
from Customer Base to provide orders for woven labels. However, when we try
to confirm this with the client, we are told that really the heart of the business is
Manufacture, and the need for a long-term flow of orders lies in the need to keep
on weaving, not to keep on taking orders. We decide to model the co-operation
accordingly, and amend the model (Figure 7.10). The co-operation’s justification
demonstrates the complementarity of the two guarantees, which together ensure a
flow of weaving requests both in the short term and in the long term.

Having introduced this new role, we need to see how it fits in with the rest of
our model of NIMWeC. We run through the process of deciding on its intrinsic
guarantees and reliances, deciding on the delegations and co-operations that it is
involved in. The only other service we come up with for Sales & Marketing is
a reliance on the customer base that is amenable to manipulation. Since we are
making changes in the middle of a role, we need to consider the construction of
delegations not simply as a top down activity, but a ‘middle out’ one. The new
service we have added may in turn delegate to a subrole of Sales & Marketing, but
it also propagates up to NIMWeC, and becomes a reliance on Customer Base.

Our final model of NIMWeC at this level is shown in Figure 7.11. To complete
the tracing through of the propagation we amend the higher level model, placing
a guarantee on Customer Base to match NIMWeC’s new reliance. This in turn is
delegated to its two component roles, Name Tape Customer Base and Shirt Size
Label Customer Base. Since this higher level model was derived from our generic
manufacturing model, we also think about amending our generic manufacturing
model to include this new co-operation. However, rather than changing our generic
model straight away, we decide to wait until we see how useful the co-operation is
in aiding our understanding of this particular manufacturing organisation.

7.4 Further investigation

So far we have a model of NIMWeC with three component roles. As with our
original high level model, we can decide whether to model any of these in greater
detail, and, for each, go through the formation process as outlined above. We are
sure that we don’t want to look any further at the moment at Sales & Marketing,
important though this is to NIMWeC. We do feel that we need to look more closely
at the other roles, and it is likely that any problems resulting from consequences
of the development objectives will affect roles at this lower level.

7.4 Further investigation

NIMweC

supply a
range of

woven labels

orders for woven
labels provided

woven labels
paid for

customer base
responsive to
marketing
techniques

Manufacturing

weave
labels

flow of weaving
requests provided

Order Processing & Invoicing

woven labels
provided

dispatch labels |

process orders
from customers

orders for woven
labels provided

woven labels
paid for

provide
weaving
instructions

Sales & Marketing

customer base

responsive to
marketing

generate a
customer base

techniques

2

e Qualifiers and justifications as given in preceding figures

Figure 7.11 Detailed NIMWeC model

68

Chapter 7. Old World Purpose

Manufacturing

Loom Fitter

do preventative
maintenance

work
schedule
provided

loom
problems
pointed out

fix breakdowns

Looms

weave

labels

breakdowns
fixed

regularly
serviced

reveal
loom state

provided
with text to
be woven

brocade
shuttles have
correct colour

Manufacture Planner
& Supervisor

set
preventative
maintenance
schedule

weave

labels

give notice
of loom
shutdown

set criteria
for weaving
instruction
scheduling

Operators

loom state
revealed

provided
with weaving
schedule

transfer weaving
instructions to
looms

given notice
of loom
shutdown

provided
with

weaving
requests

provided
with

weaving
requests

e Qualifiers and justifications are given in Figure 7.13

Figure 7.12 Detailed Manufacturing model

7.4 Further investigation 69

e Looms:
— reveal loom state as required by the operators
— weave labels according to instructions, with low down-time due to breakdown or
difficulty of set-up, with efficient use of resources
e Operators:
— check looms for loom breakdown, weaving accuracy, resource requirements
— loom state revealed to allow detection of loom breakdown, weaving accuracy and
resource requirements

— transfer weaving instructions to looms: the instructions are well ordered (minimis-
ing down-time due to colour changes), and frequent (minimising idle-time due to
lack of instructions, but not so frequent that name tapes cannot be woven in a
timely manner)

— provided with weaving schedule about change-over from name tape to shirt size
label weaving

— provided with weaving requests: the requests are well ordered (minimising down-
time due to colour changes), and frequent (minimising idle-time due to lack of
instructions, but not so frequent that name tapes cannot be woven in a timely
manner)

e Manufacture Planner & Supervisor:
— give notice of loom shutdown for preventative maintenance, and for change of warp

— set criteria for weaving instruction scheduling concerning minimum operational
time between colour changes, and allocation of looms to name tape or shirt size
label production

e (1) transferred weaving instructions include both colour set-up and required text
e (2) acceptable label weaving requires both loom capability (for accuracy) and loom
operation and maintenance (for timeliness)

Figure 7.13 Qualifiers and justifications for detailed Manufacturing model

7.4.1 Manufacturing

The model we produce for Manufacturing is shown in Figures 7.12 and 7.13. The
higher level reliance on a flow of weaving instructions is promoted from the Op-
erator’s reliance, and the higher level guarantee to weave is delegated to both the
Machine and the Operator. The justification of the latter emphasises the need for
the machine to function both correctly and reliably in order to weave labels in the
desired manner.

Broadly, the co-operations are to do either with the maintenance of the Loom
role, or the operation of the Loom role.

Loom maintenance:

e Loom Fitter guarantees to fix the Loom when it breaks down, and the Loom
relies on breakdowns being fixed. In order to carry out this guarantee, Loom
Fitter relies on problems with the Loom being pointed out. In order to check
the looms, and so point out problems, Operator relies on the information
necessary to be able to check the loom being provided. Loom guarantees to

70 Chapter 7. Old World Purpose

provide this information.

e Loom Fitter guarantees to provide maintenance, and Loom relies on being
maintained; Manufacture Planner & Supervisor guarantees to provide a main-
tenance schedule to Loom Fitter.

Machine operation:

e Manufacture Planner & Supervisor provides shut down instructions and cri-
teria for the large-scale scheduling of weaving instructions.

e Loom relies on being provided with weaving instructions for text and style,
and set-up instructions for colour; Operator guarantees to transfer the weav-
ing instructions to Machine, minimising Machine idle- and down-time, in
a reasonable time, and in such a way that the woven name tapes can be
matched with their orders.

It is the last of these co-operations that is most interesting, not because it is in itself
problematic, but because it locates some of the behavioural problems in NIMWeC.
We are now at the level of the interface between Operator and Loom, and there is
not a great deal more to be said about Manufacture at the purposive level—and
much of what we have said already can be construed as abstract descriptions of
behaviour. It is time to stop purposive modelling in this area.

7.4.2 Orders & Invoicing

Orders & Invoicing can be formed from two roles, corresponding to the Name Tape
production and Shirt Size Label production. This formation is similar in style to
that for Customer Base, and the comments made regarding the complementarity
of those two roles with regard to the delegated services also apply here. We decide
that we are not interested in the ordering process for shirt size labels, since the
client tells us that:

e depending on how the development of the name tape side of the business
goes, this aspect of the business may disappear entirely

e the ordering process for shirt size labels is small scale and flexible, and it
would take a great deal of change to harm or improve it significantly

We could choose a formation of Name Tape Orders & Invoicing based again on
the major activities of ordering, dispatch and payments. But these look more
like aspects of behaviour than purposive roles. So, as with Manufacturing, the
behaviour of these services has become more interesting than their co-operations,
and it is time to stop purposive modelling.

Chapter 8

Old World Behaviour

8.1 Introduction

Before we can understand the consequences of the development objectives, we need
to understand how the services identified in the previous chapter are supported by
actual behaviour. If the current behaviour is adequate to meet these needs it may
be that the development objectives have no major consequences at all. It is more
likely, however, that some change in the current behaviour is needed. In either
case, we need a good understanding of the current behaviour in order to make
such assessments (which we do in the next chapter).

For NIMWeC, there are two particular areas that we need to know more about—
the operation of the weaving machinery and the processing of orders for name tapes.
These seem likely to be affected by the development objectives. Also, we don’t yet
have a good understanding of what currently happens.

Within the area of machine operation we are interested in the machine’s interface
with the operator, the product (what the name tapes look like) and the weaving
process itself which lies at the heart of NIMWeC. Within the order processing area
we are interested in orders, batches and the process that constructs batches from
orders.

The link between these two areas is identified in the purposive models as a
co-operation, with Manufacture relying on the provision of suitable weaving in-
structions, and Orders & Invoicing guaranteeing to provide these. We now need
to find out what a weaving instruction is, and the nature of the co-operation. In
other words, the service that the co-operation concerns (described informally in the
purposive model) needs to be modelled more formally as an aspect of behaviour,
using the Beluga language.

Although we need to understand the current behaviour of machine operation
and order processing, we need to be careful not to model anything in too much
detail at this stage, since things may well be different in the New World.

As we suggested at the end of the last chapter, it is not sensible to model these

71

72 Chapter 8. OIld World Behaviour

areas using Grampus, since it is their behaviour that is of interest—there is no
more to be said about their purposes. In this chapter we use ORCA’s behavioural
modelling language, Beluga, together with other techniques as appropriate. The
Beluga modelling language is explained in detail in Chapter 12, and formal defini-
tion of the language constructs is given in Appendix C.

The starting point for Old World behavioural modelling is simply the areas as
identified in the purposive models—there is no need to continue the decomposition
of purposive entities. This approach was useful in dealing with the make-up of
organisations, but is not necessarily useful when modelling behaviour in terms of
objects and interactions.

The end point for Old World behavioural modelling occurs when we feel we
have enough of an understanding to support the identification of pathology and
prescriptions (see Chapter 9).

In reading the remainder of this chapter, reference may be made to Section 4.3
for a summary of the gathered information and a glossary of weaving terms.

8.2 The weaving of name tapes

The first thing we notice when we walk into the factory is the noise. Then we
notice the looms. There are two of these, each with one operator. Strips of name
tapes come out of one side of a loom, while the operator stands at another side
and alternately pummels a board with round pegs and consults a sheet of card.
Every now and then the operator walks around and cuts off the strips, and puts
them into a bag along with one of the sheets. The operator then takes the bag to
one side of the factory floor and stacks it with some others. Next to this stack is
a pile of the sheets. The operator, while over there, shuffles through the sheets,
selects one, and heads back to the loom.

After further discreet observation, we question the operators and the client
about what exactly is going on. ..

8.2.1 The weaving process

The thing that strikes us most about the weaving process is how everything seems
to be geared around the capabilities of (or limitations of) the loom itself and its
associated control mechanisms, and so we feel it might be worth studying the
behaviour of these.

A model of static structure

We start by trying to identify the structure of the looms, which we are told are
nearly identical. In what follows, it is important to remember that we are investi-
gating the behaviour that realises the services of an already identified role, rather

8.2 The weaving of name tapes 73

than partitioning the role further into a number of subroles as we were doing for
the most part in our purposive modelling. We are opening a box of chocolates
to discover its contents, rather than cutting a birthday cake in order to share it
around. The information we have to go on is as follows.

The major part of the loom is really three separate parts: a weaving frame, two
jacquards and a lifting box:

e The weaving frame is physically connected to two jacquards (which can be
regarded as one ‘jacquard thing’, since each does identical things here) and
a lifting box.

e The jacquard, by means of hooks, lifts and drops warp threads so as to form
the correct shed (the pattern of raised or unraised warp threads) for the
shuttles carrying the weft threads to pass through.

e The lifting box lifts into place either a ground shuttle or a brocade shuttle
for each ribbon, depending on what is to be woven: the body of the ribbon
(a ground pick) or a pattern on the ribbon (a brocade pick).

The other parts of the loom, we are told, are concerned with the control of this
machinery:

e The cam shaft is physically connected to the weaving frame, and rotates once
through 360 degrees for every machine cycle, or pick, in which the correct
shed is formed and the shuttles passed through the warp threads.

e The cam contacts are attached to the control box, and detect the degree of
revolution of the cam shaft.

e The set of electromagnets (one for each warp thread) is attached to the
jacquard, and, on receipt of complex turnOn or turnOff messages from the
control box, causes some of the jacquard hooks to be lifted or dropped.

e The lifting box solenoid is attached to the lifting box, and, on receipt of
simple turnOn or turnOff messages from the control box, causes the lifting
box to either lift or drop the shuttles for each ribbon.

e The control box has states that are dependent on the information from the
cam contacts. It sends messages to the electromagnet and lifting box solenoid
at appropriate times during the pick, and allows an operator to set up its
patch panels.

We can make this arrangement clearer by modelling the different classes of Loom
component, and the interactions that connect the various components (Figure 8.1).
Each box represents a class of Loom component. In some cases (Weaving Frame,
Cam Shaft, Control Box), there is only a single instance of a class; in other cases
(ElectroMagnet, Lifting Box Solenoid, Cam Contact), there are many instances.
Some boxes contain the names of key operations for a class. An arrow between
two boxes indicates that instances of one class interact with (operate on) instances
of the other class. For example, Jacquards operate on the Weaving Frame.

This rather flat picture does not yet capture the distinction that we were told

74 Chapter 8. OIld World Behaviour

Jacquard Electro-
< Magnet ‘\\
Control
Box
Lifting Lifting Box | &~
/"_ Box < Solenoid
Weaving
Frame
\\)‘ Cam 3 Cam
Shaft Contact
Figure 8.1 Loom model
ﬁ‘ Actuator
Process Controller

Figure 8.2 A Control System

about, between the machinery and the control mechanisms. However, we have
some knowledge of what a typical control system looks like (Figure 8.2). In a
ControlSystem, the Actuators act on the Process according to instructions from
the Controller, and the Sensors inform the Controller of the state of the Process.
The Process is assumed to produce some product; in the case of a loom, it is name
tape ribbons.

Armed with this knowledge, we can look for the elements of a control system
in our model of Loom. In fact, at this level we can find three possible ways of
describing the weaving process as a control system, depending on how we group
the classes identified above.

The first grouping treats the weaving frame as the controlled process; the con-
trol box, electromagnets, lifting box solenoids, and cam contacts comprise the
controller; the jacquards and the lifting boxes comprise the actuators; the cam
shaft comprises the sensor (Figure 8.3). This approach focuses on the mechanical
side of the weaving process, treating anything electromechanical as being hidden

8.2 The weaving of name tapes 75

/ Process \\ |/ Actuator \I |/ Controller \
I [
[I I
[[
Jacquard | Electro-
I <
:) Bt Magnet ‘\\ [
[
[I I
! Lo I Control !
: Lo I Box :
Lo = ' [
Lifting Lifting Box	&/
/‘T_ Box	< Solenoid
"' weaving Lo I !	
' Frame	- - - - -
I I T !	
I \); Cam C I	
am	
; P Shaft	2
[
\ /	Sensor ;o ,
N — — — o L = e e	
Figure 8.3 A mechanical partitioning of Loom	
<o T T T = = / _______________ \ _______ N	
Process o Actuator 1 ;! Controller	
[
Jacquard Electro- I	
	e a
Magnet ‘:\(\	
\ e _ T/ - :	
	== — = ——— - - - - - - = = N Contro
Lo Actuator 2	: Box
! o Lifting Lifting Box _:/,‘/ I	
[] <z ;	
/Ikz‘ Box Solenoid "	
Weaving	m m - -
Frame	— — m — — — — — - — - — - = I
[I \I :	
o Cam Cam	
o Shaft > Contact	I
[
S , aSemsor U)

Figure 8.4 An alternative partitioning of Loom

within the controller (and so of no interest).

The second grouping treats the control box as the controller, and the weaving
frame as the controlled process, but bundles the jacquards with the electromagnets,
and the lifting boxes with the lifting box solenoids as the actuators, and bundles
the cam contacts with the cam shaft as the sensors (Figure 8.4). This approach
focuses on the weaving frame and control box, treating the actuators and sensors
as complex mechanical and electromechanical devices.

The third grouping, which seems to be the most appropriate given our interest
in the control box, is as follows: the control box is the controller; the electromag-
nets and the lifting box solenoids are the actuators; the cam contacts form the

76 Chapter 8. OIld World Behaviour

Process) :A_ctaat_or_l ~ | [Controller
[P [
Jacquard | ! ! Electro-

[< | [
| Magnet . |
| L EEEe o !
| : _______ | Control |
[| :Actuator 2] | Box I
! Lifting | Lifting Box | | £ '
! Box | < Solenoid ['
| Weaving S GO e [
| Frame ' | |
: \\F : —) I !

Cam I Cam |
[> [
| Shaft | [Contact Ly |
[
[' [[
(S I Lsins;or _____ oy ,

Figure 8.5 A physical partitioning of Loom

sensor; the jacquards, lifting boxes, cam shaft and weaving frame together form
the controlled process (Figure 8.5). This approach bundles up the physical aspects
of the loom, leaving its interface to the controller at the level of the electrome-
chanical devices. This fits in with our interests—we are not interested so much in
the physical aspects of the loom as in the demands it places on the control box
through its electromechanical interface.

A model of dynamic behaviour

So far we have some idea of how these bits all work together, but in order to
model the dynamics we need more information. The client gives us some old
documentation for the loom, which contains diagrams showing the timing of one
complete machine cycle (one pick), with respect to the electromechanical devices:
the cam contacts, the electromagnets and the lifting box solenoid. The timing
diagram for the current pick is shown in Figure 8.6 for the case where the following
pick is to be a brocade pick.

We can see from this timing diagram that the machine progresses through six
states within this one pick, as measured by one revolution of the cam shaft:

state 0 cam contacts 1, 2 and 3 are open

state 1 contact 1 is closed; the electromagnet is on (that is, some subset of the
individual electromagnets)

state 2 contact 1 is open again; the electromagnet is off
state 3 contact 2 is closed; the lifting box solenoid is on
state 4 contact 2 is open again; the lifting box solenoid stays on
state 5 contact 3 is closed; the lifting box solenoid is off

If, instead, the following pick is to be a ground pick, then in the current pick

8.2 The weaving of name tapes 7

closed
cam 1 /: | open
| I closed
open
cam 2 ' : /:
: open | | closed
cam 3 : ' ' I NS—
| on | | :
| I
electro- _i | i off |
magnet | on I
lifting box off | }
solenoid
together
sheds separated
still
shuttle moving
0 degrees 360 degrees

Figure 8.6 Timing diagram for the current pick

the lifting box solenoid remains off and the lifting box does not move. The reason
for the delay, we are told, is that the lifting box controls the mechanism that
automatically moves the ribbons forward. If the lifting box is not raised, then the
ribbon is moved on automatically for the next ground pick to be woven. If it is
raised, then the ribbon is not moved on: the next pick is to be a brocade pick, with
the brocade weft being inserted on top of the previous pick’s ground weft. This
prevents gaps in the name tape ribbon. There are thus two versions of states (3)
and (4), depending on whether the Lifting Box Solenoid is on—(3a) and (4a)—or
not—(3b) and (4b).

With the information from the timing diagrams we can build a dynamic model
of a loom. The behaviour of Loom is a succession of OnePick behaviours (that
is, complete machine cycles). Within OnePick, we can show how the various
components interact (Figure 8.7). This Beluga diagram is similar to the timing
diagram provided to us by the client (the Beluga timelines progress down the page,
rather than left-to-right). In this dynamic model we are dealing with instances of
the classes identified earlier:

e three CamContacts, named caml, cam2 and cam3
e one ControlBor, named cb
e one LiftingBoxSolenoid, named [bs

e a subset of the Electromagnets, named pickEMs

78 Chapter 8. OIld World Behaviour

OnePick Cam
Contact

- ~
s | ~
- ~

m 2 m 3 cb: Control pickEMs: Ibs: Lifting
ca ca Box ElectroMagnet*) | BoxSolenoid

off
D on

closed >
open
on
off
open
closed
_off
on
closed G
open
on
off

_closed
open GP/‘

Figure 8.7 A dynamic model of Loom—the OnePick behaviour

8.2 The weaving of name tapes 79

B

Figure 8.8 Brocade pattern for the letter ‘R’

Each node on the timeline for a particular set of constituent objects denotes in-
volvement of those objects in some bit of behaviour. Arrows linking nodes on
different timelines show interaction events (that is, instances of the interaction re-
lationships between classes shown in Figure 8.1). Changes in the state of either
source or target objects is shown with the ‘before’ state above the ‘after’ state. Two
alternative episodes in a machine cycle are shown within a large box, separated by
a horizontal line.

pickEMs contains those electromagnets corresponding to the warp threads to be
raised in a particular shed, allowing the brocade shuttle to weave a ‘slice’ through
a character in the name tape. The particular subset of the Electromagnets that
constitutes pickEMs is different in different picks. For example, Figure 8.8 shows
the pattern of brocade threads for the letter ‘R’ (though with far fewer warp threads
than is actually the case). The selection of electromagnets is a central function of
ControlBoz. Each character known to ControlBox can be woven in a sequence of
picks, each pick weaving a slice of the character. Each shed pattern is stored on
a punched card, and each character has a corresponding sequence of these cards
associated with it.

Notice that there is a correspondence between the state changes of the cam
contacts, electromagnets and solenoid, and the operations identified in the static
model (turn-on, turn-off, etc). Notice also that the directions of the interaction

80 Chapter 8. OIld World Behaviour

arrows in the dynamic model correspond to those in the static model. Thus the
cam contacts (the sensors) operate on the control box; the control box operates
on the electromagnets and the solenoid (the actuators). The physical behaviour
of the weaving frame (the sheds and the shuttle) is not modelled here, because
we are primarily interested in the function of the control box. The behaviour of
the cam contact is caused by the continuous driving of the cam shaft by the loom
motor, but for our purposes the cam contacts can be regarded as generating signals
spontaneously.

The progression of events is essentially the same as that described in the timing
diagram. The optionality of the lifting box solenoid being switched on and off, as
noted in the state transition diagram, is made explicit. There is a time constraint
on pickEMs, pointed out by the loom operator: the electromagnets are not allowed
to be on for more than 30% of a machine cycle, due to the danger of them burning
out. We duly note this down. The sequence of interactions is as follows (the words
in parentheses describe what is happening to the rest of the loom):

state 0 caml, cam2 and cam3 are open (nothing is happening). cb receives a
nowClosed message from caml, and sends a turnOn message to pickEMs.

state 1 caml is closed; pickEMs is on (and the jacquard is forming the correct
shed, and fractionally later the shuttles start to be passed through the warp
threads) cb receives a nowOpen message from caml, and sends a turnOff
message to pickEMs.

state 2 caml is open again; pickEMs is off (the shed is still open, and the shuttle
is still being passed through). cb receives a nowClosed message from cam?2.

There is an option, depending on whether the next pick is to be a brocade pick or
not.

‘Brocade pick next’ option:
cb sends a turnOn message to [bs.

state 3a cam?2 is closed; lbs is on (the shed is still open, and the shuttles are
still being passed through; and the lifting box is starting to raise the correct
shuttles into place for the next pick). c¢b receives a nowOpen message from
cam?2.

state 4a cam?2 is open again (the shed is still open, and the shuttles are still being
passed through; and the lifting box is still raising the correct shuttles into
place for the next pick). cb receives a nowClosed message from cam3, and
sends a turnOff message to [bs.

‘Ground pick next’ option:

state 3b cam?2 is closed (the shed is still open, and the shuttles are still being
passed through). cb receives a nowOpen message from cam?2.

state 4b cam?2 is open again (the shed is still open, and the shuttles are still being
passed through). c¢b receives a nowClosed message from cam3.

8.2 The weaving of name tapes 81

Back to normal:

state 5 cam3 is closed; Ilbs is off (the shed shuts, the shuttles have been passed
through, and the correct shuttles are in place for the next pick). cb receives
a nowOpen message from cam3.

And so back to state 0.

The models we have produced so far do not mention the two most visible parts
of the weaving process: the production of name tapes and the work of the operator.
Feeling that we know more than enough at the moment about the operation of a
loom, we next look at name tapes and the operator interface.

8.2.2 The name tape

The product of the weaving process, as suggested above, is ribbons of name tapes.
Each brocade pick weaves one slice of a character, whether the character is one
taken from the patch panel, or one such as the name separator, woven automatically
by the control box when switching between patch panels.

Each name can be woven in either red or blue. A batch is of about 30 names,
all in the same colour. Looking at a selection of ribbons, we discover the reason for
the looms being nearly identical. Each name can be in one of two styles—large or
small capital letters. Each control box, it turns out, is capable of weaving only one
style, and since each loom is associated with its own control box, all name tapes
for the ‘large’ style are woven on one loom, and all name tapes for the ‘small’ style
are woven on the other.

8.2.3 The operator machine interface

The operator has two principal tasks: to set up the names to be woven at the
interface with the control box, and to change the colour of the brocade shuttles.

The control box has four patch panels on its front, each of which has a matrix
of holes, each hole corresponding to a letter (a capital letter in the style of the
control box) and the letter’s position in the text. The operator inserts pegs into
these holes to represent the text of a name to be woven (the ‘pummelling’ activity
seen earlier). The text is taken from a batch sheet, which specifies a batch number
and up to 30 names. At any one time, text from one of the patch panels is being
woven. Once the text is completely woven, the pegs are removed from this panel
and the control box takes its instructions from the next panel nominated by the
operator. The operator can now enter a new name into the free panel. This is
a complex and error-prone interface, and, as we ascertained during preliminary
analysis, is to be replaced, and so we do not pay any more attention to it.

The batch sheet also specifies in which colour the names are to be woven. Chang-
ing the colour of the brocade shuttles is quite separate from the control box, and
involves delving into the weaving frame itself. This takes about an hour, and in-

82 Chapter 8. OIld World Behaviour

volves the operator, along with anyone else who is around to lend a hand. We
decide not to investigate this activity any further, because we guess that this is
not a process that will be different in the New World. However, we note that the
onerous nature of colour changing is the reason why the batches are one colour,
and why the operator shuffles through the sheets before picking one—to choose a
batch of the same colour as is currently on the loom, and to assess when a colour
change is needed.

We also decide not to pursue the packaging of name tapes any further, merely
noting that the batch sheet is associated with the name tapes it specifies by being
put into the same plastic bag and sealed. Over by the wall where the bags are
stacked, there are two piles of batch sheets, one pile for each loom—since each
loom weaves a certain style. The batch sheet originates in the order office, which
is where we go next.

8.3 Orders, batches and the batching process

We know from our purposive modelling that this area, Orders & Invoicing, is where
orders are received from customers and are restructured into batches of items to be
woven by Manufacture. Thinking behaviourally, we might wonder what an order
looked like, what a batch looked like, and how one is turned into the other.

Our knowledge of what an order looks like comes from looking at a selection of
them, and talking to the order office staff. Orders come from customers and specify
the customer’s address and a number of order items. An order item specifies a name
to be woven, the quantity required, and the style and colour of the name tape text.
There are two kinds of order: those that come from a pre-paid book, specifying only
one order item, and those that come from magazine adverts or a written request,
accompanied by cash or a request for an invoice. However, there is no difference
in the way that these are treated for the purpose of manufacturing.

A batch is a collection of up to 30 order items, all of which, where possible, have
the same colour and the same style. For each order item, its text and its order
number are transcribed on to a batch sheet, which is passed on to the factory floor.

We can model this in Beluga as a class Order with features holding various cus-
tomer details (Figure 8.9). Each Order is associated with one or more Orderltems,
and each Orderltem is eventually associated with a Batch. A Batch may contain
up to 30 order items.

The batching process itself is extremely complex. It involves juggling order
items between ‘proto-batches’ in a difficult-to-define manner, until the batches
satisfy certain desirable characteristics to some difficult-to-define degree. So, it
is easier to describe the process simply in terms of the desirable characteristics.
Three of these are described in the model above:

e Each batch contains order items sharing a single colour and a single style.

e Each batch contains up to 30 order items.

8.3 Orders, batches and the batching process 83

Order)
itemsin

e customer name
¢ customer address - -

in

/I minimise
Orderltem Batch
* name text // to be woven .
. in batch number

e quantity . « colour
* colour

co 0..30 . style
* style

Figure 8.9 A static view of orders and batches

e The number of batches to which order items from a single order are allocated
is kept to a minimum. Usually, the minimum possible is four, because there
are four colour/style combinations. Occasionally, order items from a multiple-
item order have fewer than four colour/style combinations.

The first two of these are derived from the needs of the weaving process; the third
is derived from the need to associate name tapes with their order. We can note,
as a result, that the characteristics of a batch are likely to change if there is any
significant change to the weaving process.

We can describe the overall behaviour of orders, order items, and batches as two
concurrent ‘processes’. The first of these processes takes in new orders and order
items within these, and then waits until all items in an order have been woven,
before ‘signing off’ the order. The second process groups order items into batches
(perhaps in an incremental fashion) and then weaves the items in batches—which
is where the loom becomes involved.

This is shown in Figure 8.10 with the first process drawn above the second.
OneOrder shows the behaviour of a stereotypical order. The order is received,
and given pending status; its order items are initially unbatched. In effect, a new
order and set of order items is created (although the details arrive by post); this
is indicated by the blob-with-dot icons. At some later time, all the order’s items
have been woven, and the order itself is given woven status. Since the order items
may well be in different batches, they achieve woven status at different times. A
simple annotation to the model records the requirement that turnaround time for
one order, and so for its set of order items (between being received and being
woven) is 14 days or less. The ‘4’ at the top right corner of the OneOrder box
indicates that the process deals with multiple orders, and that these are handled
concurrently (that is, many orders can be in existence at the same time).

Independently, the second process is creating and processing batches. OneBatch
shows the behaviour of a stereotypical batch. Once a new batch has been created,
a set of unbatched order items is put into it, becoming batched. This may happen

84 Chapter 8. OIld World Behaviour

OneOrder

. oltems :

| |

| |

| |

O —®

pending unbatched
< 14 days

pending

hioven i O woven

OneBatch
. l bltems : l
Orderltem +

unbatched

batched

batched

}v'vb\'/éﬁ a

WeaveBatch %

)

Figure 8.10 A dynamic view of orders and batches

8.4 From orders to name tapes 85

‘in one go’ or incrementally, a few items at a time. At some later time, the set of
batch items is woven, finishing the batch. This behaviour is called WeaveBatch.
The ‘4’ at the top right corner of the OneBatch box indicates that the process
deals with multiple batches, and that these are handled concurrently (that is, many
batches can be in existence at the same time).

The link between the two processes is that every order item eventually appears in
a batch. The turnaround time constraint for order also links these two behaviours:
the order items from one order all have to progress through the second process, as
batch items, within the 14 day slot from when they were received within an order.

8.4 From orders to name tapes

We have investigated behaviour in five areas of NIMWeC, all related in some way
to the production of name tapes to order:

1. The weaving process—produces woven ribbons, according to specified pat-
terns.

2. The name tape—a woven ribbon with various names on it, corresponding to
the items in a batch.

3. The operator—machine interface—takes details of a batch and feeds them into
the machine, item by item.

4. Orders—contains order items, which hold details of what is to be woven.

5. Batching—takes order items from orders and groups them into batches ac-
cording to colour/style constraints.

We might wonder if this tells us all we need to know about how an order becomes
woven, and the final product delivered. A typical scenario of an order proceeding
through NIMWeC is as follows:

e An order arrives, and is broken down into its items (area 4, above).

e These items are put into batches (5) and the details are passed to Manufac-
ture.

e Batch specifications are taken one at a time by a loom operator and the
details of the batch items are input via the patch panel (3).

e The loom weaves batches and items within batches as a sequential process
(1).

e The woven ribbons (2) are cut up and sent back to the order office where
the woven items from the ribbons are matched up with the originating order
items (and order).

e Once all the order items are accounted for, the name tapes are sent to the
address specified on the order.

86 Chapter 8. OIld World Behaviour

Order

Order in Batch S Loom
Item weaves

for

Instruction

Figure 8.11 A static view of weaving a batch

We can now link together the behaviour modelled so far to reflect this ‘big picture’.
The ‘missing link’ is the idea of an Instruction. Each order item specifies a name
to be woven, which consists of a sequence of characters. For every such sequence
of characters (and appropriate separators) there is a sequence of instructions, each
instruction determining what the loom does for a slice of the name tape. We know
that each batch is assigned to a particular loom (on the basis of style/colour). If
we then assume that items are ordered within batches, and batches are dealt with
in some order, it follows that we can generate a single sequence of instructions to
control the loom, and so weave the required name-tape ribbons. A static view of
this is shown in Figure 8.11.
Looking at the dynamics, we have three levels of ‘nesting’ (Figure 8.12):

e OnePick machine cycle and Instruction, within Weaveltem
o Weaveltem within WeaveBatch
e sequence of WeaveBatch behaviours
One Instruction controls one OnePick behaviour (see Section 8.2.1), by:
e determining which electromagnets are in pickEMs
e determining whether the next cycle is a ground pick or a brocade pick

Exactly how this information is represented within an instruction, and how it is
interpreted is not modelled here, since we feel that this is an area that may well
be redesigned for the New World. We regard the instruction as being ‘consumed’
(indicated by the blob-with-cross icon) since it has no further involvement in the
behaviour.

Once all the instructions for an order item (in a batch) have been processed,
the item becomes woven (the dependency is shown by a double-headed arrow).
This is the change of status that is of interest to the order-handling process (see
Section 8.3). The physical constraint that the machine cycles happen sequentially
is shown by the inner double-sided box.

8.4 From orders to name tapes

WeaveBatch
Weaveltem +
+
OnePick
|
|
|
ItemWoven
BatchDone

Figure 8.12 A dynamic view of weaving a batch

87

88 Chapter 8. OIld World Behaviour

Once all the order items in a batch have been woven, the batch is finished (and
has no further involvement in the behaviour). The physical constraint that the
batches are woven sequentially is shown by the outer double-sided box.

We now have a more detailed description of the WeaveBatch behaviour that
we identified in Section 8.3. This links the OnePick behaviour describing a single
machine cycle for the loom, with the processing of customer orders described in
Section 8.3.

In our analysis of NIMWeC, we now feel that we have a fairly sound understand-
ing of how the present system works. In particular, it has become clear to us what
behaviour realises the co-operations between Manufacture and Orders & Invoicing.
We have also gained a good grasp of the rather arcane terminology used by our
client. We now feel confident in progressing to the next activities of the analysis:
diagnosing a pathology, and assessing alternative prescriptions for remedying the
pathology.

Chapter 9

Pathology and Prescriptions

9.1 Introduction

A pathology is an explanation of the problems with the Old World in terms of
underlying causes. The problems might be with the way the world currently works,
or that the world is unable to change in certain desired ways. A prescription is a
remedy for a pathological situation.

Chapters 7 and 8 build a model of parts of the Old World purpose and behaviour.
This model can be altered by ‘adding in’ the immediate effects of the development
objectives, in terms of what the new purposes of the various parts of NIMWeC
look like.

The pathology/prescription activity involves tracing the consequences of these
changes to the models. The aim is to discover which parts of NIMWeC are unsuit-
able, or pathological, with regard to the new demands placed on them. Current
pathologies within NIMWeC are also noted. A prescription can then be posited.
This typically prescribes some changes to behaviour, that remove, or go some way
towards removing, one or more pathologies.

Some combination of compatible prescriptions together constitute the course
of action that should be followed in order to result in a satisfactory New World
NIMWeC. In order to choose a suitable bundle of prescriptions, an evaluation of
the costs and benefits of each has to be made.

As with the design and execution stages of the process, and the activities of the
Basic Process, progress within this activity is unlikely to be linear. Each prescribed
change to a model may generate further pathologies, requiring new prescriptions,
and so on. However, it is presented below as a linear process, with the aim of
giving a clear picture of pathologies and prescriptions themselves.

89

90 Chapter 9. Pathology and Prescriptions

9.2 Adding in the development objectives

There are four main development objectives identified in the preliminary analysis.
The client wants the New World NIMWeC to achieve the following:

1. sell twice as many name tapes

2. make fewer errors in the weaving of name tapes

3. be able to sell into foreign markets (in particular, Sweden and Israel)
4

. produce statistics about what styles and colours are being sold, and when,
to allow knowledge about current demand and prediction of future demand

Identifying how these objectives relate to the models that we have produced is
reasonably straightforward.

The first of these involves a change to the top level NIMWeC guarantee to
‘supply a range of woven labels in a timely manner’. This is amended to ‘supply
a range of woven labels in a timely manner, at double the Old World volume of
sales’.

The ‘errors’ mentioned in the second objective are behavioural errors in the
transfer of a weaving instruction to the machine, which results in name tapes
being woven that do not match the instruction. The problem area is the interface
between the Operator and the Machine—the peg-board patch panel of the control
box. This objective therefore concerns a specific bit of unsatisfactory behaviour,
which is to be improved in the New World. There are no further implications for
the Old World.

The third objective raises many questions:

1. Is there a suitable customer base? Do the Swedish want name tapes, whether
for school uniforms or not?

2. Can Sales & Marketing create and sustain a suitable customer base? Do they
know the best way to advertise in Israel? Can they find new uses for name
tapes in foreign markets?

3. Will the demand be such that further increases in production capacity are
required?

4. Is the product range suitable? Should the name tapes be different in any
way for Sweden or Israel—such as being of a mandatory size or colour? Are
Swedish and Israeli names weavable?

5. How would ordering, payment and dispatch be handled? Would dealing di-
rectly with customers be feasible, with postage to UK and payment in UK
Sterling? Can Orders & Invoicing read Swedish? Could suitable outlets or
agents be found, and could these handle the currency and postage issues?

It transpires that the client wants recommendations on the feasibility of selling
into foreign markets, rather than a specification that allows this to happen now,
and so we note most of the questions as issues that would need to be addressed.
However, the third and fourth questions do seem relevant to the current project.

9.3 Structuring pathologies, positing prescriptions 91

If the client currently wants to double production for the UK market, then it is
likely that a further increase in production will be necessary to cope with selling
into foreign markets as well. The part of the model that is affected is the same as
for the first objective—the top level NIMWeC guarantee to supply woven labels.

Is there anything fundamental to name tapes that would need to be different?
Some consideration of typical Hebrew names suggests that a fundamental problem
with selling into foreign markets will be the alphabet of the foreign language. We
know from the behavioural modelling that the problem with the current world lies
with the control boxes, each of which can only offer one style, in capital letters. As
with the ‘remove errors’ objective, the part of the model affected by this develop-
ment objective is a specific piece of behaviour, and so we make no change to the
model as yet.

Reflecting the fourth objective in the models involves adding a new reliance, on
statistics, to Sales & Marketing acting as the representative of our client’s forward
planning activities.

9.3 Structuring pathologies, positing prescriptions

The starting point for considering pathologies is the change to the Old World that
is needed to reflect the development objectives. It is simplest to take each develop-
ment objective in turn, and then trace through the consequences of the associated
changes to the model. Prescriptions are posited for any resulting pathologies.

9.3.1 Sell twice as many name tapes

Pathologies

We start by identifying any co-operations and delegations leading out from the
guarantee ‘supply a range of woven labels in a timely manner, at double the Old
World volume of sales” on NIMWeC. Since this guarantee has been changed (in or-
der to reflect one of the development objectives) the co-operations and delegations
effectively become unanalysed once more, and may be problematic. The trace of
co-operations and delegations goes out from NIMWeC to Customer Base, and in to
Manufacturing and Orders & Invoicing (Figure 9.1). Not all of these co-operations
and delegations are problematic. The client has told us that the customer base,
through both magazine and pre-paid orders, can provide demand for doubled pro-
duction, and so the co-operation between NIMWeC and Customer Base remains
unproblematic. We assume from now on that any increase in production capacity
will result in an increase in orders and actual production. The client also tells us
that Orders & Invoicing can cope easily with the extra payments.

The other delegations to Orders & Invoicing, and the delegation to Manufac-
turing are both problematic, however.

92 Chapter 9. Pathology and Prescriptions

Customer Base NIMWeC
Name Tape
Customer Base Manufacturing
supplied with weave
name tapes labels
_ . Orders &
supplied with Invoicing
woven labels
woven labels
provided

dispatch Iabels|
supply a
range of |
woven labels

process orders
from customers

e qualifiers as in Chapter 7, except for:
o NIMWeC: supply a range of woven labels in a timely manner, and at double the Old
World volume of sales

Figure 9.1 Tracing NIMWeC co-operations

The problem with Orders & Invoicing ‘bottoms out’ at the guarantee on Name
Tape Orders & Invoicing to ‘process orders from customers’. The behaviour un-
derlying these involves batching, and the transcription process from order form to
batch sheet. All of this takes time to do accurately. Neither activity could keep
up with the demands of doubled production.

The problem with Manufacturing ‘bottoms out’ in two places: at Looms’ guar-
antee to ‘weave labels’, and at the co-operation between Operators and Looms
(Figure 9.2). The first of these relates to the behaviour of the looms and their
control boxes. It can be viewed as a problem with the loom’s control boxes: they
break down frequently, with a characteristic grinding noise, and so are the cause of
a significant amount of each loom’s downtime. It can also be viewed as a problem
with the inherent capacity of the current two looms, which, when their control
boxes allow, are running somewhere close to maximum capacity.

Taking the second of these, there are two aspects to the co-operation between
Operator and Looms.

One aspect is the need for a loom’s brocade shuttles to have the correct colour
of weft thread for the batch it is about to weave. Our client tells us that the
changing of the brocade shuttles’ threads cannot itself be speeded up, for example

9.3 Structuring pathologies, positing prescriptions 93

Manufacturing

Operators

Looms

transfer weaving
instructions to
looms

provided
with text to
be woven

brocade
shuttles have
correct colour

weave
labels

weave
labels

e qualifiers as in Chapter 7

Figure 9.2 Tracing deeper into NIMWeC

by more staff working on it at once. The client also tells us that the expense and
complication of trying to reduce the need for thread changes through mechanical
means, such as using larger shuttles with more thread, or inventing an ‘endless
thread” shuttle mechanism, would outweigh the likely benefits. The aim in the
past has been simply to try to avoid, through the sequencing of batches, the need
for colour changes other than when the shuttles have run out of thread.

The other aspect of the co-operation manifests itself in the patch panel attached
to the control box, where the operator enters the text of batches to be woven. It
is unlikely that the operator could keep up with doubled production using this
interface, due to the time it takes to set up each patch panel accurately.

Prescriptions

We can now look at each of these basic problems and identify potential prescrip-
tions for each. At this point there is a shift in our perspective. In building up
the models and pathologies the source of our information was the organisation, its
owner, its staff and our observations in the factory. We used some generic models

94 Chapter 9. Pathology and Prescriptions

that we as analysts brought with us to the analysis, in order to help us to or-
ganise our understanding of that information. In order to generate prescriptions
we call on information from other sources: our experience of similar projects, and
our knowledge of available specifications and products. This is analogous to the
situation of a doctor who, in order to cure an illness, rather than merely diagnose
it, needs knowledge of pharmacology, physiotherapy, and all the other means of
restoring the patient to good health.

For NIMWeC, we are guided mainly by previous experience, and by what was
made clear during the preliminary analysis about the way that the client envisages
the New World—for example we do not consider the prescription ‘move site to
take advantage of favourable tax arrangements’. However, we try hard not to be
seduced by any prescription that seems to be the obvious choice. Any prescriptions
that are in any way unacceptable are weeded out during the course of evaluation
(as described in Section 9.4). The prescriptions, being quite simple, are expressed
in plain text. If it were important to be more precise at this stage, then they could
be expressed through models of the prescribed purpose or behaviour (which we do
later when evaluating the prescriptions).

Candidate prescriptions for the transcription and batching process being unable
to cope with doubled production are:

1. Do nothing.
2. Provide better lighting in the Orders & Invoicing office.
3. Provide an automated order-reader, removing the need for transcription al-
together.
4. Standardise order forms, and pass these directly to the factory floor, removing
the need for transcription altogether.
5. Simplify the batching process, perhaps by offering only one colour of name
tape.
6. Provide an automated batcher to take individual orders and produce opti-
mised batches of order items.
7. Increase the number of personnel in the Orders & Invoicing office.
Doing nothing is always a possible prescription, albeit one that is unlikely to achieve
the development objective.
Candidate prescriptions for the Operator Machine interface being unable to cope
with doubled production are:
1. Do nothing.
2. Change the interface to the control box by replacing the patch panels, to
allow input to keep up with production, by means of easier input and/or

better feedback and/or an ability to enter weaving instructions more than
four names ahead at a time.

3. Send the operator on a dexterity training course.

9.3 Structuring pathologies, positing prescriptions 95

Candidate prescriptions for Manufacturing having only half the desired production
capacity due to the unreliability of the control boxes are:

1. Do nothing.

2. Improve the reliability of the control boxes through the application of copious
quantities of lubricant.

3. Replace the control boxes with one or more new and more reliable control
systems.

Candidate prescriptions for Manufacturing having only half the desired production
capacity due to the inherent capacity of the existing two looms are:

1. Do nothing.

2. Speed up the looms through the application of copious quantities of lubricant
and the introduction of PTFE-coated kevlar super-shuttles.

3. Increase the number of looms to 3 or 4, using the 2 spare jacquards that can
be freed from the existing looms. This entails providing a suitable control
system for the extra looms; the client has said quite specifically that buying
more of the current control boxes would be inappropriate.

9.3.2 Make fewer errors in the weaving of name tapes

Pathologies

The starting point here is the behavioural Operator Machine interface. As a result,
there is no trace for this development objective, just a note that it is the behaviour
underlying the interface (the patch panel again) that is the problem.

Prescriptions

The candidate prescriptions are broadly the same as those given for the Operator
Machine interface in the previous section, only here they are prescriptions for this
interface being error prone. They are:

1. Do nothing.

2. Change the interface to the loom to allow more accurate input, by means of
easier input and/or better feedback.

3. Send the operator on a dexterity training course.

4. Have two operators per loom rather than one, to reduce pressure on individ-
uals.

9.3.3 Sell into foreign (in particular Swedish and Israeli) markets

Pathologies

The changes to the Old World involve an increase in production over and above
any currently proposed increase, and a change to the styles (specifically, characters)

96 Chapter 9. Pathology and Prescriptions

that can be woven. The parts of the models affected for the increase in production
are the same as those for doubling production, and the trace for this problem would
be the same as for that one. The part of the model affected by the need to weave
different characters is just the control box—and so there is no trace for this.

Prescriptions

Candidate prescriptions for the need to increase production in the future are:
1. Do nothing.

2. Provide an easy route to more than doubling production through any of the
measures proposed for initially doubling production.

Candidate prescriptions for the need to allow different characters to be woven are:
1. Do nothing.

2. Replace the control boxes with something or things that can weave foreign
characters.

9.3.4 Produce statistics about what is being sold, and when

Pathologies

The change to the Old World involves adding a new reliance to Sales & Marketing:
‘provide statistics about what styles and colours are being sold, and when, to
allow knowledge about current demand and prediction of future demand’. This is
simply an unfulfilled reliance, and so, as with the ‘make fewer errors’ development
objective, there is no trace of the consequences of this—any further changes to the
model will be manifestations of specific prescriptions.

Prescriptions

The candidate prescriptions are again simple, and so expressed in plain text. Pre-
scriptions for Sales & Marketing having an unfulfilled reliance on statistics are:

1. Do nothing

2. Get Orders & Invoicing to produce information, if possible in a way that
won’t involve too much new behaviour, provide suitable behaviour in Sales
& Marketing to support the bulk of the co-operation, and amend current
behaviour in order to do useful work with the information.

3. Get Manufacturing to produce information, if possible in a way that won'’t
involve too much new behaviour, provide suitable behaviour in Sales & Mar-
keting to support the bulk of the co-operation, and amend current behaviour
in order to do useful work with the information.

Implementing any of these prescriptions will involve a change to the model-—adding
a reliance to Manufacturing, for example. What should actually happen is that
this becomes the starting point of another pathology/prescription process. For

9.4 Evaluating the prescriptions 97

now we just note that either Orders & Invoicing or Manufacturing will have to be
called on to produce information about orders.

9.4 Evaluating the prescriptions

So far we have gained an understanding of the current situation, identified the
consequences of the development objectives and how these make the current situ-
ation unsatisfactory, and produced prescriptions that describe candidate solutions
for one or more of the pathologies. Now we have to consider how the prescriptions
can be ‘bundled’ together. The resulting candidate bundles can be evaluated, and
one or more chosen to be implemented. The New World can then be specified
according to the chosen bundle (see Chapter 10).

Each prescription is analogous to a hypothetical development objective at a
greater level of detail. As we did with the development objectives, we need to assess
the consequences generated by the implementation of each prescription. We do this
by following a similar pathology /prescription process: we posit the prescription as
a change to a role in the Old World; we identify the roles that are affected by this
change; we analyse the effect to determine if it results in a pathology; we identify
prescriptions for any pathologies. The additional task involved here is in deciding
where to start.

9.4.1 Choosing a starting point

In inventing prescriptions, we ruled out any obviously unacceptable ones such as
‘move site to take advantage of favourable tax arrangements’, before they were
even written down. Even allowing for this initial pruning, for an analysis of any
size there are too many prescriptions simply to assess the possible effects of all the
individual prescriptions and all the possible combinations of prescriptions.

This a general problem with the engineering endeavour of finding suitable solu-
tions to complex problems. Some resources for dealing with this, as in the initial
generation of prescriptions, are our experience of similar projects and our knowl-
edge of available specifications and products. In addition, common sense suggests
that focusing our attention on the central problems is likely to lead us to a satis-
factory solution, if not necessarily the optimal one.

If we are to double production, then the obvious central problem is Manufac-
turing having only half the desired production capacity, and so we concentrate on
this. We identified two problem areas with regard to this: the unreliability of the
control boxes, and the inherent capacity of the looms.

Anecdotal evidence from the operators suggests that downtime attributable to
the control boxes is the cause of the looms running at about 80 per cent of potential
capacity. Even a complete improvement in the control boxes’ reliability, by means
of either of the prescriptions that we have posited (the application of lubricant,

98 Chapter 9. Pathology and Prescriptions

and the complete replacement of the control boxes), would not result in the desired
production level-—so not much benefit, albeit at not much cost.

The second problem area is that of the inherent capacity of the two looms.
The first prescription involves lubricant and lightweight low-friction components
in order to speed up the running of the looms. The increase in speed that is
likely through such efforts, we decide, would be minimal. The second prescription
involves buying more looms, and does hold the possibility of significantly increasing
production. We decide to focus our attention on this prescription, bearing in
mind that this would be likely to form a component in an expensive bundle of
prescriptions, and that we might want to consider what a less expensive, if less
effective bundle might be.

9.4.2 A first candidate bundle

The trace for this prescription starts with buying more looms, and the appropriate
rearrangement of the Jacquards. We are assuming that a new loom comes complete
with Lifting Boxes and Camshafts.

The first thing we have to consider in our trace is the collection of electrome-
chanical devices connected to the loom: the Electromagnets, Lifting Box Solenoids,
and Cam Contacts. We need a new set of these for each new loom.

In addition, we need a way of controlling the new looms. There are several
choices here. We could buy more of the current control boxes, but we have been
told quite strongly that the client does not want to purchase any more of them.
This leaves us with a choice between different kinds of new control systems:

e a new control system that mimics the old control box, but in a reliable
medium, for each new loom

e such a new control system for each of the looms, both old and new, and the
disposal of those control boxes that we have already

e a central control system that controls all of the looms

In each case, we could reverse engineer the old control box, and provide a re-
placement that perhaps worked not just more reliably, but better, for example, by
allowing all looms to weave all styles.

If we change the control boxes at all, we need to consider the Operator Machine
interface.

Firstly, with an individual control system for each loom, we might need more
operators, although the control systems might work efficiently enough to allow an
operator to manage two looms; we might need fewer operators with a centralised
control system.

Secondly, we need to consider the interface to the new control system. Preserving
the current interface would not be a good idea.

Thirdly, we may want to change the nature of what the operator transfers to
the machine. Is a batch still going to be the same? Can more names now be in a

9.4 Evaluating the prescriptions 99

batch? Do we need batches at all, or could the operators cope with a continuous
string of order items? Are there any other constraints on batch that might change?

Finally, we can complete the trace in our model, from Batch to the batching
process. If a batch is no longer the same, then the batching process will probably
have to change. The number of batches required is increased significantly, and
so we have to address the problem of the increase in effort that is needed for the
transcription and batching of orders, offset against the likelihood of the batching
process itself becoming simpler. Any of the more effective prescriptions for the
transcription and batching process problem would be suitable here, the simplest
being to increase the number of personnel in the orders office, if necessary.

Another complication associated with batching is that previously it was clear
which loom would weave which batch. With several looms capable of weaving all
batches, there is some work involved in allocating batches to looms. Achieving an
optimal allocation, with regard to minimising colour changes on looms, is poten-
tially a complex process. This could either be undertaken manually or could be
dealt with by the control system.

Looking back to our original list of atomic prescriptions, we can see that several
of these are encompassed within the above trace, and those that are not subsumed
or made unnecessary do not conflict either. In fact, it turns out that the con-
sequences of this prescription—buying more looms—encompasses a prescription
that addresses most of the problems that we had identified. This should not be
too surprising, since two of these problems were perceived in response to doubling
production (transcription and batching being unable to cope with doubled pro-
duction, and the Operator Machine interface being unable to cope with doubled
production), one is subsumed altogether (the above prescription addressing dou-
bled production through addressing control box unreliability) and one addresses a
common system (the Operator Machine interface being error prone).

The problem of allowing for greater expansion (for future expansion into foreign
markets) would be catered for by choosing a control system that could deal with
any number of new looms. The problem of having a restricted character set could
be solved by having some or all of the looms with a control system that allowed
for foreign characters.

Some rudimentary statistics about orders (number, details, dates) could be pro-
vided by a new control system, although this has to be with the third option above,
a central control system, for the statistics to be complete. More wide-ranging statis-
tics involving customer details (geographic distribution of customer base? favoured
kind of payment? number of payments outstanding?) is beyond the scope of this
prescription, however. The question of what statistics are needed, how and how
often the data is to be obtained, and how the statistics are to be calculated and
presented, is also an issue that lies outside the scope of this prescription, beyond
noting that the control system would have to be able to provide data about orders,
frequencies, and so on.

So, this one prescription, based around a centralised control system for both old

100 Chapter 9. Pathology and Prescriptions

and new looms, has the potential of addressing almost all of our problems. This
seems likely to be an acceptable solution.

Had this prescription not addressed most of our problems, or not had the po-
tential for doing so satisfactorily, then we would go on to investigate other pre-
scriptions. We would choose a prescription to look at by using the same approach
of finding a problem that appears to be central, and investigating a prescription
addressing that problem that survives the scrutiny of a rudimentary cost/benefit
analysis.

9.4.3 An alternative bundle

Although this prescription does seem suitable, we would like to present our client
with some alternatives with regard to the size of the development being proposed.
The prescription that would be central to an alternative low-cost bundle is the one
briefly considered above, of increasing the capacity of the two looms through the
application of lubricant, which would make the current Control Boxes as reliable
as possible.

The trace for this prescription starts with a slight increase in the production
capacity of the Looms and control system. The trace can be followed to the op-
erator machine interface. Can the operator now keep up, in order to make use
of the increase in capacity? A slight increase in the efficiency and accuracy of
the interface would be required—perhaps some feedback, or a dexterity training
course for the operator. If the operator can be made to keep up, then the next
question is whether the orders office can supply batches quickly enough. Again, a
slight increase in capacity would be required. As noted in the preliminary anal-
ysis, the factory is rather dark—perhaps just better lighting would speed up the
transcription of orders sufficiently.

Again, several of the other atomic prescriptions are encompassed within the
above trace, and, given the partial nature of these prescriptions, none conflict.
However, the prescription goes no way towards either expanding into foreign mar-
kets or to providing useful statistics.

An alternative higher-cost bundle, perhaps with a more extensive ordering and
statistics capability, is unlikely to be acceptable to the client, and so we stop at
two bundles.

9.4.4 Evaluating and choosing

Having built up candidate bundles of prescriptions, the cost, benefit, risk, feasi-
bility, and so on of each needs to be determined in order to allow for a reasoned
decision to be made about which to choose. Different options meet development
objectives to different degrees, and it is up to the client to choose one. We also
have to evaluate each option with regard for the feasibility of satisfactorily achiev-
ing an implementation, and the associated cost of the migration from old systems

9.4 FEvaluating the prescriptions 101

and work practices to new ones.

For NIMWeC, we have identified two such bundles above. As with prescriptions,
do nothing is still an option, so we have three bundles to evaluate: do nothing, do
a little, and do a lot.

Do nothing

There is no immediate cost associated with doing nothing, since there is no pressing
need for NIMWeC to change. There is also no benefit, other than being able to
use elsewhere (or not use at all) the funds earmarked for a future development
resulting from this project. An evaluation of the long-term cost of doing nothing
is outside the scope of this project.

Do a little

The bundle of minor improvements, involving improving the control boxes’ relia-
bility, and making corresponding changes to other parts of NIMWeC, would cost
very little in monetary terms, be easy to implement, and would have little effect on
the profitability of NIMWeC. The control boxes’ unreliability currently limits the
capacity of each loom to about 80 per cent of potential capacity. If the reliability
of the control boxes were improved, and some improvements made to the interface,
then primarily through better reliability, and partly through increased accuracy of
operator input, we might expect each loom to work at near full capacity, resulting
in a total increase of capacity over the Old World of about 25 per cent. The re-
sulting changes in working conditions, such as better lighting, might be welcomed.
They might also improve the ease with which NIMWeC satisfies current health and
safety regulations.

Do a lot

If we bought another loom and utilised an excess jacquard freed from one of the
existing looms (there are currently four jacquards, but only one is needed per
loom), and had all the looms using a new control system, then we could expect a
total increase in capacity of about 90 per cent—nearly double. Bringing the total
number of looms up to four would result in an increase in capacity of about 150
per cent—more than double.

With a centralised control system there should be the possibility for future
expansion, along with the ability to cater for differing market demands for name
tapes, or indeed general woven products.

The major cost will be for the new looms and the control system, with some
cost associated with time taken for installation, testing and training. No new loom
operators are envisaged, the simplicity of the new control system outweighing the
number of extra looms, but there may be a need for extra maintenance effort,
although, again, the expected good reliability of the control system may mean that
there is enough maintenance effort available currently. The extra cost of providing

102 Chapter 9. Pathology and Prescriptions

a control system that also dealt with batch allocation would not be significant.

An installation starting by using the control system for one new loom and then
progressively adding in new and existing looms, would be a sensible approach, both
from the point of view of reducing risk and spreading out the cost over a period
of time. It would, however, involve some extra cost (in ‘missed opportunity’) over
the option of an immediate change-over to the new system.

Other costs associated with the new system include extra effort in the ordering
department, since any savings from the potential simplicity of the batching process
would probably be outweighed by the increase in effort on the greater number of
orders. Some extra staff may be needed if indeed the extra production capacity
were utilised.

We had already ascertained, during preliminary analysis, that the client is con-
vinced of the need to replace the control boxes, because of their unreliability,
unpleasant operator interface and the limits they place on future expansion. Not
surprisingly, the client chooses the bundle that contains the replacement of the
control boxes as one of its prescriptions.

Chapter 10

Specitying the New World

10.1 Introduction

The bundles of prescriptions discussed in Chapter 9 outlined courses of action that
involve changes to part of the world. In general, there are various kinds of change
that a prescription can describe:

e improving things (improving lighting in the ordering office)

e replacing things (replacing the control boxes)

e adding things (adding a statistics system)
Where a change involves the development of an IT system (involving both software
and hardware) we can be more specific about each kind of change:

e providing an IT system that enhances or provides a better interface to an
existing component

e replacing a manual or mechanical component with an IT system (for example,
replacing the mechanical control box with a new computerised control system)

e adding an IT system to do new work

The bundle we have chosen for NIMWeC involves elements of all of these kinds of
change.

In this chapter, we provide enough of a specification of the changes to allow suit-
able I'T systems to be designed and implemented—the task of system development.
The specification should form the basis of subsequent development work.

We are interested in particular in the IT systems that are being developed—we
were hired on the basis of being I'T analysts, and our knowledge of I'T has had an
influence on the nature of the prescriptions we produced. However, we are not yet
at the stage of being interested solely in the I'T systems themselves. We still need
to produce a specification of the non-IT changes, such as changes in personnel or
work practices. For the I'T changes, we need to produce a specification not in terms
of the internals of the systems, but in terms of what the purposes of the systems

103

104 Chapter 10. Specifying the New World

are, and how they are expected to behave with regard to the systems around them.

10.2 What the New World looks like

Many things in the New World remain as they were in the Old World. The purposes
of NIMWeC remain broadly the same, but need to take account of the development
objectives. Dispatch and payment, sales and marketing, loom maintenance and
the manual procedures for changing the brocade colour of looms all remain as they
were. These can cope well, we understand, with doubled production. Turnaround
time, NIMWeC’s big competitive advantage, remains at 14 days.

Each loom still expects something to give it instructions. We still want to be
able to produce a batch from the orders office, each of a manageable 30-name size,
and pass these down to the factory floor.

The main behavioural changes are outlined in the chosen prescription and centre
on the weaving process:

1. The control boxes are replaced by a central control system for the old looms,
with two new looms arriving quite soon.

2. The batching process is simplified, with all of a batch’s items now simply
being all of one colour, rather than all of one colour and one style.

3. The product has the potential for being different—not simply capital-letter
name tapes, but ribbons with the Hebraic alphabet, or any pattern at all
(within the limit of the resolution afforded by the looms).

The second and third of these changes have consequences for the first, as demon-
strated in the pathology /prescription activity. The new control system has to deal
with batch allocation, has to offer several styles, and has to ensure that it is easy
to define new ones.

Much of the specification of the New World can be derived from our models of
the Old World, since the latter was modelled at a suitable level of abstraction, de-
liberately ignoring details that we felt were liable to change. Our general approach
is to view the control system as central, and describe other things around it.

10.2.1 Processing batches

The new Batch is similar to that described in Section 8.3, but no longer has a
style attribute (Figure 10.1). The batch is the basic unit that the control system
receives from the operator. Orders and batches still have the behaviour described
in Section 8.3, and the timing constraints expressed there still apply. The orders
office must be able to produce twice as many batches, and an extra person there
may be needed to help with this; the nature of the jobs of those already there are
changed slightly, with less effort being spent on the batching process, some of this
envisaged spare effort being spent handling the extra volume of orders.

10.2 What the New World looks like 105

Order

e customer name
» customer address

in

Orderltem

e name text // to be woven Batch

* quantity > _______ * batch number
« colour ~ 30 « colour
* style T
|
for weaves |
Instruction Loom

Figure 10.1 Batches in the New World

At the other side of the control system, we now have several looms, expecting to
receive instructions according to the OnePick behaviour of Section 8.2.1. However,
as noted above, the bundle of prescriptions involves two major changes to the
weaving process. One is that the one control system is to service all looms. The
other is that the nature of the instructions that the looms expect has changed.

Since, in the Old World, each batch is automatically assigned to one loom, the
relationship between batch and loom is made immediately. In the New World the
relationship between batch and loom has to be established by the control system—
the allocation problem. So, the first task of the control system is:

e to allocate each batch to a loom, in some fair way, on the basis of the colour
that each loom is weaving, and the number of batches already allocated to
each loom

The control system should probably not allocate batches too far in advance, due to
the likelihood of loom breakdown disrupting an otherwise perfect schedule. There
are many ways of dealing with the allocation task, but for this specification we
simply note that at some point between a batch being created and the WeaveBatch
behaviour the batch has to be allocated to a loom (Figure 10.2). Compare this
diagram with the dynamic model in Section 8.3.

We recollect our preliminary analysis, where the client expressed a desire for the
staff to maintain a degree of control over the weaving process (Section 5.3.2). It
might therefore be desirable for the control system to allow the loom operator to
allocate a batch manually.

The looms still expect a sequence of instructions, which, to produce a sensi-
ble ribbon, must be a combination of sequences of instructions corresponding to

106 Chapter 10. Specifying the New World

: Control . . bltems :
[System J [- Loom J [- Batch J [Orderltem +J

|
I
I

in

O Y

AllocateBatch

weaves

O oO— O

WeaveBatch

le ©

Figure 10.2 Weaving a Batch

characters in a name, and instructions for the special separator characters. The
old control box issued instructions for the various separators and special marks by
virtue of its wiring; the new control system should ensure that these characters are
woven at the appropriate point. The old control boxes also decided whether the
following pick is to be ground or brocade; the new control system also has to do
this.

So, in addition to the first task of allocating batches, the control system has to:

e translate the text of the batch items into appropriate sequences of instructions

e pass the instructions to the loom’s electromechanical devices at the appro-
priate time

The translation of the batch item text entered by the operator is into sequences of
instructions that correspond to the appropriate thread patterns for the characters
in the text. This, as we noted in Chapter 8, is a central function of the control
boxes. There are many acceptable ways in which this translation might be done,
so we refrain from being too specific here—we just say that it has to be done. The
only constraint is that the translation has to have occurred sometime in between
a batch being created and a batch being woven.

Looking at our models so far, we can further extend the model given above to
that shown in Figure 10.3. This allows several different scenarios concerning when
translation is done, since AllocateBatch and TranslateBatchltems are shown as in-
dependent behaviours (the vertical positioning is just for graphical convenience).

10.2 What the New World looks like 107

. l bltems : l

|
| .
| n

O Y

AllocateBatch

: Control
System

weaves

TranslateBatchltems

: Control
System

. Instruction +

WeaveBatch

QIQ ©

Figure 10.3 Translating a Batch Item

108 Chapter 10. Specifying the New World

Batch
ST 1
’ T \\\
. 1
BATCHMARK ItemA ItemB ltemZ BATCHMARK
ST \
!) A 1
ITEMMARK Repeata Repeatb Repeatz ITEMMARK
I’ ______ \\
‘//’ —\\\\
REPEATMARK Name Name Name REPEATMARK

i

1
... FOLDMARK A°. NARWHAL FOLDMARK FOLDMARK ...

Figure 10.4 The structure of a batch of name tapes

If the control system is not busy, it could be translating items in advance of al-
location. Alternatively, it might leave translation until the last minute (that is,
just before weaving). These decisions have to be made in the light of any timing
requirements. Decisions about how the translation is done also have to be made
at some point, in the light of subsequent architectural decisions.

The required ability to expand into foreign markets is relevant here. A rich
character set and the corresponding translations could be maintained by the sys-
tem. Alternatively (or in addition), the control system could allow the definition
of new character sets and translations. The latter option would give considerable
flexibility to the system.

As well as translating the text of each order item into loom instructions, the
control system has to collate these instructions into weavable batches, using various
separator marks. Figure 10.4 describes the structure of a batch. The ‘terminal
symbols’ (characters and markings) are shown in upper case. Each of these terminal
symbols requires a sequence of instructions involving ground and brocade picks.
Each brocade pick must be woven on top of a ground pick (that is, without moving
the ribbons on), and each text character has appropriate ground picks woven on
either side to separate adjacent characters. The ability to change this ‘name tape
grammar’ easily is fundamental to the requirement of being able to weave things
other than name tapes in the future.

A point to note is that a loom weaves 72 ribbons simultaneously. It follows that
the minimum quantity of a given name is 72, and so names are ordered in multiples
of 72 or ‘repeats’. The number of repeats specified by an order item needs to be
checked by the translation process. If an item is for more than one repeat, the
REPEATMARK and the duplicated name-text needs to be generated.

The third task of the control system is to communicate the weaving instructions

10.2 What the New World looks like 109

to the looms, and interface with the electromechanical actuators and sensors, in
accordance with the OnePick behaviour described in Section 8.2.1. In addition,
the new control system has to deal with all the looms concurrently. Given that
the control system is necessarily ‘distributed’ (centralised controller, many looms),
there are additional reliability requirements concerning the transmission of instruc-
tions over a communications network. In particular, the central controller must
be able to discover if any of the looms has become non-operational for any rea-
son (mechanical breakdown, warp breakage, thread running out). In other words,
the control system needs to be able to handle ‘exceptional” behaviour as well as
‘normal’” behaviour.

10.2.2 The operator interface

We now need to consider the operator interface. Minimally, the control system
needs an operator to enter batch details. These details are in accordance with
the model of a batch and its batch items given in Section 10.2.1. This is where
any similarity between the old and new control systems ends for the operator.
Everything else is new territory, the operator being faced with a central control
system controlling several looms and the ability to enter batches far ahead of their
time of weaving.

One obvious consequence of the change is that the operator may want to remove
a batch. Before, this was not an issue, since a batch would simply not have
been entered. Since so much is unknown about how the operators might want
to deal with the new opportunities and limitations afforded by such a control
system, many of the operator interface requirements have to be developed during
the development phase, by means of prototyping and other techniques. However,
there are requirements that we can talk about now.

The control system needs some information about the looms to allow it to
allocate batches fairly: which loom is using which colour, and perhaps when the
colour was put in, so that the control system can estimate when it will run out.

However, the operator should be able to specify which batch goes on which
machine, and when, in order to retain control over the weaving process, as desired
by the client. This might be useful, for example, for orders that have to be woven
urgently. An alternative might be to allow priorities to be given to each order by the
operator, and then let the control system make decisions based on this information.
This is something that can only be assessed during design, in conjunction with
the loom operators, who can determine how easy to use and how beneficial such
a feature might be. This is separate from the issue of whether such priorities
are used by the control system itself in order to determine its scheduling; such a
mechanism might be appropriate for the control system to use, but undesirable for
the operator.

Another consequence of the client’s desire for the operators to maintain control
over the weaving process is that information should be given to the operators

110 Chapter 10. Specifying the New World

about what the control system is doing or planning to do. Only if the operators
have this information can they act intelligently in controlling the weaving process.
Again, it requires the involvement of the loom operators themselves to decide what
information would be useful. Information that was previously available to them is
no longer obvious (for example, the ability to say which loom a batch was to be
woven on). The range of information that they may be interested in is now wider
(for example, the number of batches allocated to particular looms).

Since the information required is unlikely to be difficult to produce or assimilate,
we can say that, in principle, the control system should be able to display to the
operator any information it holds regarding looms and batches. The operators may
also be interested in the working of the control system itself. Previously, it was
obvious to the trained ear whether or not a control box was about to break down;
with an automated system, such ailments may not be so easy to detect.

If we are particularly worried about the information required by the operators
(if, for example, the operator has to make critical decisions on the basis of this
information), then this single aspect of the control system has to be subjected to
a much lengthier analysis.

A similar requirement on the control system is presented by the need for statis-
tics. For the chosen bundle of prescriptions, it was agreed that any information
about looms and batches that could be obtained easily from the control system
would be made available for monitoring purposes. Since this information has not
been easily available before, there is a further question to be answered about what
kind of information is useful, and how the information should be manipulated
and presented in order to be of help. We can simply say here that basic status
information on batches, orders and order items should be made available.

Given that the loom operators have enough information to allow them to know
that they want to intervene and what needs done, they have to be able to intervene.
Removing batches was mentioned above. Other operator tasks, taken from the old
world purposive models, include requesting maintenance for a loom and changing
the colour of a loom. Both of these require the ability to remove the loom from
operation.

10.2.3 Reliability and performance

We now need to consider various issues regarding the reliability and performance
of the proposed control system. These issues are only briefly discussed here; a more
detailed consideration needs to take place as part of the system design activity.

What happens when things go wrong?

We need appropriate shut-down and recovery procedures for the looms and the
control system itself. So, for example, the control system should keep a non-
volatile record of any batch items that are being woven but whose weaving has
not been completed. Subsequent re-allocation must take into account the need to

10.2 What the New World looks like 111

remain within the 14 day turnaround time. The control system should also be able
to detect, flag and possibly act on abnormal signals from its cam contacts (most
obviously, no signal at all).

How much storage is needed?

This has two aspects: How many batches can have pending status at any one time?
Should records be kept for statistical purposes, and if so, of what and for how long?

At what frequency do instructions need to get to the loom?

Our client gives us some possibly relevant figures: each loom, at its fastest, takes
about 2 minutes to weave a 12 character name; a typical character is woven as
a sequence of 16 instructions—8 ground and 8 brocade; 12 name characters plus
special characters and spaces suggests that about 100 instructions have to be pro-
vided each minute. However, there are two factors here: the physical constraints
of the weaving frame, and the typical make-up of names and characters. The for-
mer can be assumed fixed, but the latter factor may change, for example with the
introduction of new character sets.

How fast does batch allocation need to be?

This depends on turnaround time: batch allocation should be done so as to allow
the 14 day turnaround time on orders to be met. For each of these timing require-
ments, we ought to ask whether the most significant timing constraints are under
the control of the control system. For example, the biggest constraint on achieving
the 14 day turnaround time for each order is currently loom down-time, due to
control box unreliability, but also due to routine colour changes. A control system
that could allocate batches to looms intelligently might be faster than one that put
its effort into supplying instructions at break-neck speed.

What capacities does the control system need to handle?

The client suggests that the target for a four-loom NIMWeC is about 1000 orders
a day, and so this is what the control system should be able to handle. Given
that there is space in the factory for six of the current style looms, then, in the
interests of future expansion, the ability to handle 15002000 orders per day seems
a sensible precaution.

Another ‘design’ issue that should be considered at this early stage is the over-
all architecture of the IT system. In particular, we need to consider the hard-
ware/software mix, and the distribution of functionality across hardware.

There are a number of distinct tasks in which the control system is involved.
Broadly speaking, these are

e batch entry and monitoring

e batch allocation

112 Chapter 10. Specifying the New World

e translation
e weaving

These tasks involve different parts of the physical environment. Batch entry takes
place centrally, while weaving taking place in at least four different areas of the
factory. Batch allocation and translation need to take place at or between these
locations. Some parts of the control system therefore have to be located centrally,
while other parts are located at each loom.

The details of the architecture need to be decided within the design process.
However, the fundamental nature of the control system is that it is distributed,
and so communications are an issue, with regard to timing, capacity and reliability.

We would expect that only the last task, weaving, requires any special-purpose
hardware development.

10.3 Onward into development?

In Chapter 9 we set out and evaluated various bundles of prescriptions. The client
chose a course of action on the basis of the evaluation, and in this chapter we
specified the proposed development in more detail. We now know a lot more about
the nature of this development, and it is sensible to ask the client at this point
whether the cost/benefit analysis still holds, and if this is really what is wanted.

Only one aspect of our cost/benefit analysis has changed. With the realisation
that the loom operators should be involved in the development of the new control
system, the cost of subsequent training may be less than we originally envisaged.

We present the New World specification to our client, and are told that this is
still the right course of action. The client is impressed with the way the project has
gone, and asks us to proceed apace with the development of the system. We, too,
after this analysis project, are confident that the proposed changes and the new
system will be a help to NIMWeC. Eager to get started, we set about designing a
Development Process that will take us through design and implementation of the
new control system.

Part 111

Using the Modelling Languages

Chapter 11

Purpose and Behaviour

11.1 Why use models?

Chapters 4-10 have worked through an analysis case study in some detail. The
main visible outputs from the analysis activity are in the form of models: infor-
mation expressed using defined modelling languages. In this part we step back
from the Basic Process and discuss the concepts of the two ORCA modelling lan-
guages, and how they can be used to aid analysis. Appendices B and C in Part VI
give precise definitions of the modelling languages, and can be used for reference
purposes.

Before dealing with the ORCA modelling concepts, it is worth emphasising the
reasons for using models in analysis. As can be seen from the NIMWeC example,
models provide a vehicle for analysis—a way of writing things down, an aid to
understanding and a form in which information can be examined and manipulated.
The modelling activity is valuable in itself, even if the resulting models are not
required as deliverables from the analysis process. Attempting to model something
is an excellent way of prompting questions and checking one’s understanding.

Modelling languages should serve as a tool for abstracting and simplifying com-
plex situations, helping an analyst express what is relevant to an analysis and what
is not. Conversely, modelling languages should also have mechanisms for compos-
ing simpler components into more complex ones, so that an analyst can ask ‘how
do these things fit together?’.

A related function of modelling languages is to collate and present disparate
information. For example, we often want to produce an overall description of a
part of the world, in terms of its structure or the kinds of object involved. In some
situations a global ‘object model’ or ‘information model’ is useful. However, the
analyst should be careful that collating information into a single model produces
some useful ‘macro-reading’. For example, we might be able to see that complexity
is relatively localised, or that some entities are central while others are peripheral,
or that a certain structural pattern emerges.

115

116 Chapter 11. Purpose and Behaviour

Another role of models in analysis is to support statements about requirements
for change and rationale for change. Models can supply precise and detailed mean-
ings for the terms used and the ideas expressed. The models in themselves are not
the primary output of the analysis process—the analysis process is not about con-
structing Grand Unified Models of Everything. Initially at least, modelling should
be done in a piecemeal fashion, as and when required. Subsequently, it may be
desirable to integrate model fragments for the purposes of checking or presentation.

The degree to which analysis models provide material inputs to the design pro-
cess is a difficult issue. If design is pursuing object orientation, it is certainly
feasible to ‘carry over’ classes and related information from the analysis models to
design models. However, if this is taken to be the default assumption, it should not
pass unquestioned. The classes that appear in an analysis model may be quite un-
suitable as the basis of object oriented software. Conversely, it would be a mistake
to allow design considerations to influence the content of analysis models.

A method such as ORCA cannot lay down hard-and-fast rules concerning the
role of models and the use of modelling languages in analysis. What is provided
is a set of conceptual and notational tools, together with ideas about their use,
as discussed above. How exactly these tools are used needs to be determined by
the analyst in the context of a particular analysis. In particular, how complexity
is handled—by more modelling or by less—must be decided by the analyst. If an
analysis is getting ‘bogged down’ in some aspect of modelling, then the usefulness
of continuing that particular modelling activity should be questioned. It is always
permissible to stop and ask ‘how much more about X do we need to know?’.

This is especially the case with modelling dynamic behaviour. There is a sig-
nificant danger of being overprecise and worrying about interaction mechanisms,
rather than trying to capture the minimal constraints for valid behaviours. This
is an aspect of modelling where striving to produce a ‘complete, unified model’ is
often a mistake. In contrast, descriptions of static structure (classes and relation-
ships) are generally more manageable, and it may be worth producing a ‘complete
object model’.

The conclusion of this section is that, for the purposes of analysis, modelling
should be done judiciously, recognising that it should be the servant of the analysis
process, not its master.

11.2 Purposive entities and Behavioural entities

The examples in Chapter 2 and Part II illustrate ORCA’s dual modelling approach:
purposive modelling and behavioural modelling. However, we have not, so far, said
much in general about the different kinds of entity in the two sorts of model. The
following example aims to clarify the distinction between purposive entities and
behavioural entities. The example has the flavour of an analogy, and is intentionally
nothing to do with I'T development.

11.2 Purposive entities and Behavioural entities 117

KeralriCle

=2

G-‘n&aﬂﬂa wi “¢
Figure 11.1 Rumbabwe, Birfami and Ginganda

Suppose that we are dealing with three fictional neighbouring countries: Rum-
babwe, Birfami and Ginganda. The geography is sketched in Figure 11.1.

The south of Rumbabwe is dry, but very fertile. Alfalfa is grown there, thanks
to extensive irrigation that takes water from the Imkwezi river. The alfalfa is
Rumbabwe’s main export, but since the country is land-locked, it needs to be
transported by rail to Imbirfa, which has a deep-water port. Imbirfa also has large
industrial complexes (some owned by multinational companies) that generate a
variety of unpleasant waste products.

Ginganda shares the fertile southern region with Rumbabwe, and it, too, takes
water from the Imkwezi river. The amount of water required for irrigation is
increasing in both countries. The alfalfa is transported by road to the port at
Gingandaville. The other main source of revenue for Ginganda is the group of
beach resorts centred around Koralriffe; their slogan is Come to Koralriffe for a
Ginganda tonic. Since the prevailing ocean current flows from north to south,
these resorts, famed for their crystal clear waters, are at risk from the industrial

118 Chapter 11. Purpose and Behaviour

pollution of Imbirfa.

There are two quite distinct aspects here: the ‘political geography’ of countries
and their interrelationships, and the ‘physical geography’ of cities, rivers, railways,
and so on. The requirements and objectives of the three countries are imposed
on the geography of the region. The regional structuring works effectively if these
requirements and objectives are compatible, and if they can be satisfied by the
physical behaviour of industries, agriculture, transport links, and so on.

We can thus treat the three countries as purposive entities, and look at the way
that they are related. Rumbabwe relies on Birfami to operate the Rumbare-Imbirfa
railway effectively, and Birfami may in return guarantee to do so. If Birfami does
not co-operate then there is a problem. Similarly, Ginganda relies on Rumbabwe
not to deplete the Imkwezi river to a level that jeopardises its own irrigation, and on
Birfami to control discharges of industrial waste from Imbirfa. We might also want
to regard the multinational companies as purposive entities, having relationships
with Birfami in particular.

For the purposes of our regional analysis, the railways, rivers, industries, and
so on, are behavioural entities. Rumbabwe relies on Birfami to provide a ‘service’
that concerns the effective running of the railway. Even if the two countries agree
on the definition of the service to be provided, the behaviour of the railway may
not actually realise the service. In order to determine the level of service, we
could model the frequency and capacity of trains on the line, and relate this to the
requirements of alfalfa production (quantities at different times of the year, how
long it can be kept in storage).

A point worth noting is that the countries are not directly observable. We
cannot go somewhere, look around, and see ‘Rumbabwe’. On the other hand, we
can directly observe railways, rivers, bales of alfalfa, and so on. Another point
to note is that the behavioural entities are not partitioned by the purposive enti-
ties. The relationships between the countries are mediated by ‘shared’ behavioural
entities—the river, the railway, the ocean currents. Behavioural entities that are
entirely internal to a country are not directly relevant to the purposive relationships
between countries.

Whether things are treated as purposive entities or behavioural entities depends
on the nature of the analysis. What happens if we treat countries as behavioural
entities? A behavioural model could contain three instances of class Country.
This class can define properties that apply to countries in general, for example
their capital city, population, gross domestic product, and the position of their
borders. On the whole, these properties do not seem directly relevant to the
purposive relationships between countries. A possible exception is the definition of
a country’s borders; if borders change, the purposive relationships may change (for
example, if Rumbabwe ceases to be land-locked). This indicates that we should
treat countries primarily as purposive entities.

What do countries actually do? Firstly, they change the sort of properties men-
tioned above—changing capital city, increasing population. Secondly, they enter

11.2 Purposive entities and Behavioural entities 119

into agreements with each other, concerning trade, transport and environmental
controls. In other words, they formalise purposive relationships. This is another
indication that we should treat countries primarily as purposive entities.

Both purposive and behavioural entities can be structured—they can have com-
ponent entities and containing entities. However, the nature of the structuring is
different. For example, we might want to express the co-operation between Rum-
babwe and Birfami at a lower level, as a co-operation between the Rumbabwean
alfalfa producers and the Birfami State Railway Company. Rumbabwe and Birfami
are treated as distinct entities with a different internal structure. In contrast, if
we want to say more about countries as behavioural entities, then we model the
class Country as a set of constituents. For example, we might choose an economic
model, containing an Industrial Sector, an Agriculture Sector and a Transport
Sector. All three instances of Country thus have the same internal structure. We
might decide that the Rumbabwean alfalfa producers constitute its Agricultural
Sector, and that the Birfami State Railway Company is that country’s Transport
Sector. However, we should be cautious about leaping to this conclusion.

On the other hand, some systems do seem to have levels where purposive and
behavioural entities coincide (or could be made to coincide). In the example of
NIMWeC, there could be Manufacturing and Orders & Invoicing divisions that
have co-operation relationships with each other and with the company as a whole.
They would be responsible for performing particular activities, and so provide the
required services. The divisions of the company could thus be viewed as both
purposive entities (roles) and behavioural entities (subsystems).

Why is there a (possible) coincidence of purposive and behavioural entities in
NIMWeC, but not in our fictional geographical region? The obvious difference is
that the organisation of NIMWeC can be designed, or at least evolved, to work
effectively. In contrast, the political and physical geography of our fictional region
is the product of complex historical and geographical processes.

Organisational and administrative structure is behavioural, not purposive. If
the purposive entities map on to this structure, then all well and good. However,
if there is a mismatch between these alternative structurings, then we can expect
problems. If purposive entities have no behavioural equivalents there may be no
way of establishing the necessary co-operations. For example, our fictional coun-
tries need mechanisms for drawing up and ratifying agreements to co-operate. This
co-operation-establishing behaviour should be distinguished from the behaviour
that realises the services involved (running trains, controlling pollution, and so
on).

A system is going to work effectively only if purpose and behaviour are har-
monised. An organisational division whose activities do not match its role in the
overall system can hardly be effective. In general, we should expect to find a co-
incidence of purposive and behavioural entities (at some level of abstraction) in
systems that have been explicitly designed. However, even where a system has
been explicitly designed, historical and social processes may cause purpose and

120 Chapter 11. Purpose and Behaviour

behaviour to diverge over time. The cumulative effects of such divergence are a
likely subject for analysis

In conclusion, we can say that analysis involves the interplay between purposive
and behavioural views of the world. This dual view helps an analyst to consider
problems, underlying pathologies and candidate solutions.

Chapter 12

Behavioural modelling

12.1 Histories and Frameworks

A Beluga framework provides a behavioural model of a system (or part of a system)
in terms of the possible histories of objects and their interactions. In practice, non-
trivial systems can have an infinite number of possible histories.

If this sounds rather daunting, consider the NIMWeC system. What NIMWeC
can potentially do is defined by its framework model. What NIMWeC actually
does, the particular history that it exhibits over a given period of observation,
depends on when customers generate orders, on the quantities, styles and details
of the name tapes ordered, on the operation of the weaving machines, and so on.
In principle, we could record what happens in terms of the creation, association
and interaction of objects in the history. However, NIMWeC could exhibit many
different actual histories while still being the same system.

A behavioural model thus describes what is behaviourally essential to a sys-
tem. The model characterises the possible histories in terms of patterns of object
creation, association and interaction. Since behaviour happens over time, these
patterns have a time dimension, as well as an ‘object space’ dimension (what
makes different objects different).

We can illustrate this using a simplistic Lending Library, in which borrowers
can take out and return books (without limit). When a book is on loan to a
borrower, then it is associated with that borrower—physically in their possession,
and recorded by the library as being so. When a book is back in the library, it is
not associated with any borrower. The obvious physical constraints mean that a
book can be on loan to no more than one borrower at a time.

Suppose that we observe the behaviour of a particular (rather small) library
for some period. We could record the history of the system as shown in Fig-
ure 12.1. This scenario shows a succession of events, with time progressing down
the page. Each object is shown by a vertical timeline. Events are either associate
events (borrower takes out book), or dissociate events (borrower returns book).

121

122 Chapter 12. Behavioural modelling

borrower 2

borrower 1

borrower 3

—0
— <
—

o/

time
C

4_______

X

Figure 12.1 Behaviour of a small library

Associate events are shown by a horizontal line connecting a book timeline with a
borrower timeline; dissociate events are shown similarly, but with a cross on the
line (indicating that the association is broken).

This Lending Library can exhibit many different histories, depending on which
books and borrowers are involved, when borrowers decide to take out and return
books, and which books are selected by borrowers. A behavioural model needs to
provide a pattern that fits all allowable histories, while excluding those histories
that are not allowable.

The key behavioural element is the Loan, consisting of a borrower taking out a
book, and subsequently returning it. Any history exhibited by the Lending Library
consists of a set of Loans. Where different books are involved, loans can overlap in
time, but a book can be involved in no more than one loan at a time. (Figure 12.2).

This behavioural pattern can be expressed as in Figure 12.3. This framework
says that a Loan involves a Book and a Borrower in two events, takeQOut and
return. A Library behaviour consists of zero or more (‘*’) Loans, which may be
taking place in parallel. However, a book’s change of state means that a book
cannot be involved in more than one loan at a time, since it can be taken out only
if it is n.

The round-ended boxes containing : Book and : Borrower represent the stereo-
typical book and borrower objects involved in a Loan. Different loans involve

12.1 Histories and Frameworks

borrower 2

borrower 3

borrower 1

i

loan 1

<

loan 2

\() loan 3

Ll

X

loan 4

Figure 12.2 Loan timelines for a small library

Library
Loan *
| . Borrower l
takeOut (
return (

Figure 12.3 Loan behaviour

123

124 Chapter 12. Behavioural modelling

different books and borrowers. Within a single Loan, the book and borrower
participate in the associate and dissociate events. These events are shown by hori-
zontal links between participation ‘blobs’ on the object timelines. The positioning
of the dissociate event below the associate event on the timelines indicates that
the former event has a time dependency on the latter—within a Loan, a takeOut
always happens before a return.

12.2 Object characterisation

12.2.1 Classes and instances

In modelling our Lending Library we characterise the objects as either Books or
Borrowers. In the terms of object orientation, we have a class Book, and a class
Borrower, with many instances of these classes. If we want to name an instance in
a particular context, we write someParticularBook : Book or if we do not need to
refer to the instance by name, we can write : Book as we did in our model of the
Lending Library. This can be read as ‘a book’.

Instances of class Book and of class Borrower are distinct—an object is either a
book or a borrower. Objects never change classes, although in some circumstances
they can be treated as instances of different classes (this is discussed later).

12.2.2 Object states

Properties of an object that can change are regarded as the state of that object.
For example, a book can change from being in the library to being out, and back
again; at any given time, some books are in and some are out.

Notice that the named statuses in and out are just a convenient way of saying
whether a book is currently associated with a borrower, or not. The statement ‘a
book can be taken out only if it is in’ is equivalent to the statement ‘a book can
be taken out only if it is not currently associated with a borrower’. We can also
regard the in/out status of a book as ‘remembering’ whether the most recent event
involving the book was a takeQOut or a return.

The state of an object can reflect its initial state and its entire history (that is,
all the events in which it has been involved). For example, a book could have an
attribute (which takes NATural numbers as its values)

numberOfTimesBorrowed : NAT

This is used to reflect the number of takeOut events in which the book has been
involved; its value increases by one every time the book is taken out.
If we want to limit the number of books that a borrower can have at any one

12.2 Object characterisation 125

Borrower
* loanLimit /I max number allowed on loan
* numberOfBooks // number currently on loan
« takeOut /I rely: numberOnLoan < loanLimit

/I guarantee: numberOnLoan' = 1 + numberOnLoan
* return

Figure 12.4 Features of Borrower

Borrower

Borrowing
¢ loanLimit

e numberOfBooks
« takeOut
e return

BookRequestin

Membership

Figure 12.5 Facets of Borrower

time, Borrower would need the attributes

numberOnLoan : NAT
loanLimit : NAT

numberOnLoan increases by one for every takeOut event involving the borrower,
and decreases by one for every return event. A takeOut event involving a borrower
would be allowed only if the borrower’s loan limit had not been reached:

takeOut
// rely : numberOnLoan < loanLimit
// guarantee : numberOnLoan’ = 1 + numberOnLoan

numberOnLoan’ refers to the value of the attribute after the operation has been
performed.

12.2.3 Features and facets

In our model, the class Borrower would now have several features—attributes, and
operations that modify the values of attributes (Figure 12.4).

Borrowers might have features that concern different aspects of behaviour—
borrowing, requesting new books, membership of the library, and so on. We can
therefore group features into facets (Figure 12.5). In fact, we might well identify
the facets before the features.

126 Chapter 12. Behavioural modelling

Borrower Book

Figure 12.6 Association of Book with Borrower

Borrower | holds 0 .. loanLimit Book
g

* loanLimit 0.1 onLoanTo

Figure 12.7 Association of Book with Borrower, with cardinalities

Borrower Book
« booksHeld : Book *

Figure 12.8 Borrower, with ‘books-held’ attribute

A useful heuristic is that the names of facets can often be gerunds, that is, a
noun formed by adding ‘-ing’ to a verb. In the above example, we have ‘borrow-
ing” and (book) ‘request-ing’. ‘Membership’ is to do with the relationship between
a borrower and the library—‘establishing’, ‘maintaining’ and ‘terminating’ it, pre-
sumably:.

12.2.4 Static structure

Having characterised the objects in the Lending Library as either books or bor-
rowers, we might want to see a static view of the system, in terms of the classes of
object and the ways in which instances of these classes can be associated. In this
case, a book may be associated with one borrower; a borrower may be associated
with one or more books. This is drawn as in Figure 12.6. The dotted line indicates
that the association is optional at both ends; the crows-foot indicates multiplicity
at the Book end.

We could name the association at either end, and we could also be more precise
about the multiplicity: (Figure 12.7). Notice how the diagram can be read from
left to right as ‘borrower holds zero to loanLimit books’, and from right to left as
‘book onLoanTo zero to one borrowers’.

Do we need this association? Couldn’t Borrowers just have a booksHeld attribute
(Figure 12.8)7 booksHeld is a set of zero or more (‘*’) books. However, this is just
one form that the association between borrower and book might take. Equally
well, a book might record the name of its current borrower, if any (Figure 12.9).
Here, borrowers have a name attribute (of some basic type NAME), and books have
a borrower attribute that may (‘?’) have a value of the same type.

Yet another option is to have an object of some third class—LoanRecord, say—

12.2 Object characterisation 127

Borrower Book
* name : NAME * borrower : NAME ?

Figure 12.9 Book, with ‘borrower’ attribute

Borrower Loan Record

Book * borrower : Borrower
* book : Book

Figure 12.10 A Loan Record

Member

Borrower

Figure 12.11 Borrower specialises Member

capture the association by having both book and borrower attributes (Figure 12.10).
A loan record would be created every time a takeOut event happens, and would
be deleted when the corresponding return event happens.

We might have any combination of one or more of these three arrangements.
In a real library, we would probably have the first and third cases—borrowers
would hold books, loan records would be kept by the library, but books would
not record borrower identities. Using an association is thus more abstract than
using attributes. If using an association captures what is ‘essential’, then the
arrangement that realises the association is an aspect of the world that could be
changed.

We can take a static view of interactions, as well as associations. This is dis-
cussed in a later section.

12.2.5 Generalisation and specialisation

Objects are not always instances of completely unrelated classes such as Book
or Borrower. Sometimes we want to characterise objects as instances of a class
that specialises another, more general, class. Suppose that our Lending Library
has members who may read the books in the Reading Room, and some special

128 Chapter 12. Behavioural modelling

Item

Book Journal

Figure 12.12 Book, Journal specialise Item

Item

« catalogueNumber
« title
 aquisitionDate

Book Journal
e author * * journalReference
e isbn * issueNumber

Figure 12.13 Book, Journal inherit features of Item

Book Journal
« catalogueNumber » catalogueNumber
o title o title
* aquisitionDate * aquisitionDate
* author * * journalReference
e ishn * issueNumber

Figure 12.14 Flattened definition of Book and Journal

members, called borrowers, who may also borrow books (Figure 12.11). In this
case, the library has instances of both the general class and the specialised class.

We might want to relate two classes by a common generalisation that itself has
no instances. For example, the library has items, which are either books or journals
(Figure 12.12). Because there are no instances of Item that are not either books
or journals, the class Item is referred to as an abstract class.

The properties that books and journals have in common (concerning acquisition
and cataloguing, say) can be expressed as features of the Item class (Figure 12.13).
Instances of Book and Journal are said to inherit the features of Item.

12.3 Dynamic behaviour 129

l . Borrower l | . Book l

O—— O
O—>*—0

Figure 12.15 Association and dissociation during a Loan

l . Borrower l l : Book l

holds

O—— O

holds

Figure 12.16 Named Association

We could instead have defined Book and Journal as in Figure 12.14. However,
our behavioural model cannot now talk about events that involve general items,
either books or journals, so using the common abstract class gives us greater ex-
pressiveness.

12.3 Dynamic behaviour

12.3.1 Associate and dissociate events

We have already encountered associate and dissociate events in Section 12.1, in our
model of a Loan (Figure 12.15). Here, an associate event is followed by a dissociate
event. The former creates a link between an instance of Borrower and an instance
of Book; the latter removes the link. This link is an instance of the association
between book and borrower given by the static view (Figure 12.7).

If there were more than one association defined between books and borrowers
(for example, ‘book reservedFor borrower’), the kind of link created by an associate

130 Chapter 12. Behavioural modelling

Borrower

¢ loanLimit : NAT
K)/’. setLoanLimit(NAT)

Figure 12.17 Librarian invoking setLoanLimit, static view

Librarian

event or removed by a dissociate event could be stated explicitly (Figure 12.16).

The cardinality constraints defined statically for the association must be main-
tained by the composition of all loans. Since instances of the ‘borrower holds book’
association are created and destroyed by loans, the association is clearly optional
at both ends (a book may be onLoanTo a borrower; a borrower may hold a book).
The constraint that a book may be on loan to no more than one borrower can
be represented either as a change of status (a mutation) from in to out and back
again

[borrower—>book : hold,
mut{in = out}book]
[borrower-x-book : hold,
mut{out = in}book]

or as a reliance of the takeOut event (that for the book concerned, it must not
currently be held by another borrower)

“book not held”?(borrower—>book : hold)

borrower-x-book : hold

12.3.2 Interactions

We have seen that dynamic behaviour consists of events, and that these can be
associate or dissociate events. Since classes can define operations on objects, we
also want to talk about events in which operations are invoked, and attribute values
are changed as a result. These interact events can be described informally as ‘object
a does operation b to object ¢’, where b is defined by the class of ¢. Sometimes we
want to less precise and say ‘something does b to object ¢’ or ‘object a interacts
with object ¢’.

For example, suppose that Borrower has the feature setLoanLimit, which is
an operation to set the loanLimit attribute to some value. We can say that this
operation may be invoked by a librarian (Figure 12.17). If we had identified the
facets of borrower before its features, we could have shown the interaction going
to the borrowing facet rather than to a specific feature.

12.3 Dynamic behaviour 131

| : Borrower l | . Librarian l

O— <—90

setLoanLimit

Figure 12.18 Librarian invoking setLoanLimit, dynamic view

Suspension

l . Borrower l l . Librarian l
active
i O < —0
suspended)/_f\(
""" active G D)

Figure 12.19 Suspending a Borrower

If we want to talk about when occurrences of this interaction happen, we can
show the interact event by connecting object timelines, in a similar manner to that
for associate and dissociate events (Figure 12.18).

Notice that we have two views of the ‘librarian sets borrower’s loan limit’ be-
haviour. We can express the interaction as a static relationship between classes:
‘librarians (sometimes) set borrowers’ loan limits’ (Figure 12.17). We can also talk
about occurrences of this behaviour as events involving an instance of Librarian
and an instance of Borrower (Figure 12.18). setLoanLimit events can take place
before, after or in parallel with events of other kinds.

Rather than invoking operations, interact events may cause the target object
to change status. Suppose that librarians can prevent borrowers from taking out
books (for some misdemeanour, say), by making them suspended; suspended bor-
rowers can subsequently be re-instated as active (Figure 12.19).

Notice the distinction between this pair of interact events and the associate—
dissociate pair of events that form a Loan. In the case of a Loan, the association
changes the state of both the borrower and the book. The associate event does not

132 Chapter 12. Behavioural modelling

“Reduest
l l : Borrower
Request

o

| . Librarian l

Figure 12.20 New Book request

say how the association comes about—it might come about by a librarian creating
a loan record, rather than through direct operation on either book or borrower. In
contrast, the interact event that suspends a borrower does not affect the state of
the librarian, who is merely the agent for the state change of the borrower.

Interact events may have parameters. This allows us to describe events of the
form ‘object a does operation b to object ¢ with object d’, or ‘object a passes
object d to object ¢’. For example, a borrower might give a new book request to
a librarian (Figure 12.20). After such an event, the librarian ‘knows about’ the
new book request, and can perform operations on it, or perform behaviours that
depend on its attributes.

12.3.3 Initiation and termination

While some objects may appear as permanent constituents within an episode of a
history, other objects may be created dynamically during the episode. An object
may be permanent or transient relative to the lifetime of other objects. For exam-
ple, borrowers may be permanent relative to loan records but transient relative to
the library as a whole.

In describing dynamics, we may therefore want to talk about object initiation
and termination. We use these terms in preference to ‘creation’ and ‘destruction’,
since we are interested in behavioural history, not in physical existence. The first
thing that happens to a borrower in the Lending Library is their enrolment; our
model states that an enrol event initiates a borrower. The physical beings that
our borrower objects represent are certainly ‘created’ prior to enrolment (unless
the high demand for library membership requires education-conscious parents to
enrol their offspring at birth). Similarly, disenrolment of borrowers is not usually
accompanied by summary execution. Initiation and termination events are shown
in Figure 12.21; the dotted portions of the timeline help to indicate the extent of
the object’s lifetime.

Initiation and termination may be an aspect of interact events. For example, it
is the librarians who enrol and disenrol borrowers (Figure 12.22).

Sometimes, we may be interested in objects that are involved in only one event

12.3 Dynamic behaviour 133

. Borrower

enrol

disenrol

Figure 12.21 Initiation and termination of a Borrower

. Borrower | . Librarian l

enrol

I' disenrol
|

Figure 12.22 Enrolling and disenrolling a Borrower

in their lifetimes. A typical example is that of a ‘signal’ object that interacts just
once with some receiver object; the type or state of the signal determines what
the receiver object does in response (Figure 12.23). Note that the symbol for a
transient object is just a combination of initiation and termination symbols.

12.3.4 Object histories

In our library example, events involving borrowers typically result in changes to
their status; this in turn constrains subsequent behaviour. For example, suspension
prevents a borrower from taking out books; if a borrower takes out a book, and so
reaches their loan-limit, further take-outs are prevented until they have returned a
book. In this situation, it can be useful to focus on individual objects and describe
their life history in terms of possible sequences of events.

Using ORCA does not restrict you to using only the Grampus and Beluga no-
tations. Other techniques are also useful, and may be used. One approach that is
useful for showing the state changes that occur for a single object is to use Harel

134 Chapter 12. Behavioural modelling

l . Receiver l

O—=<—®
—<0

[
[
[
[
[
[
Figure 12.23 A transient signal event

disenrolled

disenrol

Y I
below takeOut
loanLimit

Y

return return

suspend return

leOut re-instate /

Figure 12.24 Harel statechart for Borrower

enrol

at loanLimit

.

return

statecharts [Harel 1987], a development of traditional state transition models.
The Harel statechart for Borrower is shown in Figure 12.24. Such a statechart
notation is not part of ORCA’s modelling languages; it has its own diagrammatic
conventions.

This statechart shows two top level states for borrower—enrolled and disen-
rolled. A borrower is enrolled and disenrolled only once (if the same person re-
enrols, they count as a different borrower). Inside the enrolled state, there are two
independent components—whether or not the borrower is currently at their loan
limit, and their active/suspended status.

Arrows between states represent the atomic events that a borrower may undergo.
The first event that happens to a borrower is enrol; this results in the compound
state belowLoanLimit+ active. In this state, takeOut and return events are allowed,

12.3 Dynamic behaviour 135

: Subject
Category

Figure 12.25 A set of Books in a Subject Category

and do not change the state until such time as a borrower reaches their loan limit.
When this happens, a return event must happen before another takeOut. If suspend
happens to a borrower, takeOut events (but not return events) are prevented until
re-instate happens. Suspension does not affect the state with regard to the loan
limit.

This kind of model complements the view of dynamics taken by Beluga: be-
haviour of an object is clustered by its class, rather than objects being related by
types of event. It is worth noting that the statechart does not tell us what takeOut
and return events do, namely, associate and dissociate an instance of borrower and
an instance of book (although these event names could also appear in a statechart
for Book). Neither does the statechart say that return must return a book that
has previously been taken out and not previously returned. Also, the statechart is
more sequential than the Beluga model, since it does not allow a borrower to take
out or return multiple books at the same time—takeOut and return events must
be regarded as happening in sequence.

12.3.5 Constituent sets

All the events illustrated so far in this chapter have involved single instances of
classes—a borrower, a book, a librarian, and so on. In general, however, events
involve constituent sets which can have multiple elements. For example, we might
have associate events involving sets of objects (Figure 12.25). Here, a set of one
or more books becomes associated with a single subject category. That is, each
book in the set becomes associated with the subject category. An associate event
involving two sets results in all possible associations between elements of one set
and elements of the other.

Sets of elements can also be targets (but not sources) for interact events. For
example, we might describe an event in which a librarian suspends all borrowers
who have failed to pay their subscriptions.

Constituent sets do not have to be disjoint. We might define one set in terms
of one or more other sets. For example, the Library might send out notices to all
its borrowers reminding them to renew their membership; however, only some of

136 Chapter 12. Behavioural modelling

Work
FamilyLife

Recreation

Figure 12.26 Composing processes

these borrowers would respond with a new subscription, the others would be auto-
matically disenrolled. We would thus need to talk about three sets: allBorrowers,
renewingBorrowers and retiringBorrowers. The second and third sets would parti-
tion the first set. This constraint can be expressed as a simple relationship between
the sets:

allBorowers = renewingBorrowers U retiringBorrowers

12.3.6 Composing events

In talking about dynamic behaviour, we typically need to model complex be-
haviours in terms of simpler ones. For example, in our simple lending library
model (Figure 12.3), a pair of takeOut and return events form a Loan episode;
multiple Loans combine to form the behaviour of the library as a whole. All occur-
rences of Loan taken together could be regarded as a single long-running process.
There might well be other processes, for example dealing with the enrolment and
suspension of borrowers. The behaviour of the library would then be a composition
of processes dealing with book loaning, library membership, and so on.

To express this structuring, we need a construct that allows us to compose
frameworks to form larger frameworks.

In the real world, different things can be happening at the same time—different
behaviours can be going on concurrently. For example, I might model my lifestyle
in terms of three processes (Figure 12.26). The processes are named for conciseness,
rather than being given explicitly (this would be done elsewhere in the model). The
rectangular composition box groups the three processes into a larger behaviour.

Each process consists of multiple episodes (Figure 12.27), where the asterisks
indicate multiplicity, as usual. Although I regard the processes as concurrent, the
episodes that make up the processes may need to be interleaved, because I am
unable, in practice, to do more than one thing at a time. For example, my typical
day might consist of the following episodes:

e go for early morning jog (Recreation)
e have breakfast en famille (Family Life)
e 2o to work (Work)

12.3 Dynamic behaviour 137

WorkEpisode *
FamilyEpisode *

RecreationEpisode®

Figure 12.27 Composing multi-event processes

WorkEpisode*
FamilyEpisode*

RecreationEpisode®

Figure 12.28 Sequentially composing multi-event processes

e attend business meeting (Work)

e play squash at lunch-time (Recreation)

e write ORCA book (Work)

e 2o home (Work)

e cook dinner (Family Life)

e read children bedtime story (Family Life)
e play piano (Recreation)

...and so to bed. In this case, we could make it clear that the episodes happen
sequentially by using a sequential composition (Figure 12.28). The double sides
to the composition box indicate that the component episodes are ‘squeezed’ into a
sequential stream.

This model does not constrain the order in which the various episodes happen.
So, for example, it allows me to go to work repeatedly without coming home. The
model therefore needs to express the temporal dependencies between events. I can
say that my Work process is a succession of WorkingDay episodes. Each working
day, I go to work, then do a number of work tasks, then go home (Figure 12.29).
This model says that a WorkTask requires GoToWork to have completed, and
that GoHome requires the WorkTasks to have completed (I can’t do half a task,
by definition). The model does not say what determines how many WorkTasks get
done, just that they happen between GoToWork and GoHome.

The episodes within WorkingDay form a simple sequence, but this is not always
the case. In general, we can have a network of dependencies in which independent
events can happen concurrently. For example, suppose that I am cooking spaghetti

138 Chapter 12. Behavioural modelling

WorkingDay *

GoToWork

WorkTask™

Go Home

Figure 12.29 Sequential composition with temporal dependencies

Buylngredients

\%
BoilWater PeelOnions OpenWine
\%
CookPasta CookSauce SampleWine
Serve

Figure 12.30 A network of temporal dependencies

bolognese. I might have the episodes and dependencies as shown in Figure 12.30.
Episodes that are not linked by dependencies can potentially be done at the same
time. For example, my sous-chef could be cooking the spaghetti sauce while I am
sampling the Chianti. Similar kinds of dependency network are found in various
planning techniques (PERT charts, for example).

In some cases we may want to compose events, for conciseness as much as any-
thing. For example, we often want to talk about a composition of object initiation
and association (Figure 12.31). This describes an event in which a borrower ini-
tiates a request for a book, where the request becomes associated with both the
borrower and the book.

Sometimes it is useful to talk about a bit of behaviour as involving two or more
objects (generally, constituent sets), but without going into details of associations

12.3 Dynamic behaviour 139

[: Borrower | [: Book |
|
|
|
|

o

J

O
N\

Figure 12.31 Composing initiate and associate events

O <? O
|

Figure 12.32 Composing participations

| : Borrower | | : Book | | . Librarian |

O— 6

J

Figure 12.33 Composing events and participations

O
\J
O
\J

or interactions. For example, Figure 12.32 shows a vaguer version of the previous
model. Or we could extend the description by adding involvement of the librarian
(Figure 12.33).

Ultimately, we might want to be more precise. A more concrete scenario would
be as follows. First the borrower asks for, and receives, a ‘blank’ request from the
librarian; then the borrower fills in borrower and book fields (that is, makes the

140 Chapter 12. Behavioural modelling

associations); then the borrower submits the request to the librarian. However,
this level of detail may not be essential—it may be something that we are going to
change and so do not want to model.

12.4 Levels of abstraction

In our Lending Library example, the objects involved—primarily borrowers and
books—are fairly obviously ‘atomic’. To model the essential behaviour of the
lending library, we do not need to know about the anatomy of borrowers or the
physical binding of books. However, there are some kinds of real-world entity that
we may want to treat both as unitary objects and as compound systems.

Typically, we find this with machines and with human organisations. With
machines, we may want a description of behaviour in terms of the machine as a
whole: ‘the operator starts the machine’, and so on. On the other hand, we may
want to talk about interactions of external entities with parts of the machine, and
internal interactions between parts of the machine: ‘the operator sets the gear lever
and presses the start button’, ‘when the start button is pressed the ignition light
comes on and the starter motor is turned on’.

A similar situation can arise when we are dealing with human organisations.
Behaviour may be described in terms of entities at different levels of organisational
structure: Company, Department, Team, Individual.

What we have are models at different levels of abstraction. A model that de-
scribes a machine as an object is at a higher level of abstraction than a model
that treats the machine as a collection of interacting components. In the second
model, the components are treated as objects, but they in turn can be modelled
as collections of interacting subcomponents, and so on. In principle, there is no
lowest level of abstraction, but in practice there is an ‘atomic’ level below which it
is not sensible to decompose: human beings, nut and bolts, names and numbers.

One of the tasks of analysis is to find the best level of abstraction at which to
describe behaviour. Too low a level and one cannot see the wood for the trees; too
high a level, and one cannot see the wood or the trees. For example, in NIMWeC,
it would not have been sufficient to treat Loom as an object, because we wanted
to identify the parts that needed to be changed, and the parts that had to stay the
same. On the other hand, describing how the electromechanical components of the
jacquard or the patch panel worked would have been irrelevant to the proposed
changes (the jacquard is not changing, the patch panel is being replaced).

12.4.1 An example of abstraction

We can illustrate these ideas using the Petrol Station from Part I. Suppose that we
are interested in the interaction between customers and pumps, perhaps because we
want to specify a new kind of pump. As a first approximation, we might describe

12.4 Levels of abstraction 141

Customer Pump

* setGrade

« startDispensing
« stopDispensing
« volDispensed

e cost

*
setGrade
C]P startDispensing C]P

stopDispensing

startDispensing

stopDispensing

Figure 12.34 A Customer’s transaction with a Pump

the behaviour simply in terms of Pumps and Customers. A Customer’s transaction
with a pump has the following form:

e The customer may change the setting of the ‘grade’ selector (for example,
from ‘4-star’ to ‘unleaded’); this might happen more than once, if the cus-
tomer changes their mind about the setting.

e The customer starts dispensing petrol.
e The customer may stop and re-start dispensing petrol, any number of times.
e The customer stops dispensing petrol.

Our model of this would be as in Figure 12.34. We really need to know a bit more
about these interactions. For example, it is not clear how the volumeDispensed
and cost attributes are changed. Also, how does the pump know when the final
stopDispensing takes place?

To find out more, we can model a pump object as a collection of interacting
parts:

142 Chapter 12. Behavioural modelling

Grade Switch Display Holster Trigger
>
* setGrade * select * remove * squeeze
« volDispensed * replace * release
* cost
* pulse

Y Y

Line Motor Clutch
* select * start * engage
* stop « disengage

Figure 12.35 A static model of the Pump framework

A GradeSwitch alters the connections of the Line that takes petrol from the
storage tanks; the GradeSwitch sets an indicator light on the pump Display
to show the grade selected.

e Withdrawing the ‘nozzle’ from the Holster starts the pump Motor; replacing
the nozzle stops the Motor.

e Squeezing the Trigger on the nozzle engages the Clutch on the pump trans-
mission; releasing the Trigger disengages the Clutch. The Trigger is accessi-
ble only when the nozzle has been removed from the Holster.

e If the Clutch is engaged and the Motor is running, petrol flows through the
Line; a metering device in the Line sends pulses to the Display for every 0.1
litre; the Display calculates and displays the cumulative volumeDispensed
and cost.

A static model of the Pump framework is shown in Figure 12.35. The ‘missing
link” between Line, Motor and Clutch is the physical flow of petrol. The dynamics
might be as shown in Figure 12.36.

We can now see how the operations on the Pump class map on to operations on
its component parts. At the higher level of abstraction, the customer invokes the
setGrade operation on the pump object. At the lower level, the customer interacts
with the grade switch, which in turn interacts with the display and the line. The
initial startDispensing operation on the pump object becomes a sequence of two op-
erations: remove on holster, and squeeze on trigger. Subsequent startDispensings
are just a squeeze. Similarly, the final stop Dispensing operation on the pump object
becomes a sequence of two operations: release on trigger, and replace on holster.
Previous stopDispensings are just a release. The volumeDispensed and cost at-
tributes of the Pump class become attributes of Display; these are incremented by

12.4 Levels of abstraction 143

())))) =)
N)»/\o)\o *

select

>~0>—0

remove start

+ squeeze engage

pulse

release | disengage

>~0>—"0

replace stop

Figure 12.36 A dynamic model of the Pump

the pulse operation on Display, invoked by Line.

We thus have two models of a petrol pump: a Pump class, with attributes and
operations defined for it, and a Pump framework, with constituent objects and
interactions between these. In principle, any class can be modelled by a framework,
and any framework can be abstracted as a class. However, as we have seen with
books and borrowers, if there is nothing useful to say about the internals of an
object, then no framework model is needed. Similarly, if there is nothing useful
to say about a compound entity as an object, then no class definition is needed.
Although we may end up with a hierarchy of class-framework abstraction, we do
not set out to perform ‘top-down decomposition’.

12.4.2 Overlapping

Suppose that in describing the behaviour of a single pump we had included the
petrol storage tank as a component part. We might have done this because the
behaviour of tanks seems to be at the same level of abstraction as the pump motor,
the line, and so on. However, it may be that several pumps take their petrol from
the same tank. So we might want to talk about ‘the group of pumps that share
the same tank’, for example it might be the unit for maintenance scheduling.

144 Chapter 12. Behavioural modelling

/:Pump +

N _/

Figure 12.37 A Pump Group sharing a Tank

\

OrderHeader OrderLine
* date * product
« totalCost * quantity
* cost

Figure 12.38 An Order as an Association

Our ‘pump group’ entity therefore consists of one or more pumps, where the
tank constituent of these pumps is ‘shared’, that is, it is the same tank object in
each pump. We say that the pumps overlap on their tank subconstituent. A pump
group could be drawn as in Figure 12.37. There are multiple ‘stacked” boxes for
instances of Motor, Display, and so on, but a single box for the instance of Tank.

We can also have overlapping between constituents of different kinds. This
allows us to model situations where a single object plays two different parts in
two (or more) different episodes of a history. For example, the same person might
play two organisational roles: Finance Director on the Board of a Company, and
Head of the corporate Planning Department in the same Company. This overlap
between the Board and the Planning Department could be used to circumvent
formal communications between them, since the person concerned could ‘carry
over’ knowledge from one episode to the other. However, this might be neither
necessary nor desirable.

12.4.3 Aggregation

There are some situations where we wish to represent constituent objects by an
explicit aggregation. This typically occurs with collections of instances of the same
class. For example, an order is made up of one or more order lines; each order line
specifies a product and a quantity required. However, we also wish to identify
and give attributes for the order as a whole. We could therefore regard an order as
consisting of an order header, together with the order lines (Figure 12.38). The date

12.4 Levels of abstraction

Order OrderLine
* date product
« totalCost quantity
e cost

Figure 12.39 An Order as an Aggregation

145

Order

OrderHeader OrderLine

* date e product

« totalCost * quantity

T e cost

I I

| |
C I De C

Figure 12.40 An Order Aggregation and its constituents

attribute is essentially common to all the order lines, while the totalCost is derived
by summing the cost attributes of each order line. However, an OrderHeader exists
only to construct an order from a set of OrderLines.

We can make clear the special nature of the relationship by using an aggregation,
rather than an ordinary association (Figure 12.39).

What we really have is two levels of abstraction: an Order and its constituents
(Figure 12.40). Notice that aggregation is here expressed between constituent sets
within a framework. The order header is referred to as the aggregator, and exists
only in the context of an order. We usually want to express aggregation between
classes, without explicitly identifying the higher level abstraction. A convenient
shorthand is to give the aggregator class the name of the higher level abstraction,
as in Figure 12.39.

Collections containing instances of the same class are not the only kind of ag-
gregation: we may also have aggregations containing disparate parts. In our petrol
pump example, we might have decided that pumps needed to be identified explic-
itly by a pump-number, and had an overall operational status (in or out of service).
Since these properties cannot obviously be delegated to any component parts, we
could express them as properties of an aggregator class Pump (Figure 12.41).

146 Chapter 12. Behavioural modelling

Pump

e number
 status
¢ setStatus

Display Motor Holster

Line

Figure 12.41 A Pump as an Aggregation

12.5 The Class and Framework constructs

The previous sections have illustrated how behavioural modelling in ORCA is based
around the dual concepts of class and framework. The examples given above have
used the Beluga modelling language. We can now be more explicit about the

modelling language constructs that correspond to these concepts.

A class consists of:

e a class name

e zero or more names of parent classes (classes of which this class is a special-

isation)

e one or more features (attributes and operations)

e optionally, a statement of invariant properties
A feature is described by:

e a feature name

e a type signature (the type of an attribute, or the types of input parameters

to an operation)

e zero or more facet names, which label the feature (see Section 12.7 for more

on facets)
A framework consists of:

e a framework name

a description of statics

a description of class relationships

a description of dynamics

optionally, a statement of invariant properties

a description of meaning (informal text, pseudo-code or formal specification)

12.6 Structural frameworks and temporal frameworks 147

object
space
behaviour
» time
spatial T AN temporal
gl TA

subsystem 1

episode | episode | episode
il 2 3

> >

subsystem 2

Figure 12.42 Dimensions of behaviour

Framework static structure covers
e declarations of constituent sets (single objects or multi-object groups)
e optionally, a statement of overlaps (shared subconstituents)
e optionally, aggregation relationships between constituents
Class relationships include:
e association relationships between classes
e interaction relationships between classes

Framework dynamic behaviour is an expression containing frameworks that de-
scribe events, episodes and processes, combined using various constructs: associate
events, interact events, composition, choice, and so on.

The full syntax of the Beluga modelling language, together with its textual and
diagrammatic forms, is given in Appendix C.

12.6 Structural frameworks and temporal frameworks

In Section 12.4 we have a Pump framework modelling the internal static structure
of a petrol pump. On the other hand, in Section 12.1 we have a Loan framework
modelling a behavioural episode. These are expressed using the same language
construct—the framework—but one provides a structural view of behaviour, while
the other provides a temporal view.

However, if we go back to our original view of behaviour as having both ‘object

148 Chapter 12. Behavioural modelling

episode
system 1
Y <
episode
2
subsystem subsystem episode
1 2
T 3
subsystem subsystem
la 1b

Figure 12.43 Structural and temporal decompositions

space’ and ‘time’ dimensions, it is apparent that we can subdivide behaviour in
either dimension (Figure 12.42). Since any two-dimensional chunk of behaviour
can be characterised by a framework, we can use this construct for both structural
and temporal views. Since ‘structures’ can have a finite lifetime, and ‘episodes’
can be complex and long-running, there is no fundamental distinction between the
two.

On the other hand, in a given framework, there may be subframeworks that
model the classes of constituents, and subframeworks that appear in the descrip-
tion of dynamics. It is convenient to regard the former as ‘structural’ frameworks,
and the latter as ‘temporal’ frameworks. One way of visualising these abstrac-
tion relationships is as decompositions in ‘object space’ and time dimensions (Fig-
ure 12.43). The structural decomposition proceeds top-to-bottom, and is indicated
by the ‘pyramid’ symbol; the event decomposition proceeds left-to-right, and is in-
dicated by the ‘hour-glass’ symbol. ‘Abstraction maps’ of this kind can be useful
in keeping track of frameworks and classes at different levels of abstraction.

12.7 Behaviours and Services

Purposive models provide descriptions of services relied on and guaranteed by co-
operating roles. The system’s behaviour should realise the services. It follows that
aspects of behaviour concern particular services:

e Every object, and thus every class, exists to realise one or more services.
e Features defined by a class exist to realise one or more services.

e Frameworks describing kinds of dynamic behaviour exist to realise one or

12.7 Behaviours and Services 149

more services.
For example, suppose that our Lending Library is intended to provide two services:
e managing the loaning of books
e providing reference and research facilities

All the classes in our behavioural model should be relevant to one or both of
these services. The Book class is clearly relevant to both services, whereas the
subclasses Loanable Book and ReferenceBook are relevant to the first and second
services respectively.

The features of the Borrower class (perhaps more accurately called Library-
Member) could be labelled according to their relevance, using facet names such as
loaning and reference. Some features, such as basic attributes and features to do
with library membership, might belong to both facets.

The dynamics of the library might be modelled as a composition of loan-related
transactions, together with a composition of reference-related transactions. Library
members would be involved in both kinds of transactions, but using different (pos-
sibly overlapping) subsets of their features. The features in these subsets should
be those labelled with the appropriate facet name in the class definition.

As the example outlined above indicates, the ‘mapping’ between purposive and
behavioural models is by no means a simple matter. It is best treated as a heuristic
for analysis: for any aspect of a behavioural model, it should be possible to ask
‘to which of the services described in the purposive model is this relevant?’. It
should be remembered throughout analysis that systems have purpose as well as
behaviour, and that as analysts we are concerned to tailor each to the other.

Chapter 13

Do’s and don’ts

13.1 Introduction

The heuristics—guidelines and ‘rules of thumb’—given in this chapter provide some
hints on how to apply ORCA, and on how not to apply it. They should not be
applied blindly and rigidly, but breaking the rules in a particular situation should
be justified.

The heuristics are grouped under headings indicating where they might be ap-
plicable. However, some fit under more than one heading (for example, hints on
naming subclasses are relevant both to ‘Classification’ and to ‘Naming’).

13.2 Process

Don’t go for completeness

Completeness is unattainable. Beware of ‘pan-galactic’ diagrams and models.

Don’t use Grampus for behaviour

If the behaviour has become more interesting than the co-operations between roles,
it is time to stop doing purposive modelling with Grampus, and instead do some
behavioural modelling with Beluga.

Talk to everybody

Anyone involved with the client’s world has something useful to say. Don’t assume
you know everything, and don’t assume the client does either.

Expect to iterate

...and don’t be afraid to do so (even though it is impossible to manage. ..).

150

13.3 Modelling 151

13.3 Modelling

Model enough of the environment

Question, and widen, any preset analysis boundaries (but be aware that this may
present some ‘political” problems).

Systems are not their organisational structure

‘Organograms’ may not reflect the actual purposive entities.

Grampus co-operations identify Beluga classes

Use the vocabulary of Grampus service descriptions to help identify behavioural
entities (so, underline the ‘Grampus nouns’)

Don’t automate the Old World; rather, design a New World

Many ‘objects’ in the Old World, especially pieces of paper, may cease to be
necessary in the New World. Check their purpose.

Don’t build an IT system

...except as a last resort.

Quantify Grampus qualifiers

Try to be more specific than ‘in a timely manner’, ‘reliably’, ..., especially when
they occur at both ends of a co-operation, with potentially different meanings.

...but don’t invent spurious quantities

If the quantity is ‘nearly all the time’, don’t just guess that this means ‘more than
50%’, or ‘99%’, or ‘99.99%’, or.... Call it ‘nearly all the time’, until you know
the actual proportion. Question where quantitative requirements (‘respond in less
than 3.14159 seconds’) come from.

Document assumptions

... for example by using Grampus justifications.

13.4 Diagrams

Small is beautiful

Aim for no more than ‘742’ major elements per diagram (reliances and guarantees
per role, classes per framework, ...).

152 Chapter 13. Do’s and don’ts

A rough diagram that is right is better than a pretty one that is wrong

Don’t use a diagram where words will do

Not all diagrams are worth a thousand words . . . but where diagrams are expressive,
use them. Text is sequential, so it is good for expressing sequential structures.
Indented lists of names can be used for tree-structures (such as organisational
structures). Box-and-line diagrams are good for networks of relationships.

13.5 Abstraction

Identify abstract frameworks

...and customise them for this analysis.

It’s too detailed

You are working at too low a level of abstraction. Don’t overcomplicate things;
abstract to find the essence and commonalities. ‘Make it as simple as possible.’

But it’s more complicated than that. ..

You are working at too high a level of abstraction. Don’t oversimplify; understand
the detailed consequences. ‘Make it as simple as possible, but no simpler.’

All behaviour is concurrent until proven sequential

Distinguish the necessary dependencies between bits of behaviour from sequential
implementations in the Old World. Don’t build big dynamic models.

13.6 Classification and specialisation

Don’t classify

Don’t distinguish things that don’t need to be distinguished at the analysis level.
Don’t set out to do a ‘taxonomy’. Three levels to a generalisation/specialisation
hierarchy is probably plenty (for analysis).

Use behaviour to guide specialisation

Specialisation of classes should capture either behavioural extension (‘more’ be-
haviour than the parent) or behavioural alternatives (between sibling classes).

13.7 Naming 153

Don’t use multiple inheritance

Multiple inheritance is a useful coding technique for ‘mixin’ functionality—but this
is not an analysis issue. At the analysis level, its use could well indicate excessive
classification.

13.7 Naming

Subclass names can be noun phrases

Any subclass should be nameable as a qualified superclass name, even if this is
not the name eventually used. For example, a Dog could be called a Barking-
Mammal. If you can’t name the subclass this way, have you really got a subclass,
or something else?

Facet names can be gerunds

...that is, words ending in ‘-ing’, such as ‘printing’, ‘registering’, ‘enrolling’,

Guarantees are active, and reliances are passive phrases

Guarantees should be expressed as an active qualified phrase: ‘do z’, ‘weave name
tapes’. Reliances are passive: ‘it is the case that z is done’, ‘name tapes are woven’.

Service descriptions should have qualifiers

‘weave name tapes reliably’, ‘payment is handled promptly’, Qualifiers can be
used as the hooks to capture so-called ‘non-functional’ requirements.

154 Chapter 13. Do’s and don’ts

Part 1V

Tailoring the Process

Chapter 14

Introduction to tailoring

14.1 Why do we need to tailor the process?

It is in the nature of analysis that we should be capable of performing it in any
situation—‘any time, any place, anywhere’. No requirements can be made about
the analysis situation—the analysis process must be tailored to fit it.

ORCA’s approach is to provide a basic analysis process which can be used as the
starting point for a tailoring activity. This explicitly acknowledges what inevitably
happens in practice.

ORCA’s Basic Process is described in detail in Part II; the subsequent chapters
in Part IV illustrate different tailorings for different analysis situations. These ex-
amples are not intended to provide a comprehensive catalogue of process tailorings,
but should be sufficient to indicate the range of variation.

It is worth pointing out that an analyst cannot be expected to make a decision
about the appropriate kind of process without first gaining some familiarity with
the analysis situation. One of the aims of the Preliminary Analysis activity is to
allow an appropriate process to be determined.

14.2 Overview of tailorings

ORCA'’s Basic Process is shown in Figure 4.1. The tailorings described in the
subsequent chapters of Part IV are summarised using the same form of diagram, but
with differently emphasised activities and different dependencies. The tailorings
emphasise some activities (shown as emboldened ellipses), and de-emphasise others
(as dashed ellipses).

The following chapters describe a range of example tailored processes. The first
three are based around real case studies (although some details have been exag-
gerated or invented for our own expository purposes), with well-defined, common
pathologies:

157

158 Chapter 14. Introduction to tailoring

15 Organising the Organisation—National Parks. Internal pathology: the or-
ganisation is disorganised.

16 Shaking Up the Business—Just in Time. The current structure is blocking
desired growth.

17 A New Purpose in Life—The Paperless Map. External pathology: the or-
ganisation must change to track a changing environment.

The remaining examples are used to illustrate certain parts of the process not
highlighted by the NIMWeC case study:

18 The Missing Old World—Spreadsheets and Telephony. When developing a
new product rather than enhancing an old system.

19 Nothing New Under the Sun—a Lending Library. How reuse fits into the
process.

20 No-one to Talk To—Ahab applied to NIMWeC. When the sources for ‘infor-
mation gathering’ are restricted to impenetrable documentation.

Chapter 15

Organising the organisation—
National Parks

15.1 Analysis parameters

Typical scenario

The client’s world is a large, distributed organisation with multiple indepen-
dent units. The structure of the organisation may not be well defined.

The client is initially aware of a general malaise in the organisation, mani-
fested as a variety of ‘low level’, seemingly unconnected problems.

The client initially has no definite proposals for software development.

Typically there are multiple sources of information (for example, representa-
tives of different organisational units, other interested parties).

The services involved may often be ill-defined; areas of activity may cut across
organisational structure.

Aims of the analysis

The overall aim of the analysis is diagnostic—to identify a pathology that
explains the various problems and to suggest courses of remedial action.
Specifically, the analyst needs to produce an Old World purposive model
that can be used as the medium for problem analysis, and a statement of
pathology resulting from this analysis.

The analyst should produce recommendations for remedial action. Where
changes are organisational or procedural, a modified model may be produced.
Where appropriate, specific target areas for the development of IT support
can be targetted and the scope of further analysis outlined.

The results of analysis may be needed to aid the client in making cost /benefit
decisions on candidate proposals.

159

160 Chapter 15. Organising the organisation—National Parks

15.2 Preliminary analysis

Preliminary analysis is important in this kind of process, establishing the scope
and motivation for the analysis and providing an initial orientation.

<& Determine the reason for analysis (external stimuli, internal problems). Record
and structure informal statements problems.

Our client is the Gingandan Association of National Parks (GANP)—an association
of locally administered National Parks. GANP is undertaking a thorough review
of its organisation and procedures. Numerous low level problems are reducing
its effectiveness; complaints have been received from the local Parks about the
usefulness of the national office. Initial impressions are that this is due to the
informal structure of the Association, and poorly defined or ad hoc procedures.
Installation of I'T support in appropriate areas is being considered, but there is no
overall strategy for this.

<& Determine scope of analysis (what is and isn’t open to consideration) and
external constraints.

The analysis is to consider the organisation and procedures of GANP. The overall
purpose of GANP (that is, the promotion and co-ordination of the National Parks)
is not open to change.

<& Gain an overview of the domain. Identify interested parties, objectives, issues,
potential conflicts, constraints.

Organisations such as GANP are not rigidly delimited or structured. It is therefore
important to obtain an initial idea of what is relevant to the analysis. In addition,
the analysis activity might well be constrained or complicated by ‘political’ con-
siderations: the various interested parties may have different, and not necessarily
compatible, objectives (beware!).

A rich picture for GANP is shown in Figure 15.1.

<& Arrange information gathering (sources, access, where and when).

For organisations such as GANP, it is important to gather information from as
many viewpoints as possible. As we shall see, many of the problems arise from
incompatibilities between different components of the organisation. Consequently,
information gathering may be a substantial activity and need a certain amount of
planning.

15.2 Preliminary analysis

Lundou-neri m

(onservatian

Df‘g-icer -E

\ %
Pdrk; /
a .

pelicy y

—
Pretect

va';JE'
Mo H(ﬂnn 'u

Lﬂc o l
Voice

Wildlike

{ngﬂ‘%ﬁ‘
Puhl;rﬂ-j

Cen Secvabion

Bedie s

Figure 15.1 GANP Rich Picture

161

162 Chapter 15. Organising the organisation—National Parks

15.3 Modelling the Old World

<& Produce a role decomposition—attempt to identify purposive entities; the ex-
isting organisational structure and activity areas may both be considered.

The top level organisation of GANP consists of a single National Office, numerous
local Parks (usually at provincial level), and a Governing Council. We can also
take an activity oriented view of GANP. The main activity areas are:

e Campaigning
e Conservation
e Education

e Membership

Funding
e Policy & Management

We can view GANP as a set of ‘partnerships’ between the Parks and the National
Office—one partnership for each activity area. The National Office acts as co-
ordinator and provider of centralised services for each partnership. Each Park is
involved in all areas of activity, as is the National Office, but the Council is involved
only in the policy area.

Within the Parks, the conservation activity is further subdivided into Wildlife
Resource Management, Development Control, and Conservation Information.

There are many ways to represent this sort of organisational structure. We could
use Beluga, an organisation chart, or a matrix diagram, for example. In this case,
since the structure is matrix-like, we choose the latter (Figure 15.2). This gives
us roles at various levels: GANP as a whole, the organisational units (National
Office, Park 1, ...), the activity area partnerships (Campaigning, Conservation,
...), the intersection of organisational units and activity areas (National Office
Campaigning, Park Education, ...), and the three subroles of Park Conservation.

<& Use the role decomposition as the basis of purposive modelling; examine guaran-
tee-reliance relations (co-operations and delegations) throughout the organisation.

Delegations should exist between any role and its subroles, for example between
GANP and the Parks, and between a Park and its Park Campaigning subrole.
Co-operations may exist between any roles in the same structural layer, for
example between the National Office and the Parks (as a group), between Park
Conservation and National Office Conservation within single Conservation part-
nership, and between Park Conservation and Park Education within a single Park.

<& Check that all services guaranteed or relied on at one level map to guarantees
or reliances at a lower level.

What are the top level guarantees—reliances of GANP? How are these delegated
to the Parks, the National Office and the Council (or to the various activity ar-

15.3 Modelling the Old World 163

National Governing
Office Park 1 Park n Council

Campaigning
Partnership

0
J

Conservation
Partnership

0

0

0

0

Education
Partnership

Membership
Partnership

Funding
Partnership

01 10| |0

Policy &
Management
Partnership

01101101 10/ |0 |0

0
01101 10] |0

Figure 15.2 GANP organisational structure

cas)? Put another way, how do the various subroles of GANP contribute to its
overall purpose? This may be difficult to establish, where the top level services are
quite vaguely described. For example, a top level service might be to ‘raise public
awareness of conservation issues’; many (perhaps all) subroles contribute to this in
different ways.

<& Check that all services guaranteed or relied on by roles in a layer are involved
either in co-operations with roles at the same level or in delegations from a higher
level.

In any large organisation it is possible that there is a certain amount of ‘dead wood’;
services are provided that are no longer required either by other roles at the same
level or by higher level roles. This is commonly the case with reporting services
(‘who needs those regular monthly reports?’, ‘what do they use the information
for?’).

164 Chapter 15. Organising the organisation—National Parks

<& Check that co-operations between roles are okay: that all extrinsic service
descriptions can be matched to intrinsic ones.

This is a key activity in combining multiple viewpoints into a single purposive
model. The process cannot be mechanical, since different viewpoints may con-
tain different (informal) descriptions of the same service. Examples of faulty co-
operations are given in the next section.

<& Examine the behaviour that realises each lowest level co-operation, in order to
determine its effectiveness—does it actually work? Consider how effectiveness can
be measured.

Even if co-operations are purposively okay, they may still be behaviourally problem-
atic: a service may not be realised effectively; there may be failure of co-ordination
between client and server; there may be inadequate resources to provide the service.
Examples of behavioural faults are given in the next section.

& Look for ‘hidden’ or informal interactions.

Do Parks have co-operations amongst themselves, or only with the National Office?
Is there any co-ordination of activities or sharing of resources that takes place
purely between Parks? This is an important area to look at, since it may be the
case that the explicit co-operations (between Parks and the National Office) seem
to work only because there are hidden interactions between individual Parks.

15.4 Determining the system pathology

It is typical of this kind of analysis that the organisation has a compound pathology;
there is no single cause for the various problems. In the GANP, there are a variety
of subpathologies, and these are illustrated below.

<& Group and classify problems.

An example of purposive mismatch concerns the Park Education activity area.
Various other components of a Park assume that Park Education provides training
services to staff and volunteers. In fact, Park Education’s services are directed
primarily at educating the general public in conservation matters; this is a re-
sponsibility delegated from the Education Partnership and ultimately from the
GANP as a whole. The pathology here is that Park Education is not providing
the services required by its peer components within a Park (Figure 15.3). This
pathology is a result of the dual structuring of the GANP system: organisational
and activity-area. Park Education is providing those services that are implied by
the activity-area structuring, but not those required by the organisational context.

An example of faulty realisation (‘the spirit is willing but the flesh is weak’)
occurs with the generation of revenue from members. Park Funding requires Park
Membership to provide revenue from members; this requirement is accepted by

15.4 Determining the system pathology 165

Education Partnership

Park
Park Education Park
Campaigning
imprqve prqv?de P
Cj_ public's training to _
environmental staff and \
knowledge volunteers /
\/
A
provide identify \
educational training P 71 Park
X Z .
material to needs N Conservation
educators
\
\

.. etc

Figure 15.3 GANP pathology

Park Funding Park Membership

adequate funds
available

provide revenue
from members

Figure 15.4 Park Funding’s revenue

Park Membership (Figure 15.4). However, the activities performed by Park Mem-
bership fail to satisfy this requirement—not enough revenue is generated. Either
the current activities need to be pursued with greater vigour or new activities need
to be considered.

A co-ordination problem exists with regard to the provision of management
and operational information. This is required by Park Policy & Management,
and is provided by the other Park components (Conservation, Membership, etc.)
(Figure 15.5). However, the information is not provided at the right time, in the
right form, or at the right level of detail. There is also the issue of consistency
between the various providers of the information—Park Policy & Management

166 Chapter 15. Organising the organisation—National Parks

Park Conservation

Park Policy &) L j

Management P
Ve
. . Ve
provided with ,
management |- — -O
information O
N .
] RN Park Membership
\ AN

Figure 15.5 Management information

Development Control Conservation
Information
identify provided with provide
threatened substantial survey t — — — — some survey
sites information information

Figure 15.6 Survey information

wants the information to be provided at the same time, in the same form, and so
on.

An example of inadequate resourcing occurs with the provision of survey infor-
mation by Conservation Information to Development Control. The latter compo-
nent needs information about ecologically important sites within the Park’s area,
so that development plans affecting such sites can be identified. In order to pro-
duce this information, Conservation Information carries out an ongoing survey of
the Park’s area using specialist staff and volunteers (Figure 15.6). However, the
task is a substantial one and resources are generally insufficient. Consequently, the
survey information is neither comprehensive enough nor up-to-date enough. Sec-
ondary sources of information (local authority records, the general public, etc.) are
used to make up for this deficiency, but this then creates a co-ordination problem
in that the information is then inconsistent in form and content.

An inertia problem occurs when an interaction appears to be okay both pur-
posively and behaviourally, but nobody actually instigates the interaction. As an

15.5 Drawing conclusions—the Analysis Report 167

Park Campaigning National Office
Campaigning
organise and provide ideas
run local <: - — - and material for
campaigns local campaigns

Figure 15.7 Campaign information

example of this, National Office Campaigns should provide Park Campaigns with
ideas and materials for local campaigns (Figure 15.7). Although the procedures
are in place, the Parks do not typically request help with local campaigns. Why?

In all cases where there is a problem, there is also potentially a monitoring
and control problem. The parties to a co-operation or some third party should
be responsible for monitoring the effectiveness of the co-operation and instigating
some corrective action when necessary. For example, how does Park Policy &
Management tell the other Park components what information it needs? How
does Park Membership know whether it is raising enough money?

<& Assess the criticality and tractability of problems.

Given this compound pathology, which aspects of it have the most serious effect
on the organisation? Which problems need addressing urgently, and which are of
secondary importance? How easy is it to solve particular problems? In this case,
we might decide that the lack of resources for surveying is linked to inadequate
fund-raising, and that this is the most significant problem, but also difficult to
solve. On the other hand, the co-ordination problem regarding the provision of
management and operational information could be solved relatively easily by a
mixture of better-defined procedures and IT support.

15.5 Drawing conclusions—the Analysis Report

The analysis models themselves might be delivered to the client, but the quantity
is often too great for this to be feasible. It is more likely that the analysis models
are used as support for an Analysis Report. This report should typically address
the following points.

<& Identify and assess the most significant problems.
This is essentially the output from determining the pathology.
<& Make specific recommendations for remedial action.

These recommendations could include any of the following:

168

<& Prioritise and (where possible) cost the proposed remedial actions.

<& Where specific areas for the development of I'T systems have been identified,
outline the nature of the analysis necessary to determine the behavioural require-

Chapter 15. Organising the organisation—National Parks

restructuring of the organisation

reallocation of responsibilities

changes in procedures

explicit definition of responsibilities or procedures
increase in resources

staff training

capital purchase

software development and installation

ments.

In our GANP example, we might conclude that each Park needs an IT system to
handle management and operational information. Further analysis would then be
needed to determine the detailed requirements of such an I'T system—the type of
information to be recorded, the access and storage requirements, and so on.

<& Where proposed software development is extensive, set out a development and
installation strategy (for example, incremental development, parallel running of

old and new IT systems).

15.5 Drawing conclusions—the Analysis Report 169

— ~ — -~

- ~ - ~
7 \ / N\
gather model Old World model New
information \ behaviour y \ World behaviour ,
N - N -
~ — ~ —

- — -

— ~

- ~
determine prescribe /development and
pathology change \ transition y

N -

model New
World Purpose

model Old World
purpose

preliminary
analysis

Figure 15.8 The tailored process

Chapter 16

Shaking up the business—
Just in Time

-

16.1 Analysis parameters

Typical scenario

The client’s world is a large business organisation with multiple operating
units.

The client has explicit goals that are providing the stimulus for change (for
example, ‘double the production’).

Actions necessary to achieve the goals are being blocked by limitations of the
existing organisation.

The client is prepared to make organisational changes to the business.

The client may have existing software systems; these may or may not need
to be retained.

Aims of the analysis

The overall aim of the analysis is to re-engineer the business process so as to
remove limitations that are preventing desired changes.

Specifically, the analyst needs to produce one or more New World models
that describe modified circumstances, together with justification for their
effectiveness.

The analyst should identify specific changes to be made to the organisation;
these changes may involve the development of I'T support.

The analyst may need to produce an initial specification of I'T support, where
this is appropriate: that is, of information, processes, external communica-
tions, etc.

A strategy for hand-over to the target IT system will need to be produced.

170

16.2 Preliminary analysis 171
16.2 Preliminary analysis

<& Determine the reasons for analysis (external changes, internal problems). Record
and structure informal statements of problems.

Our client is Birfami (Imbirfa) Motors, BIM, a large car manufacturer. The man-
ufacturing operation at one particular plant is under consideration. The external
stimulus for change is an increase in demand for BIM’s products. To exploit this,
BIM wishes to increase the volume of production at the given plant. This would
entail increasing the scale of the production facilities. However, the physical extent
of the plant is limited, and it is not feasible to split operations across several sites.
A large area of the current site is used by the stock control department, which
maintains stocks of parts and materials, and subjects incoming goods to quality
tests. BIM believes that a solution must lie in reducing the spatial requirements
of this department, allowing the production facilities to be extended.

<& Determine the scope of analysis (what is and isn’t open to consideration), and
external constraints.

The analysis is to consider the organisation and procedures of the business; it is
not to consider marketing or financial issues.

<& Determine scope for change within the business.

Car production is the primary activity of the business, and must remain so, al-
though minor changes to the operation can be countenanced. The stock control
function is ancillary, and can be modified as necessary. Relationships with suppli-
ers of parts and materials are potentially changeable; BIM is generally in a strong
position with respect to its suppliers.

<& Arrange information gathering (sources, access, where and when).

The primary sources of information are senior personnel-—heads of departments,
etc. We may need some ‘observation in the field’, in order to gain a full under-
standing of current mechanisms and constraints.

<& Model the organisational structure of the business.

BIM is organised into six departments
e Production
e Stock Control
e Planning
e Sales & Marketing
e Personnel
e Accounts

The Production department is organised into numerous production units. Each
unit carries out a sequence of production runs, according to an overall production

172 Chapter 16. Shaking up the business—Just in Time

schedule. A production run involves doing a specified manufacturing operation for
a specified period. The Stock Control department contains three divisions:

e Testing
e Warehousing
e Orders & Invoicing

The Testing division is responsible for quality control of incoming parts and mate-
rials. Warehousing holds stocks of parts and materials for use by the Production
department. Planning, Sales & Marketing, Personnel and Accounts departments
have their own divisional structures (which we omit for brevity).

At this stage, we don’t know which parts of the business are going to be relevant
to the analysis.

16.3 Describing the Old World

<& Focus the analysis on particular areas of the world.

BIM has outlined the basic problem: to free some proportion of the space currently
taken up by the stock control function. It therefore seems sensible to focus on Stock
Control, and ‘work outwards’ from there.

<& Use purposive modelling to understand co-operations.

The organisation of BIM has been designed, ar at least evolved over time, to op-
erate effectively. Our current analysis is essentially a re-design exercise for the
business. Thus, we can assume that our client has control over the roles of the
organisational divisions. It is therefore reasonable to take the organisational divi-
sions as roles within a purposive model of the system. This is in contrast to the
role decomposition for GANP (Chapter 15), for which the organisational structure
was not sufficient.

In order to understand BIM, we need to look at how the Stock Control depart-
ment co-operates with other departments. This is summarised in Figure 16.1.

The Production department issues requests to Stock Control for parts and ma-
terials needed in the production process. These requests specify the kind of item,
quantity, the production unit requiring the items, and when the items are required.
Short-term requests (for example, ‘As Soon As Possible’) are generated as parts
and materials are consumed by the production process. Long-term requests (for
example, ‘In Six Weeks Time’) reflect changes in the output products, as indicated
by the production schedules generated by Planning (for example, a new colour of
car is to be produced after a certain date; stocks of the new paint must be available
at the appropriate time).

The requests for parts and materials are handled by Warehousing. Short-term
requests are satisfied from current stocks; long-term requests are passed on to
Orders & Invoicing. Warehousing is responsible for moving items to the production

16.3 Describing the Old World

173

Company
- StockControl
Planning
Warehousing
report
stock
levels
Production
Orders &
Invoicin
follow 9
production
schedules

provided with
requested
parts

Testing

parts are of

suitably high- |—< |

quality

ordered

parts are (—
delivered

Supplier

[

Figure 16.1 Old World purposive model

174 Chapter 16. Shaking up the business—Just in Time

unit that originated a request. In addition, Warehousing provides periodic stock
level reports to Orders & Invoicing, who generate orders as necessary to maintain
stock levels above minimum levels.

The quality of parts and materials is ensured by Testing. Delivered goods are
received and checked by Testing prior to being passed to Warehousing for storage.

There is an extrinsic reliance on Suppliers to deliver ordered parts. The degree
to which Suppliers provide this service is not under the direct control of BIM (but
it may influence it, by threatening to change Supplier).

Some departments within BIM (for example, Personnel) do not appear in the
model shown above because they do not have a direct impact on the behaviour of
Stock Control.

<& Identify and record current values for suitable ‘critical success factors’.

Since we are interested in the use of physical space, it is worth recording space
attributes of the three subroles that form Stock Control. In this case, both Ware-
housing (storage area) and Testing (many people) use large amounts of space,
whereas Orders & Invoicing consists of relatively few people in a small office unit.
In principle, we could record other attributes, such as staff numbers and cost.
When we come to specify a New World, we can then make explicit the quantita-
tive improvement that we expect to achieve. In this case, we need to determine
what constitutes a significant increase in the space available for the production
facilities.

<& Where necessary, use behavioural modelling in order to clarify the informal
understanding of services.

Notice that the model given above is a purposive, not a behavioural, model. There
are implied physical ‘flows’ between the various roles: parts requests, parts and
materials, production schedules, stock level reports, and so on. However, we should
be very cautious about behavioural modelling at this stage. We don’t yet know
which parts of the world are going to be changed, or how. Behavioural modelling
of interactions that are going to be different in the New World (or absent entirely)
is generally not cost-effective. We may need to do a certain amount of behavioural
modelling in order to clarify our informal understanding of services, but this should
be done judiciously.

16.4 Determining the Pathology

<& Identify the properties of the Old World that are blocking the desired changes
(or if these were identified in the Preliminary Analysis, confirm that these are
indeed the culprits).

The client’s world is not pathological as such. It works well enough, assuming that
the interaction with suppliers is satisfactory. The problem is to do with change:

16.5 Specifying a New World 175

a desired expansion of the production facilities is being blocked by the physical
space requirements of Stock Control. In this case, there is no doubt that this is the
characteristic that has to be changed. We now have to ask: how can the overall
business be re-engineered so as to alter the limiting characteristics?

Notice that this scenario is different from one in which the part of the world
being analysed doesn’t work properly because of internal problems. In this latter
case, the task of the analyst is to specify a New World that remedies the pathology
(see Chapter 15 for an example).

16.5 Specifying a New World

<& Identify key ‘variables’ in the Old World model.

Creating a New World is not a mechanical process. In the kind of analysis being
illustrated in this chapter, finding a solution often needs a mixture of ‘lateral
thinking” and ‘seen this one before’ experience. In our car production example,
there are a number of important insights:

e BIM is in a very strong position with respect to its Suppliers (typically, small
firms making parts to BIM’s specification).

e [f BIM mandates Suppliers to provide the quality control service, the need
for the Testing division would be removed.

e Warchousing currently maintains large stocks of parts and materials because
(a) delivery times of ordered items are highly variable, and (b) there is no
monitoring and prediction of consumption by Production. If these two prob-
lems can be addressed, then Warehousing would not be needed.

e BIM could mandate Suppliers to deliver ordered items to schedule (with
‘guaranteed timeliness’).

<& Produce (one or more) purposive New World models, equivalent in scope to
the purposive Old World model.

One possible New World is described in Figure 16.2.

Stock Control is still responsible for providing Production with parts and mate-
rials. However, rather than Production generating explicit requests, Stock Control
has a new Monitoring & Prediction subrole, which provides Orders & Invoicing with
detailed ordering schedules; as well as kind and quantity of item, these specify the
required delivery date and the destination production unit. Ordering schedules are
generated on the basis of consumption statistics from Production (indicating cur-
rent usage) and product updates from Planning (indicating planned introduction
of new products, deletion of products, or changes in product specifications).

In the Old World, Testing received items on delivery from the Suppliers; Ware-
housing was responsible for moving items to production units. These two services

176

Chapter 16. Shaking up the business—Just in Time

Company

Planning

provide
product
updates

Goods Inwards

move items to

production units

StockControl
Production Monitoring & rggllif\i?i;;
Prediction
follow
production >_| schedule
schedules the part
ordering

enough stock

for one day

provide

Orders &
Invoicing

consumption I
statistics

parts are of

suitably high ~
quality | ordered
\ parts are | |
! delivered
! promptly
| L
| \
[
|

Supplier

Figure 16.2 New World purposive model

16.6 Prescribing Change 177

Production

Stock Control
Product

Testing

provide
notification of
faulty goods

Figure 16.3 Product testing

need to be retained in the New World, but can be separated from Stock Control
as a new role, Goods Inwards. Note that the physical parts and materials pass
from Suppliers to Goods Inwards to Production; Stock Control no longer handles
physical items. (In the original implementation of ‘Just in Time Manufacturing’,
Suppliers delivered directly to production units.)

<& Determine how extrinsic reliances are monitored, and what the consequences
of service failure are.

There are now two extrinsic reliances on Suppliers: timely delivery of ordered items
and quality control. How is the provision of these services to be monitored? In the
first case, Goods Inwards notifies Stock Control of deliveries; the delivery date can
be compared with the required delivery date on the ordering schedule. Suitable
action can be taken with Suppliers who do not perform adequately (they will have
been warned!).

In the second case, Production needs to increase the importance of product
testing, since product defects may be due to faulty parts or materials, as well as
to production errors. There needs to be some kind of feedback to Stock Control
about the quality of parts and materials (Figure 16.3).

16.6 Prescribing Change

<& Identify the principal changes.

e Get rid of Warehousing and Testing divisions from Stock Control.
e Move the receipt and distribution of items into a new Goods Inwards division.

Implement a Monitoring & Prediction division within Stock Control.

Modify Production so that consumption statistics are generated and passed
to Monitoring & Prediction.

Modify Production so that feedback is provided from Product Testing to

178 Chapter 16. Shaking up the business—Just in Time

Stock Control.
e Modify Planning so that production schedules are copied to Stock Control.
e Establish the changed relationship with each Supplier.

<& Identify target areas for IT support. Look for areas that (1) involve large
quantities of data, (2) are time-critical or (3) involve complex processing.

e Monitoring & Prediction is an obvious target for I'T support, since it satisfies
all three of the above-mentioned criteria.

e Monitoring & Prediction’s reliances on consumption statistics and product
updates are candidates for support—ifrequencies and data quantities need to
be considered.

e The movement of parts to production units is necessarily to do with the
movement of physical items, so I'T support is not relevant.

e The notification of deliveries does not satisfy any of the three above-mentioned
criteria; also, recording deliveries needs to be done ‘at the factory gate’ (al-
though hand-held computers might be used).

e Scheduling of orders depends on the level of integration between Monitoring
& Prediction and Orders & Invoicing.

In this particular example, we take Monitoring & Prediction, and the consumption
statistics, to be the target for I'T support.

16.7 Behavioural requirements

We are now in a position to clarify the corresponding behavioural requirements of
the Monitoring & Prediction role.

& Model the information involved in the New World behaviour.

The services of delivering ordered parts, scheduling of orders, and notification of
delivery all involve orders for parts, of specified kinds and quantities, from suppliers
(Figure 16.4).

The provision of product updates is shown in Figure 16.5. In this model frag-
ment, we encounter ProductSpecifications. For a given kind of product, these define
one stage in the manufacturing process and the kinds and quantities of parts and
materials involved in that stage. A ProductionRun involves a ProductionUnit tak-
ing products at a particular point of manufacture, and performing the next stage.

Production schedules are issued by Planning. These detail the production run
for each Production Unit for the specified period (Figure 16.6). We can now see
that the consumption statistics can be derived by Monitoring & Prediction from
(a) the parts specifications within the product specifications that are referenced by
production schedules, and (b) the number of products actually processed in each
production run.

16.7 Behavioural requirements

- suppliedBy -
Production Part Supplier
Unit Type

j 7

| ~

| -

part
for Order
Order Line + dateRequired Ordering Schedule
- » dateDelivered
* quantity - setDateDelivered * Create
setDateDelivered create
Goods Monitoring
Inward & Prediction
Figure 16.4 Ordering parts
of
Product] Product
Update Specification
Part Specification Manufacturing
- — - Specification
New Deletion Specification * quantity
Product Change ‘
|
Part
Type

Figure 16.5 Product updates

179

180 Chapter 16. Shaking up the business—Just in Time

Production Schedule Production Run follows Product
e create « period Specification
performedBy
Planning Production Part Specification Manufacturing
Unit « quantity Specification
|
Part
Type

Figure 16.6 Production schedules

Since the Production Units guarantee to follow the production schedules, the for-
mer information can be provided directly by Planning to Monitoring & Prediction.
The Production Units simply need to record the number of products processed in
each production run, and pass this information to Monitoring & Prediction.

<& Determine the procedures (repeating behaviours) involved in the New World.
Are they independent? When do they occur?

The main procedures are:
e collate production run data
e collate product update information
e generate ordering schedules

This first procedure is presumably tied into the production schedule periods; infor-
mation will be supplied on a regular basis, as it is generated (for example, daily).
Product updates are likely to be rare, so the procedure of collating this information
can be done as and when updates are produced by Planning. The frequency of the
third procedure, generate ordering schedules, depends on a number of quantita-
tive factors: the rate of consumption of parts and materials vis-a-vis the minimum
quantities and maximum frequencies of deliveries. A detailed analysis is required
here.
There are also three supporting procedures:

e monitor Supplier quality performance
e monitor Supplier delivery performance

e maintain Supplier-part information

16.8 Development and transition 181

The first of these processes is activated by notification of faulty parts or materials
by Production; presumably, some kind of fault report is generated and passed to the
appropriate Supplier. The second process will probably be periodic (monthly, say),
reviewing any differences between date-required and date-delivered attributes for
completed orders, and flagging persistent offenders. The third process is triggered
by changes of Supplier, changes to Supplier characteristics (for example, address),
or changes to parts characteristics (for example, price).

<& Determine how interactions between the target I'T system and its environment
is to take place. What form of communications is used?

The form of communications to be used for an interaction depends on factors such
as the quantity of data and the frequency of the process consuming the data. For
example, the communication of parts consumption statistics might benefit from an
IT based solution because of the large quantities of data, the high frequency (daily
or more frequent) and the physical distribution of the Production Units.

16.8 Development and transition

The behavioural requirements outlined above provide the basis for an overall design
for Monitoring & Prediction. The usual design issues need to be considered: data
storage and access, user interfaces, communications, and so on. In addition, there
are several other issues that need to be addressed.

<& How does the target IT system integrate with existing software (where this is
to be retained).

In this case, the Old World Orders & Invoicing created orders, and tracked delivery,
invoicing and payment. Is this worth keeping? Or is it so closely tied to the
functions of Monitoring & Prediction that a unified system is preferable? If the
IT components are to be separate in the New World, how is information passed
between them?

<& Identify target users. Who are they? Will training be required?

Will the users of the Monitoring & Prediction I'T system be the existing Orders &
Invoicing staff? Will they need to know more than they currently do? Will they
need training in order to handle the chosen style of user interaction?

<& Produce a plan for transition from the Old World to the New World. How is
the target I'T system to be installed and brought on-line?

Initially, Monitoring & Prediction will have no consumption data from which to
generate ordering schedules. But, clearly, the Old World organisation cannot be
dispensed with until the generation of ordering schedules is fully operational. One
possible solution is to run Monitoring & Prediction in parallel with the Old World
systems, but with only the consumption statistics and product update services

182 Chapter 16. Shaking up the business—Just in Time

model Old World
behaviour

model New
World behaviour

gather
information

determine
pathology

prescribe
change

development and
transition

model Old World
purpose

model New
World Purpose

preliminary
analysis

Figure 16.7 The tailored process

operational. That is, Orders & Invoicing continue to generate orders on the basis of
stock level reports from Warehousing. When sufficient data has been accumulated,
Monitoring & Prediction could start to generate ordering schedules. Since the
Production Units would then start to receive parts and materials without making
explicit parts requests, Warehousing could be run down. Existing stocks could
be used up by treating Warehousing as a temporary ‘pseudo-supplier’, receiving
orders and delivering items from stock.

It is also worth noticing that the quality-related changes are independent of
the delivery-related changes. Testing can be removed as soon as the changed
relationships with Suppliers are established and Product Testing has amended its
procedures.

Chapter 17

A new Purpose in life—
the Paperless Map

17.1 Analysis parameters

Typical scenario
e The analysis domain is an established organisation that is producing well-
defined products or services.

e The environment has changed, and the organisation needs to change its
purpose to ‘keep up with the times’ (to exploit the opportunity of new co-
operations), or has had a new purpose thrust upon it (because existing co-
operations have become problematic).

e The client does not want a fundamental change to the nature of the business.

e The business is based around some large, valuable, data-rich resource that
currently makes little use of I'T support.

Aims of the analysis

e The overall aim of the analysis is to identify how the valuable data resource
could be better exploited to support the organisation’s change of purpose.

e Specifically, the analyst needs to build an abstract model of the data resource
that supports the new purpose as well as the old.

e The analyst should propose recommendations for the data migration task
and the IT facilities required.

183

184 Chapter 17. A new Purpose in life—the Paperless Map
17.2 Preliminary analysis

<& Determine the reasons for analysis

Our client is Rumaco (the Rumbabwe Mapping Company). In the past, they have
had a near-monopoly on providing (paper-based) maps of Rumbabwe because of
their large investment in country-wide survey data. The high entry cost of ob-
taining comparable data made it difficult for competitors to provide an alterna-
tive supply of maps. Now, however, technology has advanced, and map users are
starting to agitate for electronic maps. Rumaco perceives a threat from start-up
companies using computer-based Geographical Information Systems (GIS).

Rumaco want to utilise their current survey data by converting it to an infor-
mation-base for use in their own GIS. This will allow them to meet customers’
demand for electronic maps and other new products. This data re-engineering
will also lead to a better exploitation of their own significant assets, hence again
increasing the entry cost to competitors.

<& Determine the scope of analysis (what is and isn’t open to consideration).

Rumaco have determined their problem, and want the analysis to propose a solu-
tion based on computerising their existing survey data.

<& Determine the scope for change.

Rumaco want to stay in map-making. New map-related products are necessary,
but a radical change in the business direction is not permissible.

<& Arrange information gathering.

The primary sources of information are twofold: those familiar with the current
structure of the survey data, and those who are envisioning new products that will
use the re-engineered information base.

17.2.1 Describing the Old World

<& Use purposive modelling to understand co-operations

Rumaco is a traditional manufacturing business, with a co-operation with its Cus-
tomer Base to supply and buy its products. This co-operation has become prob-
lematic at both ends: it is not supplying what its customers now want (electronic
maps), and its customers are not buying what it does supply (paper maps).

The problematic co-operation is well-understood, so no further purposive mod-
elling is required and we refrain from drawing the obvious Grampus diagram.

<& Use behavioural modelling to understand the current operation of the business

The Old World survey data is mainly on paper charts. Some has been digitised,
but in an unstructured and low level form: each map has many lines on it with

17.3 New World behaviour 185

feature codes to indicate whether it is a road, a building edge, a power line, ...,
but there is no attempt to link these lines into larger objects, or to recognise true
real-world things. Also, a single line might represent the edge of many objects,
such as a road beside a river, but might be encoded as only one of these.

This lack of structure makes it infeasible to produce electronic products that
differ significantly in functionality from traditional paper-based maps.

17.2.2 Determining the pathology, prescription for change

<& Identify the properties of the Old World that are blocking the desired changes.

The current format of the survey data is too low level. An abstract information
model is needed that can be used to structure the data in a more intelligent manner,
in order to allow it to be used to produce new kinds of map-based products.

17.3 New World behaviour

The existing survey data must be re-engineered to derive knowledge about the real-
world things that have been mapped. The first stage of this process is to construct
a Beluga model of the information required in the New World.

The mapped things in the real world are Geographical Territories. These can be
modelled as aggregations of Geographical Things like House, Road, City, River, etc.
There are many hundreds of relevant subclasses of Geographical Thing. Geograph-
ical Things are abstracted as some geometric shape. These shapes are represented
on a map, using rules about the line thicknesses, colours and shadings to be used
for which shapes, and rules about what to do if shapes are too close or overlap.

For the purposes of map making, a Geographical Thing can be abstracted in a
number of ways. For example, a road called ‘Highway 42’ can be abstracted as a
line at a small scale, as a number of lines and nodes at a larger scale, and as an
area consisting of a set of polygons at an even larger scale. In a similar way, a city
such as Rumbare can be abstracted as a point or as an area. So, too, a house can
be abstracted as a point or an area. Finally, any Geographical Thing can have a
name abstraction, such as ‘Highway 42" or ‘17, Alfalfa Avenue’. So the relevant
subclasses of Geographical Thing Abstraction include: Volume, Area, Line, Point,
Name and Image (a photograph is an example of an Image.) The Geographical
Thing Abstractions are aggregated into an Abstract Map that corresponds to the
Geographical Territory.

Each Geographical Thing Abstraction has a representation that depends on its
abstraction. For example, a volume abstraction is represented as one or more
solids, an area abstraction as a series of polygons, a line abstraction as a series
of links, a point abstraction as a node, a name abstraction as a text string, and
an image abstraction as pixels. So the relevant subclasses of Geographical Thing

186 Chapter 17. A new Purpose in life—the Paperless Map

Geographical

Territory Abstract Map Physical Map

|

- <
- <
- <

Geographical Geographical Geographical
Thing - - — Thing > — Thing
Abstraction Representation

House Volume B -4 Sold

!
CaEe

Road

Area P — <4 Polygon

City Line p — <4 Link

River Point Node
Name - String

Image — 4 Pixel

i

Figure 17.1 A geographical framework

Representation include: Solid, Polygon, Link, Node, String and Pixel. The Ge-
ographical Thing Representations are aggregated into a Physical Map (piece of
paper, image on a screen, ...) that corresponds to the Abstract Map.

A Beluga model of this is shown in Figure 17.1. In the New World we no longer
work at just the Representation level, but also at the more structured Abstraction
level. New products can be designed using abstraction level data and concepts.
The model can be further specialised as Rumaco develops new products.

17.4 Development strategy

The Rumbabwe public’s changed reliance has required a change of Rumaco’s pur-
pose. The New World map information structures have to change to provide new
products to meet the new customer requirements. The development strategy is:

e Re-engineer the Old World behaviour (consisting of just static information)
into New World behaviour, by raising its level of abstraction from Repre-

17.5 Enhancing our kitbag 187

7 ~
” model OId World
behaviour

model New
World behaviour

gather
information

determine
pathology

prescribe
change

development and
transition

preliminary

7 model Old World / model New
analysis

[
World Purpose

\ purpose y \

~ — ~ —
- _ _ = - _ _ -

/

Figure 17.2 The tailored process

sentation Thing to Abstract Thing. This activity will include a large data
capture effort, to transform the current survey data into the new format.

e Use the higher level of abstraction to add dynamic behaviour as appropriate
(for example, ‘intelligent’ maps could include a history of a house from initial
planning, through construction, occupation, modification, to demolition).

e Generate the New World purpose, which is to sell new products (new kinds
of Physical Maps) and the raw information (new kinds of Abstract Maps).

The tailored process is shown in Figure 17.2.

17.5 Enhancing our kitbag

Having successfully completed our analysis for Rumaco, we return to our office,
and reflect on the models we have developed. We recognise that the geographical
model is actually a specialisation of a more abstract framework (Figure 17.3).
The classes in the top layer of the diagram correspond to the real-world model
(giving the semantics of the model), its abstractions (abstract syntaxes) and its
representations (concrete syntaxes). Each is an aggregation of the corresponding
primitives.

We add this generic model to our analysis kitbag, where we can use it as a basis

188 Chapter 17. A new Purpose in life—the Paperless Map

Real World Real World

Real World Abstraction Representation

v ¥ v

| J

Real World Real World Real World
Thing - — Thing > — Thing
Abstraction Representation

Figure 17.3 A more abstract framework

for the development of a model for a different problem area. (See Chapter 19 for a
discussion of this approach.) For example, consider the design for tool support for
ORCA. Here the ‘real world’ consists of Beluga and Grampus models, which are
aggregations of classes, relationships, co-operations, and so on. The abstraction
layer is of abstract diagrams (with components that are boxes, lines, and so on),
and the representation layer is the actual concrete diagrams or textual equivalents.
The framework specialised for ORCA is shown in Figure 17.4.

17.5 Enhancing our kitbag 189

|

ORCA Model Abstract Diagram Physical Diagram

¢ v ¥

| J

ORCA Modelling Modelling
Modelling - - — Concept >——— — 4 Concept
Concept Abstraction Representation

Box

V%

— 4 Polygon
Class Line Pp — 4 Link

Relationship Name - String

"
il

Cooperation

Figure 17.4 The framework specialised for ORCA

Chapter 18

No Old World—spreadsheets and
telephony

18.1 Analysis parameters

We have been using the term Old World to refer to the system that exists before
analysis, and consequent change and development. However, there are situations
where there is, apparently, no Old World (or, if there is, it seems irrelevant). It
is still possible to use the ORCA approach in such situations, but the nature
of the analysis is somewhat different from the Basic Process. In particular, the
relationship of analysis and design is different. This chapter examines the issues
raised by ‘No Old World’ analyses.

18.2 Why omit the Old World?

Why might we want to leave out consideration of the Old World? On one hand,
we might have a situation where there is no Old World of any significance. On
the other hand, the Old World might clearly exist but seem of no relevance to the
new situation. That is, determining a system pathology and specifying the way
forward would not be of any particular use. We now look at these alternatives in
more detail.

18.2.1 The case of the missing Old World

Complete absence of an Old World is extremely rare. This occurs only when
the design of a genuinely new product is being contemplated. Such brand new
developments occur very rarely, especially in the more established areas of human
activity (a status which Information Technology is gradually attaining).

As an example, consider the situation in the early years of the twentieth century

190

18.2 Why omit the Old World? 191

in the heyday of the early motor car. In the 20 or so years that followed the
appearance of barely acceptable vehicles, a vast number of completely new ideas
appeared in the field. There were front-wheel, rear-wheel and all-wheel drive cars.
There were cars with three or four wheels, cars with the wheels in a rectangular
pattern, and cars with the wheels arranged in a diamond shape. Internal and
external combustion engines were tried, with just about every possible combination
of number and configuration of cylinders, induction and exhaust systems.

Slowly this free-for-all calmed down, and we ended up with the standard con-
figurations that we see today. Car manufacturers still put great sums into research
and development, but their efforts usually centre around the improvement of ex-
isting ideas rather than completely new developments that have no Old World to
reference.

Software development is now in an era where the early flood of new ideas has
diminished. The battleground for product and system suppliers is now concerned
with developing effective products and well-integrated systems. Completely new
ideas seldom occur.

Thus, situations where there is really no significant Old World are historically
very rare. More common is the case where an opportunity is perceived for devel-
opment of a product that fits into a ‘hole’ in the current world. In this situation,
we should be able to model the environment that will provide a context for the
new product, but not an Old World as such.

In particular, it can be useful to construct a purposive model of the new prod-
uct’s intended ‘users’. What is it that users will require or expect of the product?
Why will they want to use its services? In addition, it is important to consider
the social context of the new development. How do the services provided by the
product fit in with what users currently do? Will users be prepared to change the
way they do things?

18.2.2 The irrelevant Old World

A different scenario is where there is an obvious Old World, but this turns out to
be irrelevant, and possibly misleading, with regard to a new development. There is
much evidence to suggest that a common problem in software development is the
production of I'T systems that closely match some existing, perhaps manual, system
(the ‘obvious Old World’), but fail to deliver the desired business benefits. This
is because the developments impose no real change on the system. It is therefore
crucial for an analyst to determine how much of the Old World is really essential
to the system, and (if appropriate) make it clear that radical change is desirable.

This issue is closely tied up with that of Business Process Re-engineering (see
Chapter 16). This process explicitly attempts to determine ‘from first principles’
how a business should operate, rather than blindly following existing structures
and automating existing procedures.

As an example, consider the historical development of aircraft. The original

192 Chapter 18. No OIld World—spreadsheets and telephony

attempts at designing flying machines leant heavily upon the ‘obvious Old World—
in this case, birds. This produced a variety of bizarre contraptions that attempted
to create lift and thrust by flapping their wings. Eventually it was realised that
although wing-flapping was highly efficient if you were a bird, there were other ways
of making progress if you could, for example, machine metals. This insight led to
the development of modern fixed wing aircraft. The mistake that was initially
made was to attempt a direct replacement for the ‘obvious Old World’ of birds.
What was relevant was the less obvious, and more abstract, Old World of physics
and aerodynamics, to which both birds and aircraft are subject.

We can now see that the real problem is not the irrelevance of the Old World,
but the difficulty of deciding which bits of the Old World are truly relevant to the
analysis task.

18.3 Modelling or design?

Broadly speaking, the ORCA method advocates that analysis precedes develop-
ment and is distinct from it. The aim of analysis is to provide a context, a rationale
and a specification for development. However, there are situations in which it is
preferable to treat analysis and requirements definition as more nearly concurrent
with design—when analysis of the Old World would not determine the development
requirements to any useful degree. In this chapter, we have already discussed two
scenarios in which this is the case: novel product development and radical business
change.

Where IT requirements are largely under the control of the developer, design
activity has the ability to promote understanding of a problem, make ideas more
concrete, and raise or eliminate possibilities. For at least some initial part of the
development process, there can be interaction between the analysis and design
activities.

Support for this view comes from studies that have observed the progress of
small development teams tackling I'T problems. In one particular study, the ra-
tionalised view of the development process consisted of a succession of phases:
Requirements Definition, High-Level Solution, Medium-Level Solution and Low-
Level Solution. Requirements Definition concerned the ‘application domain’, while
the Solution phases concerned successively more concrete levels in the ‘computa-
tion domain’. However, the observed locus of activity did not follow this stepwise
descent through levels of abstraction. Instead, there were frequent and dramatic
leaps between levels. In particular, insights about the application domain and re-
quirements were frequently preceded or followed by bouts of very concrete design
and experimentation. Activity at the higher design levels was relatively rare until
the later stages of development.

In conclusion, then, we can say that where circumstances do not allow analysis
to precede development, the two activities can be interleaved. However, this should

18.4 No OId World processes 193

be the exception rather than the rule, since it complicates project organisation and
planning. The study described above dealt with a small-scale development exercise,
not a large-scale development project. Chapter 21 discusses the related topic of
prototyping, together with other project-related issues.

18.4 No Old World processes

In this section we describe two ‘No Old World’ processes that are applicable in the
sorts of circumstances discussed in this chapter.

18.4.1 New product—the spreadsheet

The personal computer (PC) spreadsheet is now an everyday part of computing—
so much so that it is difficult to remember the fuss when such products were first
released. The spreadsheet was one of the first really new ideas that were enabled by
the existence of the PC, and it has been credited with a good deal of responsibility
for the current prevalence of these computers. (Previous spreadsheet-like packages
did exist, but they lacked the immediacy of manipulation that characterises the
modern implementation.)

It is instructive to consider the application of ORCA to the development of
a spreadsheet. According to interviews with the original developers, the original
notion was of some sort of ‘super calculator’. Design proceeded using this notion
until thoughts moved on to possible applications of the product. It was then that
the Old World (in ORCA terms) of balance sheets and accountancy ledgers was
assimilated, and we ended up with the first versions of the products that we have
today.

In summary, the process that was followed in this situation proceeded in the
following manner (Figure 18.1):

1. Design the essential elements of the new product, in order to understand
what is feasible and some of the capabilities of that device.

2. Abstract up towards the requirements domain.
3. Define the parts of the Old World relevant to the new product.
4. Define the New World, and specify and design the new product.

18.4.2 Radical change—the introduction of telephony

According to popular legend [Gardner 1990, Chapter 25] the Chief Engineer of the
British Post Office greeted the invention of the telephone with the observation:
“The Americans have need of the telephone—but we do not. We have plenty of
messenger boys.”

This is a classic case of the imposition of an irrelevant Old World. Here the

194 Chapter 18. No OIld World—spreadsheets and telephony

- ~ -

“ model Old World \\

AN
(gather \ (model New
\ information behaviour World behaviour
N - 2
determine / prescribe \\ development and
pathology change y transition
-~ -7 7T~ ~
preliminary \l model Old World model New
\ analysis , purpose World Purpose
N -

Figure 18.1 A process tailored for a new product

mental image of business communication was strongly influenced by the existing
communication media, to the extent that the functionality of a new medium was
stated by comparison with those existing approaches.

Since the prevailing model of communication was one in which an underling was
dispatched with a particular message to a particular destination, with no hope of
a continuing conversation, then the impact of a circuit-switched telephony con-
versation would be difficult to imagine. (Interestingly, the introduction of packet
switching to computer networks late in the twentieth century, analogous to going
back to a messenger style of communication, has many advantages for computer
communication.)

In this situation we can sketch what would have been a more suitable approach
to the introduction of telephony (Figure 18.2).

18.5 Summary

The rest of this book implicitly assumes that the process of requirements capture
and analysis is strongly driven by modelling some of the Old World. However, it is
sometimes difficult to determine which parts of an existing situation are genuinely
part of an Old World, and which are excessive detail that might well obscure a

18.5 Summary 195

-~

“ model Old World
\ behaviour

model New
World behaviour

gather
information

determine
pathology

development and
transition

prescribe
change

model Old World
purpose

model New
World Purpose

preliminary
\ analysis

— —

Figure 18.2 A process tailored for a radical change

useful result. Much has been written about the apparent failure of IT to deliver
the promised improvements in cost-effectiveness. Many of the situations where
this is the case have applied a comprehensive model of the Old World blindly
to a new development—most obviously in the simplistic automation of existing
business processes. In these situations the development of a model, at a suitable
level of abstraction, of what was important in a particular situation could well have
produced more useful results.

In situations where requirements are not determined to a useful degree by anal-
ysis of the Old World, interleaving analysis and design activities can be a useful
way of gaining insight into a problem and establishing the technological capabilities
available to a developer, determining what really is the Old World.

Chapter 19

Nothing new under the sun—
a lending library

19.1 The analysis strategy

This chapter explores a strategy for behavioural modelling that is potentially ap-
plicable in a variety of analysis situations. The strategy is to adapt existing generic
models to reflect the actual systems being analysed.

It is fairly obvious that there are commonly occurring categories of system, and
that systems within the same category have similarities. For example, we often refer
to ‘accounting systems’; ‘stock control systems’, ‘transaction processing systems’,
‘process control systems’, and so on. It follows that we can, in principle, have
generic models for categories of system. In order to do this, we need a modelling
language that allows sufficiently abstract models to be constructed.

We can envisage an analyst using a ‘kit bag’ of generic models to drive be-
havioural modelling. The effectiveness of this strategy will depend on the analyst’s
expertise in recognising situations where generic models are applicable. An ana-
lyst will need to have considerable experience and understanding of the kit bag
contents. Of course, an analyst does not have to get it right first time; different
candidate models can be tried out as working hypotheses. Candidate models can
be used to prompt analysis questions as part of the process of adapting the model
for a particular situation. Models can be used to check coverage—if a generic model
has a component that appears to be missing in the actual system, is it genuinely
absent, or has it just been overlooked?

Adapting a generic model to reflect an actual system might involve extending
the model, restricting it, specialising its components, or combining it with other
model fragments. The process of adapting generic models should be as rigorous
as possible, otherwise the connection with the original model is weakened or lost.
This would call into question the analyst’s judgement that the generic model was
applicable in the first place. A strategy of adapting generic models is not an
all-or-nothing approach; we might well want to build up a complex model using

196

19.2 A lending library 197

both suitably adapted generic models and bespoke models invented for the partic-
ular analysis. For example, an aggregation often consists of a bespoke aggregator
class that adds highly specialised behaviour over and above that provided by more
generic aggregated classes.

The next section illustrates these ideas using a simple example. Section 19.3
describes briefly some other generic models, and summarises the tailored process.

19.2 A lending library

19.2.1 Brief description of the domain

The domain for our modelling example is a Lending Library (a little more realistic
than that in Chapter 12). For the purposes of this chapter, the aim of the analysis
is to model and understand the behaviour of the Library. Ultimately, there may
be a requirement to provide IT support to the librarians, but we choose not to
consider this aspect of the process here.

Our Lending Library allows books to be lent to borrowers. There are restrictions
on which books can be borrowed, on the duration of loans, and on the number of
books held by a borrower at any given time. In addition, reservations can be made
by borrowers against book titles (since there may be multiple copies of a title).
A reservation guarantees a borrower’s option to borrow a book at such time as a
copy of the desired title becomes free. All this should be sufficiently familiar not
to require more detailed description.

19.2.2 A candidate generic model

Ignoring the aspect of behaviour concerning reservations for the time being, the
Lending Library behaviour seems essentially to be that of an ItemAllocator frame-
work. The behaviour consists of multiple Transactions. In each Transaction, some
User (— borrower) makes a request to an Allocator (— librarian) for an Item (—
book copy) of a specified Type (— book title); if various constraints are satisfied,
the User and a suitable Item are associated for some period (— book on loan to
borrower); this period is terminated by the User (— borrower returns book). An
Item is either notInUse, or is associated with a single User.

As luck would have it, we have a model of an ItemAllocator in our kit bag
of generic models, which we produce with a suitable flourish (‘and here’s one I
prepared earlier...”). At the class level, our ItemAllocator framework looks like
Figure 19.1. The constituent sets are:

e users : User™ // one or more, typically many
e items : Item™ // one or more, typically many

e allocator : Allocator // just the one

198 Chapter 19. Nothing new under the sun—a lending library

Allocator users
 submit(Request)
items
allocatedTo * respond(Item ?)
I
I
I
typeOf | by L
!
Type Request
for e new(Type)
Figure 19.1 Item Allocator framework
o requests : Request” // zero or more

Note the following points. The cardinality of the allocatedTo association is many-
to-many—the generic model does not prohibit the sharing of Items. Requests may
contain information other than the desired Type of Item, for example a Request
might specify a period for which an Item is required.

The dynamics consists of a composition of Transactions; the composition is
parallel because Transactions can overlap. The structure of a Transaction is shown
in Figure 19.2.

First, a user u creates a request r, which becomes associated with u and the
desired type t of item 7. Then u submits r to the allocator a, which responds to
u, setting up an association between u and i (written as u—i) if the parameters
of r are valid and a suitable ¢ is available. If a u—1i association is set up, it is
subsequently dissolved; the duration of the association is labelled d.

The precondition for setting up a u—1i association is shown as valid(u, r,t,1).
In fact, it consists of several subconditions:

o cleared(u,t) : is user u currently cleared to use items of type ¢7
e suitable(i,t) : is item i of type t?
e available(i, r) : is i currently available to satisfy request r?

As instigator of the respond interaction, the allocator a is responsible for ensuring
the precondition.

Note that no interaction is specified with the u—x—i dissociation release. This
deliberate vagueness allows three possibilities:

e 1 might relinquish ¢

e a third party (presumably a) dissolves the association

19.2 A lending library

199

C u: User j Cr : Request) C t: Type j Ci : ltem ?) G : AIIocatoD

J O/ _
new
> | submit
O— O p
valid(u,r,t,i) q
respon /—K
allocate: ()/’ - \C)\()
allocatedTo
d I
allocatedTo
release: () X ()
elsg ______ r e_sp;n(; __________________________ B
. <
fail: ()/ \()

Figure 19.2 A Transaction

e | breaks the association (for example, a software loan deleting itself after a

timeout)

19.2.3 Adapting the model

Renaming

The first and simplest stage of adaptation is to rename components of the model
(classes, associations, events). For example:

Allocator

Item — Copy
Type — Title

User — Borrower

— Librarian

Request — Request

allocatedTo — onLoanTo

200 Chapter 19. Nothing new under the sun—a lending library

o typeOf — titleOf
e allocate — borrow
o release — return

The names of constituent sets also need to be changed appropriately.

Features and subclasses

Do the classes in the model need to define additional features? For example,
Borrower needs a feature specifying the maximum number of copies that can be
held at any one time, loanLimit; Title needs a feature specifying the maximum
value for the loanDuration, d. These features could be fixed at object-creation
time, or there could be operations to set (or reset) them during the lifetime of an
object.

Do we need to define subclasses, in order to reflect fixed distinctions? In our
proposed class renaming (see above), Type was renamed to Title. However, in the
Library, some titles are for reference books, which cannot be borrowed. So we
need two classes: a class Title which has the titleOf association with Copy, and
a subclass LoanableTitle for titles which can be referenced by a loan Request (the
RequestforLoanable Title association).

Note that the subclass LoanableTitle adds behaviour to class Title (the abil-
ity to be requested). We do not have a loanable Title class with a subclass
ReferenceTitle that removes the loanability. This would be incorrect because in-
stances of ReferenceTitle could not in general be treated as instances of their
superclass.

Looking at constraints

In the generic model, the cardinality of the allocatedTo association is many-to-
many. In the case of the Library specialisation, it is physically impossible for
copies to be shared by many users at one time. The primary reason for copies
being unavailable for loan is that they are already on loan. In other words, each
copy is either in the Library, or out on loan. The condition available(i, r) becomes

inLibrary(copy) and loanable(copy)

Since requests are for immediate loan, the availability condition does not involve a
request 7. In order to check this condition, the librarian needs to record the in/out
status of each copy.

A borrower can borrow a copy provided that the loan limit has not been reached;
this does not depend on the title requested. Thus the condition cleared(u,t) be-
comes belowLoanLimit(borrower). In order to check this condition, the librarian
needs to maintain a record of each borrower’s current loans.

The condition suitable(i,t) remains the same (copy c is of title t).

In addition, it is the responsibility of the librarian to enforce the maximum
duration for a loan (given the limit specified for the title).

19.2 A lending library 201

Elaborating the behaviour

In the generic model, it is not specified what happens to requests after their sub-
mission to the allocator/librarian. In the customised model, there are a number of
cases that need to be considered:

e If the whole precondition is true, the request becomes a loanRecord; this
would need to hold the start-time of the loan and the copy involved. The
loan record is deleted when the copy is returned.

e If the borrower fails the belowLoanLimit test, the request is deleted.

e If a suitable copy is not available (all copies of the title are out on loan), the
borrower has the option of making the request into a reservation. Reserva-
tions for a title are held in order of creation. The return behaviour needs
to be elaborated to check for extant reservations; if there is an extant reser-
vation for the title of the returned copy, the copy is held and the borrower
who made the reservation is informed. The reservation is deleted when this
borrower subsequently borrows the held copy. Alternatively, the reservation
is deleted on expiry of a fixed holding period.

e If a request is made by a borrower who already holds a copy of the specified
title, then it is treated as a request for renewal of the loan. The original
request (now a loanRecord) is updated and the renewal request is deleted.

Allowing reservations modifies the availability condition. Copies now have three
statuses: free, held and out (where in = free or held). A copy is available for loan
only if it is free. A renewal is valid only if there are no extant reservations against
the title.

Causation

The generic model does not specify who causes the release (return) behaviour. In
the case of the Library, it is clearly the borrower who returns copies. However,
this raises the issue of how the librarian enforces the maximum loan duration given
that borrowers are free agents.

One possibility is for the librarian to notify the borrower involved in a loan on
expiry of the maximum duration. This implies that the librarian carries out some
periodic scanning of the loan records, looking for overdue loans.

Other issues

In the generic model, a User (borrower) associates a Type (title) with a newly
created request. This implies that users have access to the set of types. How does
this happen in the Library? In the normal case, a borrower takes a copy off the
shelves and presents it to the librarian; the titles of copies that are on the shelves
are thus implicitly accessible. But how does a borrower make a request for an
unavailable title (that is, a reservation)? Some access to the full catalogue of titles
is needed.

202 Chapter 19. Nothing new under the sun—a lending library

Librarian users

* submit(Request)
e release(Item)

items
Copy Borrower
* respond(Item ?)
e loanLimit : NAT
e currentLoans : NAT
* notify(Title)
I o .
I titleOf ~ |
N
. ~ |
Title ~
N
~N
~
~N
>~ o holds
~ - by
~
LoanableTitle Request
¢ maxLoanDuration : DURATION for | « new(Type)

* loanStart : DATE
 setLoanStart(DATE) —]

Figure 19.3 The Library framework

So far, we have been talking about ‘the librarian’, but our Library may well
have multiple librarians. If so, how do they work together? It is important that
the librarians have shared and controlled access to the records of titles, copies and
borrowers.

The constituent sets for borrowers, titles and copies are not fixed—borrowers
may be enrolled and disenrolled, titles may be added to the catalogue, copies may
be acquired and withdrawn. There needs to be additional behaviours covering
these aspects.

19.2.4 The adapted model

Our Library framework, in terms of its classes, is shown in Figure 19.3. Note the
additional holds association between Request and Copy. The allocatedTo associa-
tion can be derived from the holds and by associations. Note also the additional
interactions.

The dynamics of the Library are a composition of the following:

19.2 A lending library 203

G) : BorroweD Cr : Requestj C t: Title) Cc . Copy ?) G: Librarianj

J N \
new
> | submit
O— O p
valid(b,r,t,c)
OkayBorrow
| | | v |
Return

R et — e —— -

else

FailedBorrow

Figure 19.4 A Library Transaction

e multiple parallel loan transactions
e periodic scanning for overdue loans and notification of errant borrowers

e behaviour concerned with enrolling and disenrolling borrowers, adding titles
to the catalogue, acquiring and withdrawing copies .

At the top-level, the structure of a transaction is the same as in the generic model,
but some additional complexities have been factored out (Figure 19.4). The validity
precondition can be expanded as follows:

valid(b,r, t, c) =
(free(c) or held(t, c, b))
and belowLoanLimit(b)
and loanable(t)
and t titleOf ¢

204 Chapter 19. Nothing new under the sun—a lending library

where:

free(c) = not exists (1 : Request) such that (1 holds c)
// no reservations or loans holding ¢
held(t, ¢, b) = exists (ry : Request) such that
(19 holds ¢) and (rg for t) and (rg by b)
// ¢ is held by b’s reservation for t
belowLoanLimit(b) = b.currentLoans < b.loanLimit

loanable(t) = (classOf t) = LoanableTitle

The subframework OkayBorrow is a composition of the following three behaviours:
e The librarian allocates the copy to the borrower.

e The librarian makes the request into a loan record by setting the loanStart
and associating it with the copy.

e If the copy was held against a reservation (by b for ¢), then that original
request is deleted, otherwise nothing.

These three subbehaviours are shown in Figure 19.5. There are similar subframe-
works for Return and FailedBorrow, consisting of the basic behaviours (from the
generic model), together with additional (possibly conditional) behaviours. The
full Library model also needs frameworks for the other aspects of behaviour men-
tioned earlier.

This example shows how a suitable generic model can be adapted to model a
particular system. The generic model is necessarily ‘permissive’ in various respects,
since otherwise it could not be applicable to a range of actual systems. The essence
of the process is to address these areas of uncertainty in the context of the actual
system being described.

19.3 Other uses, other models

19.3.1 A different use of the Item Allocator model

A different use of the generic ItemAllocator model would be for a dynamic resource
allocation system. Items would be resources, and Users might be tasks or processes.
Some of the key differences are as follows:

e Resources can have multiple types (for example, staff with multiple skills in
a project management system). Requests may specify compound types (for
example, a person with skill A and skill B).

e Resources can be shared between tasks, where each task requires only partial
utilisation of a resource. Requests will therefore specify the required level of
utilisation.

19.3 Other uses, other models

OkayBorrow

b : Borrower l ¢ : Copy l | : Librarian
respond
O O

allocatedTo

i

r : Request l c : Copy I | : Librarian

i

setLoanStart
OO0 0
holds
held(t,c,b)

r' : Request | : Librarian

()
_/
)
\—/

Figure 19.5 The subframework OkayBorrow

205

206 Chapter 19. Nothing new under the sun—a lending library

Actuator

T

Process Controller

Figure 19.6 A Control System framework

e Requests can specify a duration for which a resource is required, and possibly
constraints on start/finish times also.

The functionality of the allocator in this kind of system will be much more complex
than in the case of the Library. In the Library, there is no need to select between
alternative available items; if more than one copy of a title is available, it does
not matter which one is selected. In a resource allocation system, this is not the
case. If a request for a resource of type a is received, and resources of type a + b
and a + ¢ are available, then the choice of which one to allocate is significant. For
example, if requests for resources of type b are much more common than requests
for type ¢, then it makes sense to allocate the a + ¢ resource. These complexities
are compounded if requests may be held pending release of resources from ongoing
tasks.

19.3.2 Other generic models

The kinds of generic model that are suitable for an analysis kit bag need to trade-
off abstractness against content. The more abstract a model, the more widely
applicable it will be. However, the more abstract a model, the less it says about
a system to which it is applied, giving less of a head-start to the analyst. And
conversely.

This subsection outlines some candidate models that strike a balance between
these competing requirements.

Control system

An example of a control system appears in Chapter 8, applied to the NIMWeC
Looms. The class-level view is shown in Figure 19.6. An interesting feature of
control systems is that the Process is essentially continuous; Sensors provides
‘snap-shots’ of the process to the Controller which decides on actions to be taken
by the Actuators. As the diagram indicates, the chain of interactions is basically
cyclical.

19.3 Other uses, other models 207

— | > |
Originator Input
new Batch
new
Batch
Element
Batcher new Output
Batch

Figure 19.7 A Batching framework

Batching System

NIMWeC also involvs an example of a Batching System (Chapter 8). In generic
form, input batches of elements are created by the originator; the batcher rear-
ranges these into output batches, according to some criteria (Figure 19.7). For
example, the elements of orders, generated by customers, may be rearranged into
batches which can then by assigned to particular production units on the basis of
the required product characteristics (model, colour, and so on).

Stock Control System

In a Stock Control System, consumers make requests to a store, specifying the type
and quantity of item required; where possible, the store supplies these requests
from current stocks; additional stock is obtained from suppliers (with some delay).
Orders for replacement stock are made on the basis of past and predicted requests
for items (Figure 19.8). The aims of the store are to minimise stock levels and to
minimise the response-time to consumer requests (in other words, the number of
requests that cannot be supplied from stock). These aims are clearly competing.

A variant of this occurred in the ‘just in time’ manufacturing system in Chap-
ter 16.

Model-Views System

Many architectures involve behaviour that provides multiple views of an underlying
model. In a Model-Views System, a succession of events impinges on the system,
with each event being handled by a particular view (Figure 19.9). Different sub-
classes of event require handling in the following different ways:

208 Chapter 19. Nothing new under the sun—a lending library

Consumer Store Producer

V « submit(Request) :b * submit(Order) : Item*
hasStockltems

Item
new T new
|
Request Type Order
 quantity : NAT e quantity : NAT

Figure 19.8 A Stock Control framework

update
new
delete
> updae o
Event View Model
receive
W

| | .
| | notify
| |
| |
| |

* + 1

Figure 19.9 A Model-View framework

e Only the receiving view is affected.

e The event causes changes to the model, and propagation of these changes to
all the views.

e The receiving view is deleted or a new view is created.

After handling each event, there should be consistency between views and model
(that is, the views should be accurate, if partial, presentations of the model).

19.3.3 Building up an analysis kit bag

A useful kit bag of generic models will not come about by chance. One way to
generate suitable models is simply to set about the task from scratch, attempting
to provide generic models for known application domains. However, a one-to-

19.3 Other uses, other models 209

model New
World behaviour

model Old World
behaviour

gather
\ information

-~ ~
. N\ 4 . AN 4 N
determine i (prescribe , development and |
\ pathology y \ change , \ transition ,
N - - N - yZ N - _
-~ -7 7T~ ~ - -7 T T~ ~
. 7 AN 7 N
preliminary / model Old World | model New
analysis \ purpose , \ World Purpose y
N 2 N e

~ - ~ —
- _ _ - - _ _ -

Figure 19.10 A process model tailored for reuse

one correspondence between application domains and models may miss underlying
similarities. For example, it is not immediately obvious that a lending library and
a resource scheduler share a common abstraction.

An alternative approach is to ‘reverse engineer’ bespoke models as and when
they are produced (see Chapter 17, for example). This has the advantage that
it is potentially a useful part of the analysis process in its own right. Part-way
through constructing a bespoke model, we might realise that there are similarities
with a model of another system, previously constructed. Useful insights might be
gained by constructing a common generic model and using this to continue with
the current analysis.

There is an analogy here with the reuse of software components—the more
explicitly a component has been ‘designed for reuse’, the more reusable it will be.

Chapter 20

No-one to talk to—Ahab applied
to NIMWeC

(A A
~ 4 ~ 7
-~ -~ -~
(A N A
~ - ~ 7 ~ 7
- T~ -~
(N N
~ 4 ~ 7

20.1 The need for tailoring

Many published OO techniques presuppose their starting point to be a correct and
coherent textual requirements specification. In practice, this is seldom if ever the
case. Analysts often need to understand a written account of some state of affairs,
where the text is baroque, long, complex, incomplete or erroneous. Where the
text is the only source of information—where there is no immediate access to the
authors, to the client or to domain experts—then help is needed to analyse it.

In short, the problem is having to base the initial analysis on text which is
balderdash. In such a case, ORCA’s Basic Process is tailored by adding a technique,
called Ahab (A Help in Analysing Balderdash), to the preliminary stages.

20.2 Balderdash

Confusing text can arise for several reasons.

Government-speak and jargon

Documents originating from government or defence sources often have an abun-
dance of unfamiliar terms, strings of initial letters, acronyms, abbreviations and
jargon. As the density of such obscure terms waxes, comprehension can wane.
This is often accompanied by baroque style and eccentric grammar.

Synonyms, synecdoche and malapropisms

Multiple authors, or authors infected by ‘creative writing’ lessons, may use dif-
ferent terms to describe the same concept, leaving readers to wonder what subtle
distinction is being made. They may use terms imprecisely, sometimes referring

210

20.3 Ahab 211

to one thing, sometimes to only a part of it, sometimes to a different but related

thing. They may even use the wrong term. A consistent vocabulary needs to be
established.

Length and complexity

Problem descriptions often need to be long and complex, and even a well-written
text may for this reason be initially impenetrable. It can be difficult to keep all
the important points clear, and mistakes and inconsistencies can easily be made
and overlooked.

Incompleteness, and unnecessary detail

Authors commonly fail to define domain-specific terms and fail to state supposedly
well-known assumptions. They assume that readers are more familiar with the
domain than is the case. This is often accompanied by unnecessary detail about
those topics that the authors are not so familiar with (often in the very areas of
the readers’ expertise), or irrelevant detail, to assuage guilt for earlier omissions.

20.3 Ahab

As well as neglecting the possibility of the text being composed of balderdash,
many methods also place too much weight on the importance of nouns, and nouns
alone, as the source for objects, classes or frameworks (a recognised problem in all
forms of data modelling). Ahab addresses both these problems.

Ahab is based on simple linguistic analysis at the clause level. An Ahab dia-
gram is used to represent a collection of statements and to group together related
concepts. A simple statement, typically composed of two noun phrases linked by
a verb phrase, is represented by an Ahab fragment. The noun phrases are shown
in circles, linked by a line annotated with the verb phrase. An Ahab diagram is
made up of a collection of these fragments, merged or overlapped at a noun phrase.
Examples of Ahab fragments and diagrams are given in Section 20.4.

The main features of Ahab are as follows.

e [t helps to separate the relevant parts of a text from the dross.

e It helps to identify ambiguities and inconsistencies, such as synonyms (words
that mean the same thing but look different) and homographs (words that
look the same but mean different things).

e [t helps to provoke both a closer reading of the text and a better understand-
ing of what the text really means. To a large extent the process of doing
Ahab is more important than what is actually produced.

e [t is a way of identifying candidate classes and frameworks from the collection
of noun phrases, while keeping them in the context of related noun and verb
phrases.

212 Chapter 20. No-one to talk to—Ahab applied to NIMWeC

e It allows the diagrammatic manipulation of fragments, to make the depen-
dencies between elements of the text clearer.

Ahab can be applied to a variety of texts at various stages throughout the devel-
opment process. It has various complementary uses, as follows:

e [t has been designed primarily to aid the understanding of a written statement
of requirements, to aid the discovery of inconsistencies and ambiguities.

e It can be used as a half-way house between reading some text and doing
some modelling by helping to identify areas of interest in the domain and
their relationships with each other.

e [t can be used for validation. The way Ahab is used here is broadly similar
to that above, but with the aim of validating a model against some initial
statement of requirements. Rather than, ‘I don’t understand this piece of
text well enough to construct a model of it’, the thought that initiates this
use of Ahab is more like, ‘Does this part of my model really reflect that part
of the text?’

A blanket application of Ahab to a text is likely to be time-consuming and unpro-
ductive, so a first step is to exercise some editorial control and filter out parts of
the document that are either well understood already, or are irrelevant. The reason
for constructing Ahab fragments is that the piece of text is particularly obscure,
or bears some, as yet unclear, relation to another piece of text. The decisions
involved in constructing a fragment should provoke consideration of the meaning
of the text.

20.4 Applying Ahab to NIMWeC

As a starting point for our NIMWeC case study work, a mock ‘Invitation to Tender’
(ITT) was prepared by someone very familiar with the real factory. Initially, this
document was all the information we had, and we used Ahab to decipher it and to
prepare the overview and glossary given in Chapter 4.

The document exhibited many of the faults common to ‘real’ I'TTs.

Jargon

The weaving industry, in common with any specialised domain, has a language all
its own. Part II of this book deals with terms such as warp, weft, pick, shuttle,
jacquard and shed. All these terms need to be identified and understood. We
prepared the weaving glossary in Chapter 4 in order to do this for our own purposes.

Synonyms and synecdoche

The document uses ‘piece’ and ‘ribbon’ interchangeably, and also ‘warp thread’
and ‘warp end’.

20.4 Applying Ahab to NIMWeC 213

white is used
ground warp

Figure 20.1 Unary fragment: a white ground warp is used

Sometimes ‘loom’ is used to refer to the whole machine, including control boxes,
jacquards and the like; sometimes it used only for the part that does the weaving.
Ahab helped us to discover this confusion, and we invented the term ‘weaving
frame’ for the latter, to allow us to distinguish the part from the whole.

Incompleteness, and unnecessary detail

Despite a section entitled ‘An introduction to narrow fabric weaving’, the document
assumed that we knew a lot more about this domain than was actually the case.

On the other hand, not everything it contained was relevant to the analysis. It
went into asides about Swiss cuckoo clock manufacturers (who manufacture the
patch panels), an Australian cub scout pack (who ordered a single ‘name’ to be
that of the entire pack), and the selvedge pattern.

20.4.1 Constructing Ahab fragments

Ahab takes a simplified view of text analysis, taking parsing down to the level of
the basic components of a clause. It considers only two basic components, roughly
equivalent to noun phrases and verb phrases. Complex sentences have to be broken
down into several simpler sentences of this form. For example,

FEach loom has a warp end breakage detector, which will stop the loom
should a warp thread break (which happens every half hour or so).

becomes

Each loom has a warp end breakage detector. A warp end breakage
detector stops the loom should a warp thread break. A warp thread
breaks every half hour or so.

Each phrase or clause is represented as a ‘blob and line’ fragment. Shaded blobs
and dashed lines may be used to indicate similarities between one part of a diagram
and another. For example, dashed ovals are used here to highlight things to do
with time.

A unary fragment consists of a single noun phrase and a verb phrase (Fig-
ure 20.1).

A binary fragment, the usual case, consists of two noun phrases related by a
verb phrase or conjunction (Figure 20.2).

A ternary+ fragment consists of any extension of a binary fragment, for example,
a binary fragment related to a noun phrase, a clause or another fragment by some
connector attached either to a noun phrase or the fragment as a whole. There are

214 Chapter 20. No-one to talk to—Ahab applied to NIMWeC

each war <" abouta
P lasts for —)
on the loom N year

Figure 20.2 Binary fragment: the warps on the looms last about a year at a time. (Note
that the phrase has been made singular.)

associated
control
system

Figure 20.3 Ternary fragment: The client’s current system is based around two looms
and the associated control system.

warp end
break
detector

will stop

if break

warp
thread

Figure 20.4 Ternary fragment: A warp end breakage detector will stop the loom should
a warp thread break.

urgent may
order subvert

when

batching
process

previous is woven
order incorrectly

Figure 20.5 Ternary fragment: An urgent order may subvert the batching process when
a previous order has been woven incorrectly.

20.4 Applying Ahab to NIMWeC 215

very
expensive
are
these
machines
< are
RN very
~ .
S unreliable
~N

~
~
~
~

constraint: client
does not want to
purchase any more

Figure 20.6 Annotated fragment: These machines are very expensive and very unreli-
able. The client does not want to purchase any more of them.

many possibilities (Figures 20.3, 20.4, 20.5).

20.4.2 Annotating fragments

Fragments may be annotated (Figure 20.6). This is usually done where a piece
of text that relates to another piece of text seems to fall unproblematically into a
general analysis category. Some categories that prove useful are constraint, problem
and change. Other kinds of categories might be appropriate, depending on the
context in which Ahab is being used.

20.4.3 Building an Ahab diagram from fragments

Individual fragments typically share some domain of discourse, so the next activity
is to identify what refers to what by merging and overlapping fragments. This is
intended to reveal the nature of the relationships between parts of the text. In an
intractable text, the result may be questions about the domain to which the text
refers.

With overlapping, two or more different noun phrases that refer to the same
thing are overlapped (Figure 20.7).

With merging, two or more identical noun phrases or pronouns that refer to
the same thing are replaced by a single noun phrase. One obvious candidate for
merging is those complex sentences that were split into simpler sentences in order
to make the fragments. With more experienced use of Ahab, the complex merged
fragment can be drawn immediately. For example,

FEach loom has a warp end breakage detector, which will stop the loom
should a warp thread break (which happens every half hour or so).

is broken down to

216 Chapter 20. No-one to talk to—Ahab applied to NIMWeC

must work
loom .
reliably
control during

>

7 summer
holi T~
L \o da{s/ - busy N
-= /

. season
mustnt/\\ - _ -
run out
during

Figure 20.7 Overlapped fragments containing busy season and summer holidays

warp end
break
detector

_ -

-
‘/ every N
« half hour

~ -

S--
breaks

]
b

Figure 20.8 Merged fragments

Each loom has a warp end breakage detector. A warp end breakage
detector stops the loom should a warp thread break. A warp thread
break every half hour or so.

and the whole is merged in Figure 20.8.

As more fragments are merged, a large Ahab diagram builds up. Related con-
cepts should be placed close together if possible. For example, in Figure 20.9,
things to do with timing constraints have been clustered.

Ahab is essentially an informal notation, and its purpose is to aid understanding.
So if Ahab as presented here cannot clearly represent a particular piece of text, it
should be modified or extended until it can.

20.5 Outputs from Ahab

For complex documents with a lot of new terminology and jargon, Ahab can be
useful for determining a well-defined vocabulary. The merging and overlapping
process can be used to develop a glossary of preferred terms, and to highlight
unnecessary synonyms and inconsistent usage in the original text. Such a glossary
is a valuable input to the rest of the analysis process.

The major output from Ahab is a better understanding of the text. The process
of using Ahab—questioning the meaning of a piece of text—is more important

20.5 Outputs from Ahab 217

same
colour

takes <" about ™
< half hour '

~ —

all
contain
brocade

changing

RS - every oA
- I
about « half hour '
< 2weeks ~___ _-
has / -~
7~ about N
takes I)
. ayear
will stop
warp end
break breaks

detector

ground w.

arp
mustn't
run out
during

\

is used

-~ ~
i busy N
~ — — = ~ _season

. summer N—_ - <
reliably /I\ holidays '

loom during . -
control

Figure 20.9 A large Ahab diagram of NIMWeC

must work P

218 Chapter 20. No-one to talk to—Ahab applied to NIMWeC

— -~ — -~

- ~ -~ ~
7 N 7 AN
gather model Old World model New
information \ behaviour , \ World behaviour
AN 2 N e
> o - >~ _ — - -
//—‘_\\\ //—.—\\\ //—_—\\\
. N\ 4 . N 4 N
determine i (prescribe , development and |
\ pathology y \ change , \ transition ,
N 2 AN _ AN s
~ - _ - - ~ . - ~ - - —
v o o
- - = ~ - - = ~
. 7 N 7 N
preliminary / model Old World / model New
analysis \ purpose , \ World Purpose y

~ - ~ —
- _ _ - - _ _ -

Figure 20.10 A process model for Ahab

than any Ahab diagrams that are produced. In fact, you might never get around
to scribbling Ahab diagrams; after a while you might only need to ‘think Ahab’
when reading balderdash.

If necessary, Ahab can be used to produce a better version of a document.
The consistent vocabulary and better understanding will help in writing a clearer
document. The larger Ahab diagrams show clusters of related concepts, which may
suggest a better structure for the new version.

20.6 Adding Ahab to the analysis process

The analysis activities supported by Ahab are highlighted in Figure 20.10. Ahab
can be used at any stage of analysis, whenever the analyst is faced with obscure
text. It is particularly relevant if there is limited access to the authors, to the client
or to domain experts. Ahab is a technique for analysing natural-language text; it
is not a modelling language like Grampus or Beluga.

The exact way in which Ahab is used depends on a number of factors, as follows:

e The form of the source material. Ahab has the most to offer for complex
text.

20.6 Adding Ahab to the analysis process 219

Familiarity with the problem domain. Where a lot is known about the prob-
lem domain, Ahab is of less utility.

Presence of domain expert. The presence of a domain expert can either speed
up the use of Ahab, with the potential for immediate clarification, or remove
the need for Ahab altogether, with the domain expert taking over the role of
information source.

Availability of information. When responding to an Invitation To Tender,
for example, source text might be all that is available, and Ahab could be of
use. However, once a project is initiated, access to domain experts might be
provided, with the original text assuming a secondary role.

These factors may determine when and where to use Ahab. Once a decision has
been taken to use Ahab, the following points have to be considered:

Editorial control and organisation of source material.

Translation: how to turn source text into Ahab fragments (in particular deal-
ing with complex sentence structures); how to cluster these; recognising com-
monly occurring patterns, such as ordering and conditionality; annotating
problems, constraints, and so on, associated with an Ahab fragment.

Traceability: Ahab is likely to ‘sit between’ source documents and ORCA
models. Traceability is concerned with relating Ahab fragments back to their
source and forward to those models that are based on them. Simple anno-
tations allow, in principle, the connection to be made between source and
Ahab. Possibilities exist for more sophisticated, perhaps tool-based, schemes
for ensuring traceability.

Version control: tracking updates in response to the acquisition of new or
revised source material.

Tool support: both version control and traceability would benefit from tool
support.

As with the ORCA modelling languages, it is important that a technique such as
Ahab is the servant of the analysis process, not its master. The ultimate goal for
the analyst is always to improve understanding and draw valid conclusions.

220 Chapter 20. No-one to talk to—Ahab applied to NIMWeC

Part V

Wider Issues

Chapter 21

Putting together an analysis
project

21.1 Planning, monitoring and estimation

The activity of requirements definition has a tendency to be cut short in a rush
to write some code. The analyst is sometimes the last person to hear about a
development project, by which time it is often ‘too late for all this analysis stuff’.
Ideally, though, the requirements definition activity should have a generous time
allowance, even at the expense of subsequent activities. Proceeding into I'T system
development with incomplete or ill-defined requirements is asking for trouble (‘fools
rush in where analysts fear to tread...’).

The requirements definition activity should have explicit deliverables. It is im-
portant that the results of analysis are accessible to other parties (the client, the
development team). The contractual status of a statement of requirements will
normally need to be agreed with the client prior to I'T system development.

The requirements definition activity should be visible, both within the analysis
team and to the client. Frequent reviewing and validation are necessary to prevent
analysis heading off in the wrong direction. Periodic milestones within the analysis
activity are a good idea.

The requirements definition activity involves constructing models of the client’s
world and using these models to produce and support a statement of requirements.
Requirements models also help an analyst (and a client) to understand the nature
and complexity of the problem. This understanding can be used to influence the
planning and estimation of subsequent development work. It follows that, ideally,
a second round of planning and estimation should take place once requirements
definition has been completed.

Personnel and organisational issues need to be addressed. Is there one analyst
or a team of several? If there are several, how is the analysis activity partitioned
and how do the analysts communicate? Is there any contact or continuity between
the analysis team and the development team?

223

224 Chapter 21. Putting together an analysis project

21.2 Validation

The importance of validating requirements and their supporting models cannot be

stressed too much. Firstly, analysts may well be unfamiliar with a client’s world, so

the possibility of misunderstanding is considerable. Secondly, the consequences of

misunderstanding at such an early stage of the process are potentially very serious.
There are two basic validation techniques:

e inspection and review
e demonstration and evaluation

With either technique, some form of client participation is essential. This can be
obtained, for example, by client participation in reviews, or by obtaining feedback
on the use of prototypes. However, it is important that the rules for client par-
ticipation are clearly defined. It is generally more useful to get definite responses
to specific questions, rather than to ask ‘what do you think of it?’ In particu-
lar, changes of fact (that is, corrections) should be distinguished from changes
of requirement; the latter may need to be controlled in order to maintain some
stability:.

Prototyping involves implementing a mock-up or skeletal version of the delivered
IT system. Its most important use is to validate known requirements and elicit
further requirements.

A danger of using prototypes is that the client succumbs to ‘love at first sight’,
and agrees to requirements that more detached consideration (or eventual use of
the IT system) shows to be unsatisfactory. There is also a danger that the client
asks for the prototype to be made faster, or more robust, or generally improved so
that it can serve as the delivered system. This should be resisted, strongly! A true
prototype should be ‘thrown away’ once it has served its purpose. Incremental
development—a strategy that OO encourages—is often a good idea, but it should
take place within the main development activity, not as part of the requirements
definition.

Prototyping should be distinguished from animation of requirements models.
Animation takes models that have a time dimension, as Beluga frameworks do,
and unfolds the models in real time. Animation is most effective when the be-
haviour described by a model can be explored interactively, allowing a validator
to ask questions such as ‘what happens if I do this...?” or ‘can I get into this
(desirable or undesirable) state?” Animation requires tool support that is tailored
to a particular notation, such as Beluga, and has a sophisticated user interface
that presents behaviour and allows a validator to interact with the model. For the
ORCA notations, animation is a topic that remains to be investigated.

21.3 HCI requirements 225

21.3 HCI requirements

Requirements concerning Human Computer Interaction (HCI) are important for
many applications. In some domains, such as Air Traffic Control, a major reason
for I'T system development is to alleviate ergonomic problems.

Pursuing the example of Air Traffic Control, it is clear that we can model the
application domain: planes, flight plans, air corridors, and so on. However, these
basic abstractions may already be defined for us by standard operating procedures.
In this situation, defining requirements involves modelling the tasks performed by
Air Traffic Controllers, and the processes by which they manipulate representa-
tions of planes, flight plans, and so on. A model of end-user tasks can then be
used to support a statement of requirements, on the basis of which particular rep-
resentations can be designed. Time and capacity requirements can be expressed as
annotations to a task model.

The ORCA modelling languages can be used for modelling HCI domains, and
expressing HCI requirements, as well as for describing application domains. In
some cases the HCI requirements may be the major component.

Prototyping is often an effective way of determining HCI requirements. How-
ever, it is important that use of HCI prototypes seeks to elicit definite operational
requirements rather than just demonstrating a particular ‘look and feel’.

In defining HCI requirements, it is advisable to have access to potential users
of the delivered system, or at least to someone who can represent their views.
Information gathering from potential users could involve observing the performance
of current or experimental tasks, as well as direct interviewing.

A problem with HCI requirements is that they are often expressed in a vague, if
not vacuous, form: ‘user friendly’, ‘suitable for untrained staff’, ‘consistent style’,
and so on. One of the tasks of an analyst is to make such requirements precise
and define them in terms of a model of system use. Any requirement which cannot
be defined in terms of a model must be treated with suspicion. For example, if a
system needs to be ‘suitable for untrained staff’ it might turn out that there are
essentially two modes of use, only one of which is relevant to ‘untrained staff’. A
response to this requirement would be to allow functionality associated with the
‘expert” mode to be hidden from the general user.

21.4 ‘Non-functional’ requirements

So-called non-functional requirements concern properties such as security, reliabil-
ity and performance. ORCA handles this kind of requirement in two ways. Firstly,
in purposive models the service descriptions (reliances and guarantees) can have
qualifiers. These are typically adverbs—‘handle payment promptly’, ‘deal with re-
quests fairly’, ‘deliver items reliably’—although more complex phrases can be used.
These service description qualifiers allow informal expression of ‘non-functional’ re-

226 Chapter 21. Putting together an analysis project

quirements.

Subsequently, ORCA behavioural models should be used to make these qualifiers
more precise. Timing requirements can be defined with reference to events within
the dynamic behaviour. Fairness and reliability requirements can be expressed
as statistical properties over the history. In some cases, specialised non-ORCA
models (statistical or mathematical models) might need to be used to support the
definition of quantitative requirements.

Capacity requirements

Beluga uses a cardinality construct to describe sets of objects, associations between
objects, and event composition. This construct expresses an allowable range of
values, which is usually one of the standard ranges (1, 7, *, +), but in general
can be any finite or infinite set of integers. In addition, the typical or desired
frequencies of subranges can be given, either formally (95%) or informally (‘nearly
always’). There is thus considerable scope for expressing quantitative requirements
in an analysis model.

Timing requirements

Beluga provides a good basis for dealing with timing requirements, since the frame-
work construct explicitly describes dynamic behaviour. It is relatively simple to an-
notate framework dynamics with timing constraints or required frequencies. Com-
plex distributions of timing values could be referenced as external models. A more
formal treatment of real-time properties is being investigated.

Reliability requirements

An ORCA purposive model looks at the provision of, and reliance on, services. This
provides a focus for examining reliability requirements. For example, one might
ask ‘what is an adequate level of service?” or ‘what aspects of server behaviour
contribute towards guaranteeing adequate service?’” It may be necessary to be
more precise about the nature of co-operations at the purposive level, as well as
describing required properties at the behavioural level. In some cases, we may want
to model ‘error’ behaviours explicitly, where these are an unavoidable ‘fact of life’,
such as failure of a communications link or hardware component. Beluga provides
a special STOP event to represent failure of a behavioural strand. Having modelled
error behaviours, we can then talk about the maximum acceptable frequencies with
which they happen and specify what recovery behaviour is needed when they do
happen.

Security requirements

A system might have a security requirement of the form ‘an operation o on item i
can be performed by user u, only if u has clearance to do o on i’. Such requirements
may be captured using assertions within framework dynamics. An assertion can

21.4 ‘Non-functional’ requirements 227

refer to the status of participants or to the prior occurrence (or non-occurrence)
of other events. Where the conditions involve complex bodies of rules, a specialist
model could be referenced. For example, a security policy may be expressed as a
mathematical model in a formal specification language such as Z [?], [Barden et
al. 1994].

Standards and statutes

We may have requirements that reference documentary definitions such as company
procedures, legal statutes (for example, tax law) or technical standards. Such
requirements are generally of the form: ‘the system must conform to X’, where
conformance needs to be checked at some point in the development process. In some
cases, it may be decided that such definitions are within the scope of the analysis
and should be modelled. This may bring to light inconsistencies or incompatibilities
with the New World, for example in company procedures. In most cases, however,
it is probably sufficient for the statement of requirements merely to reference the
definitions. In the future, standards might be expressed in such a form that they
can be manipulated directly within an ORCA model.

Software properties

It is common to encounter requirements for properties of software (rather than
complete systems), such as extensibility, maintainability and portability. These
are really considerations for the development activity rather than requirements to
be defined as a basis for development.

For example, the design and implementation authorities might wisely decide
that the goals of extensibility and maintainability are best served by using an
object oriented approach throughout the development, and (perhaps less wisely)
that portability is maximised by using C++ on a Unix platform. They may be
asked to justify their decisions, but the properties cannot actually be tested. This
kind of requirement is not handled explicitly by ORCA.

Development constraints

In addition, there may be constraints on the development activity itself. For exam-
ple, there may be requirements that the developed system interfaces with existing
software or machines. This is really a constraint on the scope of change available
to a system developer, and has implications for software design.

A client may make arbitrary or political choices of target technology (‘it’s got be
PaneWare 6.2 on a HAL 2001). These may have a significant impact on subsequent
design choices.

Finally, there may be constraints on cost or timescale, which affect the nature
and scope of any developed software.

228 Chapter 21. Putting together an analysis project

21.5 Configuration management

Requirements and their supporting models are, in the nature of things, highly
changeable. Firstly, an analyst’s (and indeed, a client’s) understanding of a domain
develops as analysis proceeds. Secondly, the requirements being formulated be-
come, one hopes, increasingly precise (and may even change radically). Thirdly, re-
quirements definition often uses information gathered from multiple sources within
a client organisation. Information from different sources may well be inconsistent,
or may express conflicting requirements. Producing a single corpus of requirements
and supporting models involves multiple cycles of revision and integration.

On the other hand, where the results of requirement definition are to form an
agreed basis for system development, it is important that they are preserved, that
their status is recorded, and that any subsequent change is controlled.

It follows that an effective Configuration Management (CM) regime is an im-
portant part of the overall process. A CM regime needs to address the following
issues:

e what bodies of information constitute configuration items
e how configuration items are identified and stored
e how relationships between items are recorded, and how composites are defined
e the lifecycle of an item: the statuses and transitions between them
e change control procedures (request, access, authorisation)
e use of CM tools
Defining an appropriate CM regime needs to take into consideration:
e the scope and complexity of the analysis domain
e whether additional non-ORCA models are being used (see 21.4)
e whether there are single or multiple sources of information
e whether there are one or several analysts involved

It is clearly important not to burden the process with a CM regime that is too
onerous. An analyst needs some freedom to work ‘on the back of an envelope’
(more probably, on the front of a whiteboard). On the other hand, it may be
better to have a consistent CM regime right through a project, even if this seems
excessive in the early stages.

21.6 Tool support

21.6.1 Roles for tool support

There is a prevalent view that tool support for methods is ‘A Good Thing’ and
is therefore necessary for serious use of a method. However, while the scale and
complexity of analysis products (in a particular situation) might require the use

21.6 'Tool support 229

of tool support, there is nothing in ORCA that makes tool support essential. In
fact, it is a matter of principle that the method should be usable, to some useful
degree, with only paper or whiteboard.

To assess the need for tool support, we need to consider what tools might actu-
ally be used for.

Recording models in electronic form

There are obvious benefits in maintaining information in electronic form—it is then
easily modifiable, reproducible, communicable, and so on. Both text and diagrams
are amenable to electronic storage. Various standard tools can be used for this
purpose, such as editors, drawing tools and filecard packages. These are becoming
increasingly sophisticated and interlinkable.

Drawing diagrams

Given that we want to represent models in diagrammatic form, and hold diagrams
electronically, there is an obvious requirement to support the drawing of diagrams.
The diagrammatic forms of ORCA models are often complex, and the ability to
adjust layout is important. In addition, there are standard shapes and symbols
that may occur many times within a diagram, so the ability to duplicate and
modify these elements is also desirable. Finally, it is often necessary to produce
high quality diagrams for inclusion in delivered documents or live presentation.
However, it is not clear that we need specialist CASE tools for this purpose since
the latest drawing tools have increasingly powerful facilities (for example, with
regard to layout), and considerable scope for customisation (for example, defining
symbols, styles, and constraints).

Viewing complex models

ORCA models can become complex and multifaceted. There is thus a need for fa-
cilities to browse models, search for particular elements, provide alternative views,
and provide filtered views in which only certain kinds information are shown. A
problem with viewing complex models is the difficulty of providing an overview of
a whole model and some notion of context within it. Without this capability, it
is possible to become lost within a model. Although sophisticated navigation fa-
cilities (for example, hypertext style navigation) is desirable on usability grounds,
it may create problems through lack of context and overview capability. Existing
method support tools are still fairly primitive in this respect.

Checking models

Models constructed using any well-defined language are amenable to checking.
Most obviously, models can be checked for correct syntax (see Part VI for def-
initions and explanations of the ORCA modelling languages). Syntax checking
ensures that models are structurally well formed, although not necessarily mean-

230 Chapter 21. Putting together an analysis project

ingful. Checking static semantics ensures that the usage of names and types is
correct (for example, if a name is used as a reference, then it must have been de-
clared somewhere else). Although syntax and static semantics can be checked in
‘batch mode’ (as in a compiler for a programming language), it is more useful for
an analyst to be able to check these interactively as a model is constructed since
this is part of the process of making descriptions precise.

Within ORCA models there are various validity checks that can be performed.
What these detect are not faults in the construction of models, but are conse-
quences of the situation that the models describe. For example, in a Grampus
model we are interested in detecting faulty co-operations, that is, guarantees or
reliances for which only extrinsic descriptions exist. Such faulty co-operations are
a common pathology (see Chapter 15 for examples). There is a similar, but more
complex, set of validity checks applicable to Beluga models. It would be highly use-
ful for detection of such conditions to be done by a tool rather than by inspection
of a model by an analyst.

Animation

Animating models (where these have a time dimension) positively requires tools
support if it is to be done; it is simply not feasible to conduct animation manually.
Animation involves an analyst setting up scenarios from a model and then gener-
ating behavioural traces from these, making choices interactively where necessary.
Alternative scenarios and choices can be explored. For this activity to be manage-
able, a tool needs a sophisticated user interface with regard to both presentation
of behaviour and control of the animation. It is probable that an animation tool
would need to be method specific since much depends on the underlying semantics
of the modelling languages (in other words, what it is that a given model allows
or disallows).

Configuration management

Configuration Management (CM) is discussed in Section 21.5. Handling versions,
variants, change histories and access control is sufficiently tedious and exacting
that it demands tool support. There are various CM tools available. However,
these are intended for textual files (documents, program source code) or binaries
rather than diagrams. One of the problems for the analyst is to determine the units
of configuration management. Although we have tended to talk about ‘models’,
what we typically have are interrelated fragments of models—in practice, we might
never have a single monolithic ‘model’. The problem is compounded if we do not
construct our models from scratch. Given a library of reusable model fragments,
we might wish to express derivation relationships with respect to already existing
fragments.

One of the roles of CM support is to provide the analyst with an audit trail of
the analysis process, recording raw information and models at different stages of
analysis. In addition, the analyst might want to record alternative models, choices

21.6 'Tool support 231

between these, and justification for the decisions made. In principle, an entire
rationale for development could be constructed explicitly. This goes well beyond
the capabilities of existing CM tools.

Supporting the process

It is somewhat ironic that ‘method support tools’ rarely support a method—
prompting the performance of particular activities at appropriate times, providing
guidance on what to do, helping resolve problem situations, and so on. It is much
more common for tools to support modelling languages, and only implicitly the
activity of model construction.

It is therefore worth distinguishing process support from language support. One
reason why the former is a rare beast is that it is difficult to support processes (par-
ticularly analysis processes) in a sufficiently flexible manner. As earlier chapters
have made plain, it is essential that any analysis method allows variants of the
basic process to be used, as appropriate, in different situations. If a tool supports
only a basic process, and does not allow an analyst to tailor the process, it is
inevitably too constraining and will prove unsatisfactory.

Another difficulty with process support is that, to be effective, it requires a
considerable degree of ‘intelligence’ from the tool. If the analyst asks: ‘I'm in this
situation now. .. (review of progress so far)...what’s wrong? what do I do next?’,
what kind of useful response could a tool produce? Realistically, the analysis
process is too flexible and too informal to be amenable to this degree of automation.

21.6.2 Advice to the unwary

Finally, the following pieces of advice are offered:

e Think of the reasons why you want tools (see the preceding section for possible
roles for tool support). What are the benefits and costs?

e Consider whether you can just use general purpose tools. Can these be
adapted or customised for your purposes? Can you configure ‘meta-tools’
(for example, tools that can be instantiated with language definitions)?

e Don’t start using tools too early in the process; the whiteboard is probably
the best tool for the early stages of analysis.

e A rough diagram that’s right is better than a pretty one that’s wrong.
e Using any kind of tool support is no substitute for thought.

Chapter 22

Life after ORCA—onward into
development

22.1 Design and implementation considerations

Performing an ORCA analysis provides a context, a rationale, and a specification
for proposed changes to a system. Some of these changes involve the development
of IT components. These components are now the primary focus of attention.

In the NIMWeC example of Part II, the analysis led us to a prescription that
involved the development and installation of a new control system for the looms.
The new control system should:

e allocate batches to looms (in an ‘intelligent’ manner)

translate batch details (item names, quantities) into loom instructions

control the loom machinery via the electromechanical actuators and sensors

provide an interactive interface to the operator, which is to:
— allow entry of batch details

— provide information on the status of batches and looms

— allow manual intervention (removing a batch, taking a loom in/out of
service, and so on)

The analysis models give us a precise understanding of these requirements. If
necessary, a purely textual statement of requirements could be prepared using the
outputs of analysis. We now need to move into the development activity.

The new control system will involve a mixture of software and hardware. As-
suming that appropriate hardware components can be purchased, our task is to
develop suitable software.

Computer software deals not only with the application domain, but also with
various implementation domains. Domains can depend on the services provided
by other ‘lower level’ domains. For the NIMWeC control system we might have
the domain structure shown in Figure 22.1. The domains are shown as blobs with

232

22.1 Design and implementation considerations 233

Device

Interfaces

Communications

Operator
Interface

Backup &

Recovery

Hardware
Controller

Local Area
Network

Figure 22.1 Implementation domain structure for NIMWeC

dependency arrows going from higher level to lower level domains (this informal
notation is not part of an ORCA modelling language).

The Weaving domain has been investigated in our ORCA analysis—it deals with
batches, items, looms, instructions, and so on. For the purposes of implementation,
we need to go into more detail (for example, concerning the form of instructions),
but the main concepts have been identified.

Invoking and controlling the functionality of the Weaving domain depends on
the Operator Interface domain. This deals with operator sessions (log-on, log-off),
modes of use, and the command ‘language’. This domain depends in turn on the
Graphical User Interface (GUI) domain, which provides user interface components
(windows, dialogue boxes, menus, and so on). Typically, we would produce these
by specialising and combining ‘bought in’ library classes. These classes depend
ultimately on, say, a PC running a suitable operating system, but we want as little
to do with this domain as possible.

In addition, there are domains that deal with communications, interfaces to
hardware devices (for example, the electromagnets), and backup storage and re-
covery. These, too, depend ultimately on hardware domains.

We can now consider the issue of reuse. This is unlikely to be feasible in the top
level Weaving domain, unless we have done similar developments for other weaving
companies in the past. In contrast, for the lower level domains we should be able

234 Chapter 22. Life after ORCA—onward into development

to use ‘bought in’ components with standard interfaces. A particular case is the
use of a commercially available class library as the basis for implementation of the
Graphical User Interface domain.

In the intermediate level domains, the feasibility of reuse is less clear. For exam-
ple, in the Operator Interface domain, the concepts of User, Session, Command,
and so on, are widely applicable. We might therefore have reusable implementation
frameworks (sets of co-operating classes) that can be adapted for our particular
development. Such reusable implementation frameworks would have come out of
a variety of previous developments, and would be maintained within an ‘in house’
software library:.

The scope for OO development varies between different domains. We would
certainly like to use OO in the implementation of the Weaving domain in order
to make maximum use of our analysis models. However, we should be careful to
consider the classes involved from an implementation perspective rather than from
an analysis perspective. For example, in our analysis model each Orderltem in
a Batch is associated with a set of Instructions. In our implementation, on the
other hand, the instructions for an entire batch might be sent from the operator’s
terminal to a hardware controller (in a numerical encoding) when the batch is
about to be woven. We could thus have a batchInstructions feature on the Batch
class, containing a numerical representation of the instructions for all items in a
batch, and not have an Instruction class at all. It is important to realise that there
is no ‘handle-cranking’ way of turning analysis models into good designs.

The Operator Interface domain is another candidate for OO development, since
it sits between the Weaving domain and the Graphical User Interface domain.
The latter is almost necessarily object oriented (there are now many GUI class
libraries).

In contrast, the lowest level domains may not be amenable to OO development.
Accessing communications facilities may involve calls to procedural code; program-
ming of device controllers may need to use low level languages. Thus we cannot
expect to take a universally object oriented approach to development.

22.2 Design methods

This leads us on to consideration of OO design methods. Although some of these
methods are billed as ‘analysis and design” methods, the analysis activity is gen-
erally rather limited: we advocate using ORCA instead. As regards the design
activity, different methods provide the following different kinds of support:

e Notations for design. [Booch 1991] is a good source of notations and textual
templates.

e Heuristics for design. The Class—Responsibility—Collaboration approach of
[Wirfs-Brock et al. 1990] is well-known and helpful.

22.2 Design methods 235

e Consideration of architecture and design issues (such as concurrency, data
storage, resource requirements). The OMT method of [Rumbaugh et al.
1991] provides advice in this area.

e Development processes (see comments below).

The methods of [Martin & Odell 1992], [Jacobson 1992] and [Goldstein & Alger
1992] should also be mentioned.

ORCA'’s Beluga language for behavioural modelling has much in common with
existing OO design notations, particularly as regards static structure (classes, fea-
tures, associations, generalisation/specialisation). However, the approach to dy-
namic behaviour is rather different. For analysis, we want a language that allows
us to express patterns of behaviour, and compose patterns into larger patterns,
without worrying about the details of interaction and ordering. For design, on the
other hand, we are interested in building up a system by combining determinis-
tic (usually sequential) components, and defining precisely how they interact and
interleave (that is, the ‘flow of control’).

Beluga could be used for design purposes, provided that two points are recog-
nised. Firstly, it is important to remember that analysis models are talking about
the ‘real world’, whereas designs are talking about pieces of software. Secondly, in
modelling for analysis the aim is to express only that which is essential; in design,
the aim is to decide on definite mechanisms for information processing.

ORCA’s Grampus language for purposive modelling has no obvious counterpart
in existing design methods. An interesting possibility is that it could be used
to express the ideas of the CRC method—responsibility, contract, collaboration
[Wirfs-Brock et al. 1990].

In describing ORCA, we have emphasised the need for process design: an anal-
ysis process needs to be designed for the particular situation, integrating the tech-
nical approach with strategies for the wider project (see Chapter 21). A simi-
lar process design activity needs to take place for development. Suitable tech-
niques, languages and notations need to be selected, perhaps from different meth-
ods. Strategies for validation and verification, documentation and configuration
management need to be determined; planning and progress monitoring need to
be addressed. Finally, the overall nature of the development process needs to be
determined—whether the development is linear, incremental or evolutionary, the
role of prototyping in the process, and the scope for software reuse.

Finally, we should discuss the relationship of ORCA to non-OO methods. ORCA
covers much the same ground as traditional business analysis, but provides a more
rigorous process and more powerful modelling languages. In particular, entity-
relationship data modelling, as used for ‘strategic data models’, is subsumed by the
Beluga language. Ideas from traditional business analysis, such as critical success
factors, can be used within ORCA and tied in to ORCA models. Soft Systems
Methodology [Checkland 1981}, [Checkland & Scholes 1991] analyses organisations
in terms of objectives, conflicts, mission statements and outlooks; this can be
used as part of ORCA Preliminary Analysis. Non-OO methods such as [DeMarco

236 Chapter 22. Life after ORCA—onward into development

1978] could be used for design, following an ORCA analysis, but the continuity of
approach would be lost. While, as mentioned earlier, there may be implementation
domains for which OO development is not the most appropriate, OO is increasingly
recognised as the principal approach for mainstream I'T development.

22.3 The ORCA method

This book presents a set of ideas about analysing purposive systems, together with
illustrations of how these ideas can be used. We do not regard the ORCA method
as in any way the ‘last word’ on the subject. Quite the opposite: there is some
way yet to go before we have adequate means to describe and understand complex
systems. ‘Methods’ presented in books such as this are necessarily a compromise
between pushing forward with new ideas and techniques, and holding back in
order to maximise coherence and rigour. Thus, the ORCA method is by no means
‘graven in stone’, and we hope to see it evolve in the light of experience. It is not
a religious dogma to which the faithful need adhere without deviation. Use of the
method should be judicious and pragmatic. The aim should always be to assist
understanding and help valid conclusions to be drawn: a method should provide a
tool for thought.

Part VI

Appendices

Appendix A

Defining modelling languages

A.1 Introduction

In the case studies discussed in this book, parts of the Grampus and Beluga mod-
elling languages are introduced by example, as and when they are needed. Com-
plete descriptions of the languages are given in the following two appendices. These
descriptions are provided not for the day-to-day user of ORCA, but for those inter-
ested in delving deep, for example in order to build tools. This appendix describes
the notation used for those descriptions.

A.2 Syntax

Grampus and Beluga are defined in terms of their abstract syntax and various
concrete syntaxes. The abstract syntax defines the underlying constructs of the
language, while the concrete syntaxes provide ways of representing these constructs
in a textual or diagrammatic form. [Meyer 1990, chapter 3] explains these ideas
in more detail, and introduces a syntax-definition language called Metanot, which
we use in a slightly modified form in the following appendices. In the descriptions
given below, we also use Beluga diagrams to summarise the relationships between
the abstract constructs.

A.2.1 Abstract syntax

Description

Each abstract syntax definition consists of a list of productions. A production
has two parts: on the left is the name of the construct being defined, and on
the right is its definition. A construct can be defined as a choice between other
constructs, or as an aggregate of other constructs. (These meta-level terms should

239

240 Chapter A. Defining modelling languages

not be confused with the Beluga constructs called ‘choice’ and ‘aggregation’.) For
example:

Choice — Choicel
| Choice2
| ChoiceN

Aggregate — terminal : CONSTRUCT1
optional : Construct2’
zeroOrMore : Construct3*
oneOrMore : Construct4d™

)
)
)
Each component of an aggregate construct has the following parts:

e A name, by which it may be referred to elsewhere, and which can be used to
indicate its meaning informally. The names in the Aggregate example above
are terminal, optional, zeroOrMore, and oneOrMore.

e A type, which is a construct name. A construct name written in SMALLCAP-
ITALS indicates a terminal construct, not further defined.

e A cardinality. Various symbols may follow the type.
No symbol (the default) indicates exactly one item in the component.

? A question mark indicates that the component is optional.
* A star indicates a list of zero or more components.
+ A plus indicates a list of one or more components.

Components with the same type may be folded into a single line, if desired.

Example

In a programming language, a Statement might be defined using a choice con-
struct as an Assignment, or an IfStatement, or a ProcedureCall, or a The
IfStatement might be defined using an aggregate construct as having a test of type
Ezxpression, and a thenBranch and an optional elseBranch, both of type Statement.
The ProcedureCall might be defined using an aggregate construct as having a name
of type NAME (where NAME is a terminal construct, not further defined) and a
parameterList consisting of zero or more components of type Ezpression:

Statement — Assignment
| IfStatement
| ProcedureCall

IfStatement — test : Expression
;. then : Statement
. else : Statement’

A.2 Syntax 241

ProcedureCall — name : NAME
;. parameterList . Expression®

A.2.2 Concrete syntaxes

Different concrete syntaxes

Grampus and Beluga have a variety of concrete syntaxes, which play different roles.

e The ‘pretty’ textual form contains special non-ascii characters (for example,
various kinds of arrow). Ability to use this form depends on the available
fonts. It can be used for presentation quality type-set documents and for
freehand use.

e The ‘basic’ textual form is pure ascii (no symbols). It is intended for use
on character-based terminals where only ascii characters are available, in
particular for electronic mail and document interchange.

e The diagrammatic form is available for
— exploratory use by the analyst

— presentation of models to clients

Using diagrams

The diagrammatic concrete syntax described in the following appendices can be
used piecemeal (for example, during exploratory analysis) or linked into large di-
agrams (for example, for discussing with other people). It does not have to be
structured into ‘X Diagrams’, ‘Y Diagrams’, and so on. It is up to an analyst to
determine structuring and layout conventions.

The diagrammatic syntax can (within reason) be extended with abbreviations,
annotations or decorations to aid readability or to indicate the status of information
(for example, the status of pieces of model). The corresponding textual form can
be used to determine exactly what the diagrams mean.

Diagrams are not an end in themselves; don’t get carried away with their pro-
duction. Beware of producing ‘pan-galactic’ diagrams for a whole model, without
specific benefits in mind. However, don’t go to the other extreme and draw a di-
agram that is worth only a dozen words. A diagram should have a macro-reading
(structural properties that are apparent when viewed from a distance) and a micro-
reading (detailed information—textual, symbolic or graphical—that is apparent
when viewed close up). [Tufte 1983] and [Tufte 1990] contain excellent discussions
and examples of good diagrams, and some revealing examples of poor diagrams,
too.

Concrete syntax definition conventions

Where there is a difference, both ‘pretty’ and ‘basic’ textual forms are given, in
that order.

242 Chapter A. Defining modelling languages

In the concrete syntax descriptions, embedded syntactic components are named
in (bracketed italic), terminals are shown as literal text, or as the relevant diagram
fragments. Multiple components are shown as

(componentList) separator ...
if the list occurs on one line, or as

(componentList) separator

if the separate items occur on separate lines. If a list of components is empty,
brackets may be omitted.

Example
The concrete forms of the IfStatement and ProcedureCall described above might
be

IfStatement ::= if (test) then (then) else (else) fi
| if (test) then (then) fi

ProcedureCall ::= (name)({parameterList), . ..)

Actual instances of such statements (depending on the concrete definitions of
Ezpression) might look like:

if a=Db then skip else a:=3 fi
draw(x, y, str)
resetClock

A.3 Semantics

A.3.1 Static semantics

In order to keep the syntax as simple as possible, many consistency constraints
are expressed as ‘static semantics’, so called by analogy to the static, or compile
time, checks made on programming language texts. These consistency checks are
expressed informally in the language description appendices. For example, ‘class
names are unique within a model’.

A.3.2 Dynamic semantics

The dynamic semantics, what a piece of model ‘means’, should be defined formally
so that models can be manipulated, proved equivalent to one another, shown not

A.3 Semantics 243

to include deadlocking behaviour, and so on. Such a formal definition is beyond
the scope of this book. The earlier case study chapters introduce the meaning
informally, by example, and the language description appendices give an informal
description of each construct’s meaning with its abstract syntax definition.

Appendix B

Grampus—the Purposive
modelling language

B.1 Introduction

Grampus (Guarantee Rely Approach to Modelling Purpose in Systems) is a lan-
guage for modelling a system in terms of the arrangements for service provision.
These arrangements are what gives a system its overall purpose.

Structurally, a Grampus model describes a cluster of co-operating roles (or,
exceptionally, a single role in an undefined ‘environment’). See Figure B.1.

A role is described in terms of the services it guarantees to provide to other roles
within a cluster, and those it relies on getting from other roles in the cluster.

A co-operation is the matching of a service reliance of one role with one or
more service guarantees of other roles. Describing the guarantees and reliances
of one role implies guarantees and reliances of other roles. These implied service
descriptions are said to be extrinsic descriptions of those other roles; the service
descriptions that generate them are said to be intrinsic to the role.

A role may be analysed in terms of a formation into a cluster of subroles, and
may delegate an outer service to its subroles’ services. A role may be modelled by
a number of formations.

Co-operations and delegations may be characterised as OKAY, PROBLEMATIC
(mismatched) or UNANALYSED.

B.2 Roles and services

A Grampus model is either a cluster or a single role:

GrampusModel — Cluster
| Role

244

B.2 Roles and services 245

Cluster

Role S - - - - - - - — - =
* name
‘ ~ Composition
‘ B * name — -
:l _ — ~ 7| e justification T~
|
I
I
| - -
| ‘\ Delegation Promotion
' « character * character
I * justification * justification
I
[
| \ |
| \ "N /
\ .
: \ \ ! Reliance
S — ' * name - status - — —
' * description
N A
Guarantee
ename estatus p — — — — — — — — —
« qualifier

Figure B.1 The structure of the Grampus language

Role — name : ROLENAME
;. guaranteeList : Guarantee*
: reliancelList : Reliance*
;. formationList : Formation*

Co-operation
* character
« qualifier

A role has a name, and a description of various services guaranteed and relied
upon. A role may have one or more formations that model its internal structure

in different ways.

Guarantee — name : GUARANTEENAME
;. qualifier : TEXT
;. status : Status

Reliance — name : RELIANCEN AME
; qualifier : TEXT
i status : Status

A guarantee or reliance is characterised by a name, a textual qualifier and a status

(intrinsic or extrinsic).

Status — INTRINSIC
| EXTRINSIC

246 Chapter B. Grampus—the Purposive modelling language

Role name

intrinsic intrinsic
guarantee reliance

— \ .
extrinsic f . extrinsic
| formation I .
guarantee N) reliance

e RoleName: intrinsic guarantee and its qualifier

Figure B.2 Concrete syntax for Role

An intrinsic guarantee or reliance is part of a role’s understanding of itself. An
extrinsic guarantee or reliance is a consequence of an intrinsic guarantee or reliance
of another role.

Static semantics

Guarantee and reliance names must be unique within a model, but note that the
same role can appear in alternative formations. These names are ‘short descrip-
tions’, not identifiers.

Concrete syntax

A role is drawn in a box with its name at the top. The guarantees and reliances
are drawn as named ‘pointed boxes’. Where a qualifier is brief, it may also be
written in the box (after the name, in parentheses); otherwise it may be written
as a footnote (in which case the name is italicised to indicate the existence of a
qualifier). See Figure B.2. Boxes pointing out of the role represent guarantees
(made to other roles); boxes pointing into the role represent reliances (required
from other roles).

Guarantees and reliances drawn outside (next to) the role represent extrinsic
descriptions; guarantees and reliances drawn intersecting the role box represent
intrinsic descriptions.

Services may be drawn on left, right or bottom edges of a role box. A role may
optionally be drawn with one of its formations shown (see later).

B.3 Cluster and co-operation

Cluster — componentList : Role™
i cooperationList : Cooperation™

B.3 Cluster and co-operation 247

A cluster is a collection of two or more component roles, and of co-operations
between these roles, showing how relies of one are met by guarantees of others.

Cooperation — reliance : (ROLENAME RELIANCENAME)
;. guaranteeList : (ROLENAME GUARANTEENAME)™
i characterisation : Characterisation
;. justification : TEXT

A co-operation (between roles in a cluster) identifies a reliance of one of the roles,
and the guarantees of other roles that satisfy this reliance. The co-operation can
be characterised as OKAY, PROBLEMATIC or UNANALYSED. The justification may
be used to explain why the guarantees are believed to satisfy the rely, or otherwise.

Characterisation — OKAY
| PROBLEMATIC
| UNANALYSED

Okay co-operations occur when an intrinsic reliance is believed to be satisfied by
intrinsic guarantees. Problematic co-operations occur when this is not the case.
Intrinsic—extrinsic co-operations are always problematic. The characterisation may
require a justification.

Static semantics

A cluster must contain two or more roles.

In a co-operation, the reliance must be in the appropriate role.relianceList; each
guarantee must be in the appropriate role.quaranteeList.

No co-operation is extrinsic-extrinsic. Every extrinsic reliance or guarantee
must appear in some co-operation.

Concrete syntax

A co-operation is drawn in by connecting the relevant services with a line (straight
or curved); the characterisation is indicated by the style of line (see Figure B.3).
Note that UNANALYSED lines can be changed to PROBLEMATIC or OKAY lines, and
PROBLEMATIC to OKAY, by over-writing.

Typically, okay co-operations are intrinsic—intrinsic, while problematic and un-
analysed co-operations are intrinsic—extrinsic.

Where a co-operation involves multiple guarantees, a circular connector is used
to join them. See Figure B.4.

Where a justification is brief, it may be written on a co-operation diagram (in
a dashed or fuzzy round-cornered box, to avoid confusion with the role boxes,
attached to a circular connector), otherwise it may be written as a footnote. See
Figure B.5.

A cluster diagram is the composition of all its contained role and co-operation
diagrams.

248 Chapter B. Grampus—the Purposive modelling language

Role P Role Q

i

reli 1

reliance 2

reliance 3

ance

oka
(okay) guarantee A

Figure B.3 Concrete syntax for Co-operation

Role Q

guarantee A
Role P

< reliance 1

Role R

guarantee B

Figure B.4 Concrete syntax for multiple guarantees

{ . e . \
snappy justification Role O

Role P | : |
of cooperation
P

reliance 1 |- S'\

< nce 1 @, guarantee A
el ntee C|

reliance 3

G

guarantee C

‘ e (1) rather longer and more detailed justification of other cooperation

Figure B.5 Concrete syntax for Justifications

B.4 Formation, delegation and promotion 249

Role B Role C
Role A

Role D

Figure B.6 The viewpoint of Role A

Where there is an information source for each role in a cluster, it may be use-
ful (initially) to have a separate diagram for each ‘viewpoint’, where a viewpoint
consists of a role and all its intrinsic reliances and guarantees, together with any
intrinsic-extrinsic co-operations derived from these. For example, the viewpoint
for some role A might look as in Figure B.6. Note that one of A’s intrinsic guaran-
tees is not involved in a co-operation; A has no assumption about which other role
relies on it. Also, one of A’s intrinsic reliances is not involved in a co-operation;
A has no assumption about which other role guarantees it. Note also that the co-
operations are shown as ‘unanalysed’. When, in due course, multiple viewpoints
are combined, the analyst will attempt to match intrinsics and extrinsics, linking
roles with okay (intrinsic—intrinsic) co-operations, where matching is successful.

B.4 Formation, delegation and promotion

Formation — name : FORMATIONNAME’
. cluster : Cluster
;. delegationList . Delegation*
;. promotionlList : Promotion*
;. justification : TEXT

A formation (of a role) can be named; where there are alternative formations, the
names can indicate the grounds for the different analyses (for example, ‘functional’,
‘organisational’). A formation consists of a cluster (the internal structure), a set
of delegations, which delegate an outer guarantee to inner components, and a
set. of promotions, which promote inner reliances to an outer reliance. That this

250 Chapter B. Grampus—the Purposive modelling language

formation models the outer role may need to be justified.

Delegation — outer : GUARANTEENAME
; innerList : (ROLENAME GUARANTEENAME)™
;. characterisation : Characterisation
;. justification : TEXT

A delegation (of a guarantee of the outer role to guarantees of components in a
formation) identifies the guarantee of the outer role and the guarantees of the
inner component roles to which it is delegated. The status of the delegation can
be characterised. That a delegation does satisfy the outer guarantee may need to
be justified.

Promotion — outer : RELIANCENAME
; innerList : (ROLENAME RELIANCENAME)*
; characterisation : Characterisation
i justification : TEXT

A promotion (of reliances of components of a formation to a reliance of the outer
role) identifies the reliance of the outer role and the reliances of inner component
roles from which it is derived. The status of the promotion can be characterised.
That a promotion does satisfy the inner reliances may need to be justified.

Static semantics

Alternative formations of the same role must have different names. Outer guaran-
tees must be intrinsic. Each outer guarantee must be provided by an inner role.

Concrete syntax

One of a role’s formations can be drawn inside the role box. The cluster is drawn
as shown earlier. Delegations and promotions are drawn in the same manner as
co-operations. If a role has multiple formations, the formation name is appended
to the outer role’s name, as RoleName.FormationName (Figure B.7).

The outer role box may be elided (Figure B.8).

B.4 Formation, delegation and promotion 251

RoleName . FormationName

Role A

Role B

[

Figure B.7 Concrete syntax for Formation

Role A

Role B

D

[

Figure B.8 Eliding the outer role box

Appendix C

Beluga—the Behavioural
modelling language

C.1 Beluga models

Beluga (Behavioural Language Underpinning Generic Analysis) is a language for
modelling a system in terms of the classes of object in the system, and the pos-
sible histories of objects and their interactions. The concepts and notations are
introduced in Chapter 12, which should be read before referring to this chapter.
A Beluga model is a collection of class definitions and framework definitions.

BelugaModel — classList : Class*
;. frameworkList : Framework™

In terms of abstraction, the ‘top level’ of a model may be either a class or a
framework. However, class definitions and framework definitions are syntactically
disjoint—they are linked by reference (frameworks reference classes). The major
‘name spaces’ (for class/framework, constituent set, feature, association, local dec-
laration and status) are distinguished; these have different types (CLASSNAME,
FEATURENAME, etc.).

Beluga’s textual concrete syntax (not used in the main body of the book) is de-
fined along with its abstract syntax. Its diagrammatic concrete syntax description
is gathered together in a single section at the end of this appendix.

C.2 Classes

The class is the object oriented building block. It has features that describe its
abstract behaviour, and may inherit from (multiple) parents. Features involved in
particular behaviours may be grouped into facets. See Figure C.1

252

C.2 Classes 253

~

/ N parent
|
\ Class Feature
~ 4 * name — — — <4 *name - facets Signature
« invariant * meaning ein e out

Figure C.1 Class, feature, and signature

C.2.1 Class

Class — name : CLASSNAME
; parentList : CLASSNAME™
i featureList : Feature*
. invariant : PREDICATE’

A class has a name, and may optionally have a set of parent classes from which it
inherits, a set of features (operations and attributes), and a class invariant.

Static semantics

Class names are unique in a model.

Concrete syntax

The keyword ‘class’ and the class name are written above a line. Below the line,
the various components are listed in sections, with each section labelled by an ap-
propriate keyword. The order in which these sections are written is not significant.

Class 1=

class (name)
parents : (parentList); ...
features : (featureList);

invariant : (invariant)

C.2.2 Feature

Feature — name : FEATURENAME
;. facetList : FACETNAME"
. sig : Signature’
. meaning : MEANING’

254 Chapter C. Beluga—the Behavioural modelling language

A feature has a name, an optional list of facets, an optional signature, and an
optional meaning. The meaning may be informal text, executable code, pre and
post conditions (using the tags rely: and guarantee:, and referring to ‘after’ values
of attributes with a prime, v’), or empty (in which case the informal ‘meaning’ of
the feature is indicated somehow by its name). The meaning can indicate that a
feature is a specialised form of its parent feature, or derived from a feature of a
related class.

Static semantics

Feature names must be unique within a class and all its parents, but the same
name can be used for different features in different classes. Different classes may
use the same facet name in order to indicate that a piece of behaviour involving
(instances of) these classes occurs by invoking features with the commonly named
facet.

Concrete syntax

Feature ::=
{{facetList), ...}
(name)(sig)
// (meaning)

The facet braces are omitted if there are no facet names. The meaning comment
slashes are omitted if no meaning is given.

C.2.3 Signature

Signature — ins, outs : FormalParams*

A signature has two lists of formal parameters, indicating the formal inputs and
outputs.

Concrete syntax

There is a variety of concrete forms, depending on whether the lists have many,
one or no components. For example

Signature ::= ((ins); ...) : ((outs); ...) //many in and out
| ((ins); ...) //many in, no out
| ((outs); ...) //no in, many out
|

(
(outs) //no in, 1 out

C.2 Classes 255

C.2.4 Formal parameter

FormalParam — SimpleFParam
| ClassF'Param

A formal parameter is either a simple formal parameter or class formal parameter.

SimpleFParam — name : NAME
; type : SIMPLETYPE

A simple formal parameter has a name (so that it can be referred to in pre and
post conditions, for example), and a type (which will be something simple such as
‘number’, not defined using a class).

ClassFParam — name : NAME
; type : CLASSNAME
;card : Cardinality

A class formal parameter has a name, so that, for example, it can be referred to
in pre and post conditions, a type, the name of the class that defines it, and a
cardinality.

Cardinality — range : Range
;. frequencyList : Frequency®

A cardinality is a range, which says how many instances may be present in a
parameter, and a set of frequencies, which indicate where in a range the number
of instances is likely to lie.

Range — nos : NATT

The range is a set of numbers. The actual number of instances on any occasion
will be a member of this set.

Frequency — proportion : TEXT
i subrange : Range

A frequency consists of a proportion of the time a certain subrange of number of
instances actually occurs. This can be useful to indicate typical values when range
is just ‘any number’. There is no requirement for a distribution to be ‘complete’.
For example, we could say that the range is any number, where half the time there
will be 0-3 instances, and 0.1% of the time there will be 1000 instances.

Static semantics

The sum of the proportions in a cardinality may not exceed one, and the subranges
should be disjoint.

256 Chapter C. Beluga—the Behavioural modelling language

Concrete syntax

Simple formal parameters are written as name, colon, simple type, and class formal
parameters as name, colon, class type and cardinality (either bracketted, or written
as a superscript). A shorthand version is available for multiple parameters of the
same type (and cardinality, where appropriate): the names may be folded into a
single statement.

SimpleFParam ::= (name) : (type)
| (namel), ..., (nameN) : (type)

ClassFParam ::

card)

= (name)
| (name) : (type)
| (namel
| 1),...,{nameN) : (type)tcard
Cardinality ::= (range) with (frequencyList); ...

| (range) //empty frequencylist

A range has various shorthand forms for the most common cases (continuous range,
ZEro Or one, zero or more, one or more, one only).

Range ::= {(nos), ...} //general
(nosMin) .. (nosMaz) //continuous finite range
(nosMin) .. //continuous infinite range
(nos) //a singleton value

? /710, 1}
* //0..
+ //1..

//(blank) 1

Frequency ::= (range)@Q(proportion)

The proportion may be written as a number (for example, 1/2, 0.5, 50%) or as a
descriptive phrase (for example, ‘most of the time’, ‘nearly always’); numbers are
preferred, but not always known. The superscript form of range tends to be used
for simple ranges with no frequencies, whilst the bracketted form is more readable
for more complicated expressions.

C.2.5 Predicate

A PREDICATE is a logical expression concerning elements of the model and their
properties. The usual logical operators can be used (not, = ; and, A; or, V; if, =;
iff, <; for all, V; exists, 3).

C.3 Frameworks

257

AssocEnd
* name
e card

Association

_— — - - = Class - - - =
- —4
Constituent | N
* name | N
e cardinality | S
VARV I
/o N N I
/ | \ |
/ | |
/ | ' | Interaction
| | ! | * actions
| | I I « invokes
| Overlap ! |
| models A
\% ! Framework
| ! * name
parts | ! * invariant
\ /
\ / |
Aggregation \ / |
\ '
C / |
= Statics Dynamics ClassRels

Figure C.2 Framework, and related constructs

C.3 Frameworks

Beluga’s framework construct is used to describe how its components work together
to achieve some coherent behaviour. A framework can be abstracted to a class, in
which case the framework can also be thought of as a model of this ‘higher level’
class in terms of internal components working together to provide the behaviour of
the class. A framework’s components are defined using collections of stereotypical
instances, called constituent sets. These constituents are instances of ‘lower level’
classes, which may themselves be modelled by frameworks. See Figure C.2.

Framework — name : CLASSNAME

Y

modelOf : CLASSNAME'’

;. statics : Statics
i classRelationships : ClassRels
i dynamics : Dynamics

Y

mvariant : PREDICATE

A framework has a name, and, optionally, the name of the class it is a model of.
The framework definition consists of a description of its static components, class

258 Chapter C. Beluga—the Behavioural modelling language

relationships and dynamic behaviour. The framework invariant can be used to
talk about properties of collections of constituent sets, for example the topology
of their interrelationships (that they are fully connected, say), set relationships
between them, etc.

Static semantics

Framework names are in the same name space as class names. The modelOf name is
optional because a top level framework may not be accompanied by a corresponding
class abstraction. The framework will often be the same as the described class’s
name, but it may need to be different since more than one framework may model
the same class. (This is connected to the notion of viewpoints.)

Concrete syntax

The various component parts of a framework are listed under a relevant keyword,
and separated by lines to aid readability.

Framework ::=
framework (name) models (modelOf)
(statics)
(classRelationships)
dynamics (dynamics)
invariant (invariant)

C.4 Framework statics

Statics — constituentSetList : ConstituentSet*
;overlapList : Overlap*
;. aggregationList : Aggregation®

The static part of a framework model is concerned with its constituent sets. It
describes which constituents occur in the framework, how these constituent sets
may share overlapping subconstituents, and how constituent parts are aggregated
into wholes.

Concrete syntax

Statics =

constituents (constituentSetList);
overlaps (overlapList);

aggregations (aggregationList);

C.4 Framework statics 259

The order of the sections is not significant.

C.4.1 Constituent set

ConstituentSet — name : CONNAME
; class : CLASSNAME
; card : Cardinality

A constituent set has a name, and denotes of a collection of stereotypical instances
of a particular class. How many instances may occur in a particular constituent
set is given by the cardinality.

A constituent set’s class may itself be modelled by a framework that in turn has
constituent sets. These latter constituent sets are termed subconstituents of the
former.

Advice

If there is more than one instance in a constituent set, the name chosen for the
constituent set should be some sort of collective noun.

Concrete syntax
ConstituentSet ::= (name) : (class)(card)

Example

Consider a constituent set of the framework Court that is called allJuries and
consists of one or more members of class Jury. It is written as allJuries : Jury™.
If the class Jury is modelled by the framework Jury, and if the framework Jury
has a constituent set clerk : Clerk and a constituent set allJurors : Juror'?, then
clerk and allJurors are both subconstituents of allJuries.

C.4.2 Overlap

Overlap — nameList : SubConName™

SubConName — conNameList : CONNAME™

An overlap is a list of subconstituent name lists. This construct describes the case
where different constituent sets have subconstituents in common.

Concrete syntax
Overlap ::= (nameList) = ...

SubConName ::= (conNameList). ...

260 Chapter C. Beluga—the Behavioural modelling language

Example

Consider a constituent set called window, with one or more instances of class
MVC(window : MVCT). The class MVC may be modelled by a framework that
has three constituent sets, a model, a view and a controller, so these are subcon-
stituents of window. If we wanted to say that all the model subconstituents were
in fact the same instance, that they all overlap on model, we write

window.model

Consider a framework Court with two constituent sets, allJuries : Jury* and
allBenches : Bench™. Let the class Jury be modelled by the framework Jury,
which has two constituent sets, allJurors : Juror'? and clerk : Clerk, and the
class Bench be modelled by the framework Bench, which has two constituent sets,
judge : Judge and clerk : Clerk. To say that the Bench and Jury frameworks
actually share the same clerks when used in the Court framework, we write

allJuries.clerk = allBenches.clerk

C.4.3 Aggregation

Aggregation — aggregator : CONNAME
. partList : CONNAME™

An aggregation is a collection of constituent sets, one of which, the aggregator,
is distinguished. Aggregation is one way to combine various parts into a whole.
The aggregator is a specialised constituent set that can be thought of as gluing
the other parts together and being responsible for providing any behaviour of the
whole that cannot sensibly be delegated to the parts.

Static semantics

Within a model, the class of the aggregator is used in only one framework (because
it is such a highly specialised component), whereas the classes of the parts may be
reused in many frameworks. The cardinality of the aggregator’s constituent set is
one.

Concrete syntax

Aggregation ::= (aggregator)({partList), . ..)

Compare a constructor function plus arguments: the aggregator ‘constructs’ an
aggregate entity.

C.5 Framework class relationships 261

C.5 Framework class relationships

ClassRels — associationList : Association™
;interactionlList @ Interaction™

This part of the framework model describes relationships at the class level. It is the
part that corresponds most closely to conventional ‘entity-relationship diagrams’.

Concrete syntax

ClassRels ::=

associations (associationList);

interactions (interactionList);

The order of the sections is not significant.
C.5.1 Associations

Association — endl, end2 : AssocEnd

AssocEnd — name : ASSOCNAME
; class : CLASSNAME
; card : Cardinality

An association between two classes means their instances can be connected in some
way, possibly indirectly by a third party. Each end of the association has a name,
these may be the same, and a cardinality, indicating how many instances take part
in the association. (It is analogous to a relationship in an ERD.)

Static semantics

Each association end must be part of exactly one association. The names of the
two ends of an association may be the same. The names of all the association ends
of a particular class must be different.

Concrete syntax

Association = (end1)—(end2) //pretty: em-dash
| (end1)--(end2) //ascii: dash, dash

AssocEnd ::= ((name), (class){card))

262 Chapter C. Beluga—the Behavioural modelling language

If the two end-names are the same, the Association can be written as follows:

Association = (class)(card) (name) (class)(card)
| (class)(card) —=(name)- langleclass){card)

The pretty form puts the name on the line, the ascii form puts the name ‘in’ the
line.

C.5.2 Interaction

Interaction — source, target : ClassName
. ?
;1tnvokes : FeatureName’

In an interaction, an instance of the source class invokes a feature in an instance
of the target class.

Static semantics

If a feature name is given, it must be one of the features defined in the target class.

Concrete syntax

Interaction ::= (source) — (target).(invokes) //pretty
| (source)-—>(target).(invokes) //ascii

The pretty form uses an arrow, the ascii form uses ‘dash, dash, greater’.

C.6 Framework dynamics

The dynamics part of the framework model describes permitted patterns of be-
haviour. It describes how the constituent sets work together to provide the overall
behaviour of the framework. See Figure C.3.

Dynamics — NULL

| Stop
FrameworkRef
Let
LocalRef
Participation
Associate Event
Dissociate Bvent
InteractEvent
Choice
Composition
Assertion

C.6 Framework dynamics 263

Dynamics

Option
Class - - FrameworkRef Choice « frequency

Participation LocalRef /
* action * name

[
I InteractEvent Assertion /

| _ «in < out - assert I
* invokes AN
Constituent \\
AssociateEvent Composition
\4 E * name * type Dependency

| ~ I

\ DissociateEvent Let] Element
— * name * name o multiplicity
\4
\
AN

Figure C.3 Framework dynamics

C.6.1 Null behaviour

Dynamics — NULL

One of the kinds of dynamic behaviour is NULL. This is the behavioural equiva-
lent of ‘skip” and models ‘empty’ behaviour. NULL only ever appears in a choice
construct; it doesn’t mean anything anywhere else.

Concrete syntax

Dynamics ::= &
| null //ascii

C.6.2 Stop behaviour

Dynamics — STOP

264 Chapter C. Beluga—the Behavioural modelling language

One of the kinds of dynamic behaviour is STOP. This models a final or ‘broken’
behaviour. No further behaviour occurs after STOP. If this behaviour is present
in a parallel composition, the other branches of the parallel may continue, but no
subsequent dependent behaviour occurs.

Concrete syntax
Dynamics ::= t
| stop //ascii

C.6.3 Framework reference

FrameworkRef — ref : CLASSNAME

Framework reference provides a way to refer to (the behaviour of) a Framework
defined elsewhere.

Concrete syntax

FrameworkRef ::= (ref)
C.6.4 Local definition—*let’

Let — name : LOCALNAME
;. localDef , body : Dynamics

A local definition allows a piece of dynamic behaviour to be referred to by name
in the body. The scope of the name is the body. Note that body may also be a
‘let’—there may be multiple local definitions.

Concrete syntax

Let ::=
let (name) == (localDef) in
(body) //‘before use’ form
|
(body)
where (name) == (localDef) //‘after use’ form

C.6.5 Local reference

LocalRef — ref : LOCALNAME

C.6 Framework dynamics 265

A local reference is a reference to a piece of dynamic behaviour that has been
declared in a local Let definition.

Static semantics

The definition must be in scope when it is used.

C.6.6 Participation

Participation — name : CONNAME
. action : Action

A participation is a piece of behaviour that a named constituent set undergoes. It
involves one of a certain kind of action.

Action — Initiation / /creation
| Termination
| Involvement //the default
| Transient //for example, a ‘signal’
| Mutation

There are five kinds of action. Initiation refers to the creation of a constituent set
(it engages in no behaviour before initiation), and termination refers to the deletion
of a constituent set (it engages in no behaviour after termination). Involvement,
the default, is some undifferentiated action of the constituent set. A transient
action, for example a ‘signal’; involves the creation, some behaviour, and immediate
termination of the constituent set (it engages in no behaviour before or after the
action). In mutation, the constituent set changes state.

Initiation — — statusList : STATUSNAME"
Termination — statusList : STATUSNAME®
Involvement — statusList : STATUSNAME"
Transient — — statusList : STATUSNAME™
Mutation ~ — changeList : Change™
Change — before, after : STATUSNAME

All the actions refer to sets of statuses. These are the permitted statuses of the
constituent set instances after initiation, during involvement and transience, or
before termination. A mutation consists of a set of status pairs, corresponding to
the permitted relationships between statuses before and after the mutation.

Concrete syntax

Participation ::= (action)(name)

266 Chapter C. Beluga—the Behavioural modelling language

Action = init{(statusList), ...} //Initiation
| {(statusList), ...} //Involvement
| mut{(changeList), ...} //Mutation
| trans{(statusList),...} //Transient
| term{(statusList),...} //Termination

If the statusList is empty, the braces are omitted.
Change := (before) = (after) / /pretty: double arrow
| (before)=>(after) //ascii: equals, greater
C.6.7 Associate event
AssociateEvent — name : AssocName
: partyl, party2 : ConName

An associate event behaviour creates an instance of a named association between
two given parties.

Static semantics

The two parties’ classes must be related by an Association, and the name must
be one of the end-names of that Association. The parties must not initially be
associated.

Concrete syntax

AssociateEvent = (partyl)—(party2) : (name) //pretty: em-dash
| (partyl)--(party2) : (name) //ascii: dash, dash

Note the ‘instance : type’ syntax (compare ConstituentSet declarations).

C.6.8 Dissociate event

DissociateEvent — name : ASSOCNAME
; partyl, party2 : CONNAME

A dissociate event behaviour dissolves an instance of a named association between
two given parties

Static semantics

The two parties’ classes must be related by an Association, and the name must be
one of the end-names of that Association. The parties must initially be associated.

C.6 Framework dynamics 267

Concrete syntax

DissociateEvent := (partyl)—x—(party2) : (name)
C.6.9 Interact event

InteractEvent — source : CONNAME’
; target : CONNAME
. invokes : FEATURENAME’
. ins, outs : ActualParam*

In an interact event behaviour, instances of the source constituent set invoke a
feature on instances of the target constituent set, supplying input parameters and
receiving the outputs. The source is optional to permit ‘anonymous’ events, or
events originating from outside the model, to occur. The feature name is optional
to allow ‘early’ models of behaviour, before the relevant class has been fully defined,
to be syntactically correct.

ActualParam — ClassAParam

| SimpleAParam
ClassAParam — name : CONNAME //a ConstituentSet
SimpleAParam — name : NAME //a ‘value identifier’

Static semantics
The two parties’ classes must be related by an Interaction on the relevant feature.
If a feature name is given, the actual parameters must be type-consistent with the
feature’s signature.

Concrete syntax

InteractEvent ::= (source) — (target).(invokes)({ins),...) : ((outs),...)

The ascii form uses ‘-=> (dash, dash, greater) instead of the arrow.

Static semantics

It is possible to have in/out parameters without a feature name.
C.6.10 Choice

Choice — optionList : Option™ //at least two

268 Chapter C. Beluga—the Behavioural modelling language

Option — body : Dynamics
. frequency : Frequency’

A choice behaviour provides a choice between two or more behaviours. The various
options may be guarded with assertions (see later), in which case an assertion must
be true for its behaviour to be chosen. If more than one assertion is true, or an
option is unguarded, then one of the behaviours is chosen non-deterministically,
with a probability weighted by the optional frequency. (Having one branch of a
choice being a low frequency STOP allows the non-functional property of failure
rate to be expressed.) If no frequencies are given, all the branches have equal
weight.

If all the options are guarded with false assertions, the behaviour ‘waits’ for one
assertion to become true (for example, a timeout, or a value changed by a parallel
behaviour). If no assertion can ever become true, the behaviour is equivalent to
STOP.

Static semantics

There must be at least two options in a choice. (One option would be equivalent
to that behaviour on its own.)

Concrete syntax
Choice ::= ({optionList) | ...)
Option ::= (body)Q(frequency)
C.6.11 Composition
Composition — dependencyList : Dependency™

; type : CompositionType

A composition composes behaviours either sequentially (where behaviours whose
order is not determined nevertheless cannot be interleaved; one must finish before
the next can start) or in parallel. The syntax permits a general graph structure of
dependencies.

CompositionType — PARALLEL

| SEQUENTIAL

Dependency — precursorList : Dynamics*
; dependent : Element

C.6 Framework dynamics 269

Element — elem : Dynamics
o multiplicity © Multiplicity

Multiplicity — Cardinality
| Mapping

Mapping — element, set : CONNAME

Concrete syntax

Composition ::= [(dependencyList, .. .)] / /parallel
| [{dependencyList, ...)] //pretty: sequential
| [[{dependencyList, .. .)]] //ascii: sequential

Adjacent square brackets are always treated as a sequential composition construct;
nesting parallel compositions is semantically redundant.

Dependency ::= (precursorList)& ... > (dependent)

Components in the precursorList are normally referred to by name (using a local
reference). In the special case where the dependency graph forms a linear suc-
cession (where the precursor of component n + 1 is the single component n), the
composition is written as follows, without brackets:

Composition ::= (dependentl) > ...

Element = (elem) (multiplicity)
Mapping = (element) /(set)
Example

Consider the constituent set bb : Book*, zero or more instances of a Book. If the
behaviour DoBook refers to a constituent set b, then [DoBook®/*"] does DoBook,
in parallel, for each element of bb bound to b, whereas [DoBook®/**] does one book
at a time, but in no specified order.

C.6.12 Assertion

Assertion — assert : PREDICATE
i body : Dynamics

In an assertion behaviour, the assertion is true when the body occurs. Assertions
can either be about the features of constituent set instances, or about the temporal
status of other bits of behaviour. Dependencies and sequentiality (in sequential
composition) are special cases of the latter. Interrupts and timeouts can also be
handled in this manner.

270 Chapter C. Beluga—the Behavioural modelling language

Class
Name

Figure C.4 Class

ClassName

« feature 0
facetl

« feature 1

« feature 3
facet2

« feature 2

« feature 3

Figure C.5 Class showing features and facets

Concrete syntax

Assertion ::= (assert)?{body)

Example

A > B =[A, (finished A)?B|
[A, B] = [(not ongoingB)?A, (not ongoingA)?B|

C.7 Diagrammatic concrete syntax

C.7.1 Class

A class is drawn as a rectangular box with the class name inside (Figure C.4).

Feature names are grouped together by facet name within a class box (Fig-
ure C.5). Feature signatures and meanings can be included if desired. If these
clutter the diagram, an accompanying textual form is preferred.

C.7.2 Frameworks

A framework is drawn as a rectangular box containing the framework name and
some elements of diagrammatic syntax (for example, classes, class relationships,
constituent sets, timelines). The outermost box of a diagram (corresponding to
the diagram border) can be omitted.

C.7 Diagrammatic concrete syntax 271

& @

Figure C.6 Constituent set

Class

name

Figure C.7 Cardinality

name : Class card

Figure C.8 Cardinality

Where the name of the framework is different from the name of the class it
models, this should be stated in the name component:

(name) models (modelOf)

C.7.3 Constituent set

A constituent set is drawn as a round-cornered box or an ellipse—the roundness
distinguishes it from a class box—with the constituent set name inside (Figure C.6).

The class and cardinality of a constituent set can be indicated in two ways: by
using a long-dashed line to link the constituent set box with a class box (Figure C.7)
or by putting the full textual form inside the box (Figure C.8). The name of a
constituent set may be null. Note that there may be more than one constituent
set with the same class (Figure C.9). Sometimes, one constituent set is a subset of
another; this is indicated by nesting a dotted constituent set box (Figure C.10).

Where a framework models a class of the same name, a framework box, rather
than a class box, may be used.

C.7.4 Overlap

There are two special diagrammatic forms for overlap, corresponding to the two
common cases.

272 Chapter C. Beluga—the Behavioural modelling language

Class

/ \
/ \

cardl / \ card2

(namel) (name2)

Figure C.9 Cardinality

Figure C.10 Cardinality, cardl > card2

[

Figure C.11 Overlap. The textual form is a.a3 = b.b1

C.7 Diagrammatic concrete syntax 273

Figure C.12 Overlap. The textual form is a.a3

&

Figure C.13 Aggregation between constituent sets

aggregator component

Figure C.14 Aggregation between classes

Where the cardinality of a and b is 1, an overlap is drawn by superimposing
shared subconstituents (Figure C.11).

A different form is used in the case of an overlap involving a common subcon-
stituent of a constituent set. If constituent set a consists of many instances of A,
each of which consists of one al, one a2 and one a3, where the instances of A share
the same a3 constituent set, it can be drawn as in Figure C.12.

C.7.5 Aggregation

An aggregation is shown using a ‘diamond’ connector (Figure C.13). Where all
the constituent sets of a given class in a framework are aggregated, an aggregation
structure can be drawn between class boxes (Figure C.14). This allows aggrega-

274 Chapter C. Beluga—the Behavioural modelling language

namel name2
class1 class2
cardl card2

Figure C.15 Association

name
class1 class2
cardl card2

Figure C.16 Association, with the same name at each end

Figure C.17 a may optionally be associated with one b. So b has cardinality {0,1}
with textual form 7

tions to be drawn at the class level, along with associations and interactions. See
Chapter 12 for more discussion.

C.7.6 Association and interaction

An association is drawn as a straight line or as a curved line between class boxes
(Figure C.15). A common name may be drawn in the middle of the line (Fig-
ure C.16).

Multiple cardinality may be indicated by decorating line-ends. We use a stan-
dard entity-relationship convention, where dashed lines represent optionality, and
‘crows-feet’ represent ‘one or more’. Figures C.17-C.20 may be read from left-
to-right, to find b’s cardinality. They may be read similarly from right-to-left, to
give a’s cardinality.

An exclusion is a particular kind of framework invariant that says each instance
of class1 is associated with instances of class2 or of class3, but not both, at any

C.7 Diagrammatic concrete syntax 275

Figure C.18 a is associated with one b. So b has cardinality 1 with textual form (blank)

Figure C.19 @ may optionally be associated with one or more bs. So b has cardinality
0.. with textual form x

Figure C.20 a is associated with one or more bs. So b has cardinality 1.. with textual
form +

Figure C.21 Exclusion

276 Chapter C. Beluga—the Behavioural modelling language

Figure C.22 Interaction

C

« feature 0
e feature 1

b > facetA

Figure C.23 Interaction, to a feature and facet

Figure C.24 Timelines

one time. It is shown by a curved line cutting across the relevent association lines
(Figure C.21).

An interaction is drawn with a straight or curved arrowed line between class
boxes (Figure C.22). The arrowhead is not at the end of the line in order to avoid
confusion with the generalisation arrow (see later). An interaction arrow can go to
a specific feature or facet of a class, where these are given explicitly (Figure C.23).

C.7.7 Timelines

Timelines are used to indicate framework dynamics. Timelines are drawn from
constituent set boxes, with time progressing away from the boxes (Figure C.24).
All timelines within a framework should be drawn with the same orientation—all

C.7 Diagrammatic concrete syntax 277

Figure C.25 Participation

Figure C.26 Action icons

statusl, before

status2 after

Figure C.27 Status, in involvement and mutation

downwards or all left-to-right.

C.7.8 Participation and action

A participation is drawn as an action icon on the timeline for the named constituent
set (Figure C.25). Figure C.26 shows the icons for each kind of action. Statuses
are written alongside the action icons (Figure C.27). Before and after statuses in
a mutation are separated by a line.

Timelines are dotted before initiation, after termination, and either side of tran-
sience (Figure C.28). The solid portion of the line thus indicates the extent of the
constituent set’s ‘lifetime’.

C.7.9 Events

Note the similarity between events and class relationships.
An associate event is drawn as a line between participations (Figure C.29). If

278 Chapter C. Beluga—the Behavioural modelling language

>

Figure C.28 Lifetime

assocName

Figure C.29 Associate event

partOf
A

hasPart

Figure C.30 Named Associate event

C.7 Diagrammatic concrete syntax 279

assocName

Figure C.31 Dissociate event

featureName

Figure C.32 Interact event

featureName

Figure C.33 Interact event, with parameter

the constituent sets involved are of different classes, there is no confusion about the
‘direction’ of the relationship; if the ends of the association have different names,
either name can be used. However, if an association is between instances of the
same class, the ‘direction” may be important, and different names are used for the
ends of the association (for example, hasPart and partOf in Figure C.30). One of
the names must be written at the appropriate end of the line.

A dissociate event is drawn with a cross on the line (Figure C.31).

An interact event has an arrow on the line, with (optionally) a feature name at
the head-end (Figure C.32). If a third constituent set is a parameter to the interact
event, it can be connected to the arrowhead by a dotted line (Figure C.33).

C.7.10 References

References to named frameworks are shown as framework boxes positioned on the
timelines (Figure C.34). Local references are usually expanded.

280 Chapter C. Beluga—the Behavioural modelling language

O) OO

name

Figure C.34 Reference to a named framework

Element2

\ Element3

Element4

K- Elementl

Figure C.35 Parallel composition

C.7.11 Composition

The network of dependencies between elements of composition can be drawn using
double-headed arrows (compare the textual form for dependencies). The whole
composition is put in a box—a single-sided box if it is a parallel composition (Fig-
ure C.35), and a double-sided box if it is a sequential composition (Figure C.36),
by analogy to the single and double square brackets in the textual form.

Elements can be either framework references (to a named ‘event’ framework—see
above), or as ‘subdiagrams’. In the subdiagram case, multiplicity of elements is in-
dicated at the top-right corner of the boxes (Figure C.37). If the subdiagrams share
some or all of their constituent sets, the timelines can be linked, with branching
to accommodate independent behaviours (Figure C.38). Where the dependencies
are linear, timelines do not need to branch and can thus be straight.

These conventions can apply recursively to subboxes, subsubboxes, and so on.
The elements of lowest level boxes will be events (see above) or just participations
(if the dynamics are indeterminate). Positioning of events and participations on
timelines indicates temporal dependency.

C.8 Generalisation and abstraction 281

K‘ Elementl

Element2

\ Element3

Element4

Figure C.36 Sequential composition
T Tml

T Crmz T Crmg

T Tm‘l

Figure C.37 Subdiagrams, with multiplicities

C.7.12 Choice and assertion

A choice construct is boxed, with options separated by horizontal dashed lines
(Figure C.39). Where the different options involve common constituent sets, the
timelines can be continuous. Guard assertions on options (if any) appear at the top-
left of the option boxes. Note that assertions can also be used in compositions, and
follow the same convention. If an ‘else NULL’ option is required, it is represented by
a horizontal line below the last option, followed by the NULL symbol or keyword.

282

Chapter C. Beluga—the Behavioural modelling language

OO0 O

Figure C.38 Linked branching timelines

OO O

assertl

(option1)
assert2

(option2)
assert3

(option3)

Figure C.39 A three option choice

C.8 Generalisation and abstraction 283

parentl parent2

class

Figure C.40 Generalisation (inheritance)

class

classl class2 class3

Figure C.41 Framework, structural decomposition

C.8 Generalisation and abstraction

Generalisation relationships (inheritance) between classes are shown as grey arrows
pointing to the parent(s) (Figure C.40). Generalisation arrows are drawn thick,
shaded and usually straight in order to avoid confusion with interaction arrows
(see earlier).

A framework (a model of a class) uses classes at lower levels of abstraction. This
happens in the following two ways:

e Framework static constituent sets are declared to be of particular classes.
e Framework dynamics references other frameworks defined elsewhere.

A framework’s structural decomposition, involving constituent set classes occur-
ring in the fwk.statics.constituentSet.class part of the model, is shown using a
‘pyramid’ symbol (Figure C.41). A framework’s ‘temporal’ decomposition, involv-
ing frameworks and classes occurring in the fwk.dynamics.frameworkRef.ref part of
the model, is shown using an ‘hourglass’ symbol (Figure C.42). The two modes of
use can be shown together. A useful convention is to lay out constituent set use
horizontally and temporal structure vertically (Figure C.43).

Constituent set classes may themselves be modelled by frameworks; temporal
frameworks may themselves have constituent sets and subframeworks. So there
may be multiple levels of abstraction in both the structural and temporal dimen-
sions.

If a class is modelled by more than one framework, the use-structures can be

284

class

Chapter C. Beluga—the Behavioural modelling language

classl

class2

class3

Figure C.42 Framework, temporal decomposition

class4
class PF——
S classb5
class6
classl class2 class3

Figure C.43 Framework, structural and temporal decomposition

frameworkl

class

framework?2

classl class2

class3

class4 classb

Figure C.44 Framework, multiple models

labelled (Figure C.44).

Generalisation and abstraction relationships may be shown in the same diagram
(Figure C.45). This can be useful in illustrating how specialisation propagates
between different levels of abstraction.

C.8 Generalisation and abstraction

class

classl

class2

class3

Figure C.45 Generalisation and abstraction

sclass

]

sclassl

class4

classb

285

Appendix D

Glossary

Key
bold primary term
[Grampus] Purposive modelling related term

[Beluga] Behavioural modelling related term

abstraction, level of The resolution at which the world is described. [Grampus]
The level at which a purposive entity is expressed as a formation or role.
[Beluga| The level at which a behavioural entity is expressed as a framework
or class.

aggregation [Beluga] The binding together of various objects by another object.
Such an aggregator object exists only to construct a more complex entity
(that is, an entity at a higher level of abstraction). Aggregations are com-
monly expressed between classes, rather than objects.

Ahab A Help in Analysing Balderdash: ORCA’s technique for structuring and
clarifying raw textual information. (For when you don’t have a leg to stand
on.)

analysis The activity that aims to provide a context, a rationale and a specifica-
tion for change to the world.

analysis boundary The definition of which parts of the client’s world are open
to investigation by an analyst.

assertion [Beluga, dynamics] A statement of conditions that must hold when an
episode starts (a pre-assertion), or ends (a post-assertion). These conditions
may concern the state of participants in the episode, or the temporal status
of other episodes (for example: completed, ongoing, not started.)

associate event [Beluga, dynamics| An event that creates instances of an associ-
ation between the objects in two constituent sets.

286

287

association [Beluga] A kind of pairing between instances of two classes (possibly
the same class). Associations are directional and can be named from either
end. Each end of an association has a cardinality. Associations are expressed
as relationships between classes.

attribute [Beluga] A property of an object explicitly defined by that object’s
class.

behavioural entity Something in the real world represented as an object or as
an episode in a behavioural (Beluga) model.

Beluga BEhavioural Language Underpinning Generic Analysis: ORCA’s behav-
ioural modelling language. (So called because ‘It’ll be all white on the night’.)

cardinality [Beluga] A description of the number of elements in a set, consisting
of a range of values and, optionally, the typical frequencies of subranges or
individual values.

choice [Beluga, dynamics| An episode that may take different forms or may op-
tionally happen (the latter is expressed as a choice between a substantive
event and the null event). In a multi-way choice, assertions may be used to
indicate the conditions that hold when particular options happen.

class [Beluga] A characterisation of objects in terms of attributes and operations.
A class can be modelled by a framework (at a lower level of abstraction).

client The ‘owner’ of the part of the world that is the focus of analysis. The client
is assumed to be the person who instigates the analysis and who is in charge
of implementing change.

cluster [Grampus| A collection of roles linked by co-operations.
component |[Grampus| see role.

composition [Beluga, dynamics| The combination of multiple frameworks into a
more complex framework. Parallel composition is the general case, typically
used for combining ‘processes’. Sequential composition is typically used for
multi-episode ‘transactions’. There may be temporal dependencies between
elements of a composition. Elements of a composition have cardinalities.

configuration management The activity of managing change to the products
of analysis or design, and aggregation of components into deliverables.

constituent set (constituent) [Beluga] In a framework, a collection of stereo-
typical objects (instances of a single class). A constituent set may be named
and has a cardinality (which may be one). The contents of a constituent set
may change over time as objects are initiated and terminated. A constituent
set may be a participant in one or more events.

co-operation [Grampus| The satisfaction of a reliance by one or more guarantees.

delegation |[Grampus] The arrangement whereby a guarantee at one level of a
formation is fulfilled by one or more guarantees of roles at the next lower
level of formation.

288 Chapter D. Glossary

dependency [Beluga, dynamics] There may be dependencies between elements
(subframeworks) in a composition. An element can depend on one or more
precursor elements, which must have completed before the dependent event
can start. A linear sequence of elements is a special case of dependencies
within a composition.

design The activity of developing and installing Information Technology, and pro-
cedures relating to it.

development The design, construction and installation of facilities as part of a
wider programme of system change.

dissociate event [Beluga, dynamics| An event that removes instances of an as-
sociation between objects in two constituent sets.

domain In analysis: a subject area with which a particular part of the world deals
(for example: banking, air traffic control, telephony). In design: areas of
functionality within an implemented IT system (for example: user Interface,
application domain, communications).

dynamic behaviour That aspect of a system concerned with patterns of be-
haviour over time (as opposed to static structure).

episode [Beluga] A piece of behaviour, of finite duration, that is characterised
by a framework. An episode can combine simpler episodes, and ultimately
events. An episode is regarded as having a start time, a finish time and a
duration.

event [Beluga] A piece of behaviour that is characterised by an atomic construct
within a given framework (for example: associate event, dissociate event,
interact event).

extrinsic [Grampus|] A guarantee or reliance attributed to a role by some other
role (as opposed to intrinsic).

facet [Beluga] A grouping of the features defined by a class. Typically, such a
facet groups the features involved in a particular aspect of behaviour.

feature [Beluga] A general term for the attributes and operations defined by a
class. A feature can have a signature, which defines the type of the attribute
or the types of the parameters and result of the operation.

formation [Grampus] The combination of two or more roles into a role at a higher
level of abstraction. Reliances and guarantees at the two levels may be related
by delegation and promotion.

framework [Beluga] A characterisation of a system in terms of the classes of
objects involved and the possible histories of objects and their interactions. A
framework describes one or more constituent sets of objects, their classes, the
static structure, dynamic behaviour and invariant properties. A framework
can model a class (that is, characterising a behavioural entity at a lower level
of abstraction).

generalisation [Beluga] A class is a generalisation of another class if the former

289

class characterises a superset of the objects characterised by the latter class.
The opposite of generalisation is specialisation.

generic model A (Beluga) model that characterises a variety of different systems.

Grampus Guarantee & Rely Approach to Modelling Purpose in Systems: ORCA’s
purposive modelling language.

guarantee [Grampus] A description of a service that a role guarantees is provided.

history [Beluga| The observable behaviour of a system over some period. A com-
pound entity characterised by a framework.

information gathering The activity of eliciting and recording information by
direct observation, or from information sources (for example: the client, em-
ployees, potential users, documents).

Information Technology (IT) A term covering computer hardware and soft-
ware, communications links and input/output devices.

initiation [Beluga, dynamics| The first participation in which a constituent set is
involved.

interact event [Beluga, dynamics| An event in which the objects in a constituent
set (the source) change the state of some objects in another constituent set
(the target). The state-change that takes place may be defined to be a change
in status, a change in associations, or the result of an operation defined by
the target class.

interaction [Beluga| The relationship between two classes whereby instances of
the source class may change the state of instances of the target class. An
interaction may be defined as invoking an operation defined by the target
class.

intrinsic [Grampus| A guarantee or reliance attributed by a role to itself (as
opposed to extrinsic).

invariant [Belugal In a framework, a statement of properties that hold throughout
a history (for example: fixed structural relationships, timing constraints).

method A disciplined approach, consisting of a tailorable process, one or more
modelling languages, and heuristics.

Narwhal Not A Really Wonderfully Helpful Analysis Language: one of the many
whales that is not an ORCA modelling language.

New World The world after the implementation of some programme of change
and development (as opposed to Old World).

non-functional requirements A general term for requirements concerning secu-
rity, reliability, capacity, timing, and so on. ORCA treats all these properties
as aspects of behaviour.

object [Beluga] A behavioural entity that is characterised by a class; a unitary
(rather than compound) entity.

290 Chapter D. Glossary

Old World The world before the implementation of some programme of change
and development (as opposed to New World).

operation [Beluga] The capability of changing the state of an object in some
particular way by acting directly on that object. The operations applicable
to an object are defined by its class.

parameter [Beluga] The parameters of an operation are objects or values that
must be passed to the target object in order to invoke the operation.

participant [Beluga, dynamics| The constituent set referenced by a participation.

participation [Beluga, dynamics] The involvement of a constituent set in an
event.

pathology An identified set of factors responsible for observed problems with a
system.

prescription An identified set of changes to a system that will remedy a particular
pathology.

process [Beluga] A piece of behaviour, of indefinite duration, that is charac-
terised by a framework. A process can combine simpler processes or repeating
episodes.

process design The activity of determining and documenting the way in which
analysis or development is to be carried out.

promotion [Grampus| The arrangement whereby a reliance at one level of a for-
mation arises from one or more reliances of roles at the next lower level of
formation.

purposive entity Something in the world represented as a role in a purposive
(Grampus) model.

reliance [Grampus| A description of a service that a role requires be provided.

rich picture An informal pictorial representation of a client’s ‘world’. Typically
produced prior to modelling as part of a scoping and familiarisation activity.

role [Grampus| A description of a purposive entity in terms of its reliances and
guarantees, and co-operations with other purposive entities.

service [Grampus| An aspect of behaviour which a co-operation concerns. Guar-
antees and reliances are views of service provision.

specialisation [Beluga] A class is a specialisation of another class if the former
class characterises a subset of the objects characterised by the latter class.
The opposite of specialisation is generalisation.

state [Beluga| The state of an object consists of values for its attributes, together
with its associations with other objects (and relevant properties of associated
objects).

status [Beluga, dynamics| The states of objects in a constituent set can be distin-
guished by simple labels denoting different statuses. (For example, a library
book can be ‘in’ or ‘out’.)

291

static semantics The rules for well-formed models in a particular modelling lan-
guage (for example: use of names, structural constraints).

static structure That aspect of a system concerned with its constituent objects,
their classes, and their organisation (as opposed to dynamic behaviour).

subclass [Beluga] If a class is a specialisation of another class, the former is a
subclass of the latter.

superclass [Belugal If a class is a generalisation of another class, the former is a
superclass of the latter.

syntax A definition of the rules for expressing information using a modelling lan-
guage. The abstract syntax of a modelling language defines the underlying
constructs, while (one or more) concrete syntaxes provide ways of represent-
ing these constructs in textual or diagrammatic form.

system A part of the world that is delimited and coherent, both purposively and
behaviourally.

termination [Beluga, dynamics| The final participation in which a constituent
set is involved.

timeline [Beluga] In the diagrammatic representation of a framework, a timeline
drawn from a constituent set box can be used to order the events in which
that constituent set is a participant.

validation The activity that aims to ensure the accuracy and adequacy of models
produced within analysis.

viewpoint |[Grampus| The description of a role in terms of its intrinsic guarantees
and reliances, together with any extrinsic guarantees and reliances associated
with these (that is, attributed to other roles).

Appendix E

Bibliography

[Barden et al. 1994]
Rosalind Barden, Susan Stepney, and David Cooper. Z in Practice. BCS
Practitioners Series. Prentice Hall, 1994.

[Booch 1991]
Grady Booch. Object Oriented Design with Applications. Benjamin-
Cummings, 1991.

[Checkland & Scholes 1991]
Peter Checkland and Jim Scholes. Soft Systems Methodology in Action.
Wiley, 1991.

[Checkland 1981]
Peter Checkland. Systems Thinking, Systems Practice. Wiley, 1981.
[DeMarco 1978|

Tom DeMarco. Structured Analysis and System Specification. Yourdon
Press, Prentice-Hall, 1978.

[Gardner 1990]
Martin Gardner. Gardner’s Whys and Wherefores. Oxford University
Press, 1990.

[Goldstein & Alger 1992]
Neal Goldstein and Jeff Alger. Developing Object-Oriented Software for the
Macintosh: analysis, design and programming. Addison-Wesley, 1992.

[Harel 1987]
David Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming, 8(3):231-274, 1987.

[Jacobson 1992]
Ivar Jacobson. Object-Oriented Software Engineering: a Use Case driven
approach. Addison-Wesley, 1992.

292

293

[Martin & Odell 1992]
James Martin and James J. Odell. Object-Oriented Analysis and Design.
Prentice Hall, 1992.
[Meyer 1990]
Bertrand Meyer. Introduction to the Theory of Programming Languages.
Prentice Hall, 1990.
[Patching 1990]
David Patching. Practical Soft Systems Analysis. Pitman, 1990.
[Rumbaugh et al. 1991]
James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy,
and William Lorensen. Object-Oriented Modeling and Design. Prentice
Hall, 1991.
[Tufte 1983]
Edward R. Tufte. The Visual Display of Quantitative Information. Graph-
ics Press, 1983.
[Tufte 1990]
Edward R. Tufte. Envisioning Information. Graphics Press, 1990.

[Wirfs-Brock et al. 1990]
Rebecca J. Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing
Object-Oriented Software. Prentice Hall, 1990.

Appendix F

Index

abstract class, 128

abstract syntax, 187, 239

abstraction, 6, 31, 140, 152, 286

abstraction map, 148

access to information, 50

activity area, 60

adequate, 5

aggregation, 144, 145, 197, 260, 273,
286

Ahab, 286

alfalfa, 117

analysis, 3, 286

analysis boundary, 46, 286

analysis project, 50

animation, 224, 230

architecture, 111

assertion, 269, 281, 286

associate event, 121, 129, 266, 277,
286

association, 22, 121, 129, 261, 274,
287

attribute, 16, 125, 287

audit trail, 230

balderdash, 210

Basic Process, 5, 26, 38, 52, 157
Batching System, 207
behaviour, 6

behavioural entity, 116, 287

behavioural model, 16, 27

Beluga, 287

Birfami, 117

brocade weft, 44

bundle of prescriptions, 97

Business Process Re-engineering, 170,
191

cam shaft, 73

capacity requirements, 226
cardinality, 287

choice, 287

choice behaviour, 268, 281
class, 16, 146, 253, 270, 287
class relationship, 147
classification, 152

client, 287

client participation, 224
client—server, 7

cluster, 247, 287
co-operation, 12, 27, 55, 247
co-ordination problem, 165
completeness, 150
component, 287
composition, 136, 268, 280, 287
concrete syntax, 187, 239
concurrency, 136

configuration management, 228, 230,
287

294

constituent set, 19, 135, 259, 271, 287
contractual agreement, 50

control box, 73

control system, 74, 206

cooperation, 287

critical success factor, 174, 235
crows-foot, 16, 126, 274

delegation, 31, 57, 250, 287

deliverables, 223

dependency, 124, 137, 287

design, 288

development, 288

development constraint, 227

development objectives, 49, 89

dissociate event, 121, 129, 266, 279,
288

domain, 288

dynamic behaviour, 6, 147, 288

dynamics, 16

electromagnet, 43, 73
environment, 30

episode, 18, 136, 288

essential, 5

event, 121, 288

exclusion, 274

extensibility, 227

extrinsic, 28, 60, 164, 177, 246, 288

facet, 125, 153, 254, 288

failure rate, 268

faulty realisation, 164

feature, 16, 146, 254, 288

formal parameter, 255

formation, 59, 249, 288
framework, 32, 121, 146, 270, 288
framework reference, 264

generalisation, 128, 288
generic model, 187, 196, 289
Ginganda, 117

Grampus, 289

graphical user interface, 7
ground weft, 44

295

guarantee, 11, 55, 153, 245, 289
guarantee:, 17, 125, 254
GUIL 7

HCI, 225
heuristics, 150
history, 121

Imbirfa, 117

Imkwezi River, 117
implementation domains, 232
implementation framework, 234
inadequate resourcing, 166
inertia problem, 166
information gathering, 289
Information Technology (IT), 289
inheritance, 128, 152

initiation, 132, 265, 277, 289
interact event, 19, 130, 267, 279, 289
interaction, 262, 276, 289
intrinsic, 28, 57, 164, 246, 289
invariant, 289

invariant:, 16, 253

Invitation to Tender, 212
involvement, 265

IT support, 178

IT system, 31, 103
ItemAllocator framework, 197
iteration, 150

jacquard, 43, 73
justification, 56

kit bag, 196

lifting box, 43, 73

local definition, 264
local reference, 265, 279
loom, 43

maintainability, 227
method, 289

model, 115

Model-Views System, 207
modelling language, 5, 115

296 Chapter F. Index

monitoring and control problem, 167
mutation, 265, 277

narrow fabric loom, 43

New World, 29, 289

NIMWeC, 40

non-functional requirements, 153, 289
non-O0 methods, 235

null behaviour, 263

object, 16, 289

object life history, 133

object orientation, 7

object state, 124

Old World, 29, 54, 289

OO design method, 234
operation, 125, 290

operator interface, 109
organisational structure, 119, 171
overlap, 144, 259, 271

parallel composition, 287
parameter, 132, 290
participant, 290
participation, 19, 265, 277, 290
patch panel, 43
pathology, 28, 89, 290
performance, 110, 225
permanent, 132

pick, 43

piece, 43

portability, 227
predicate, 256
prescription, 28, 89, 290
problem statement, 8
process, 83, 136, 290
process design, 235, 290
process support, 231
product development, 190
promotion, 31, 250, 290
prototyping, 224, 225
purpose, 6, 26

purposive entity, 116, 290
purposive mismatch, 164

purposive model, 16, 27
qualifier, 12, 56, 245

rationale, 231

reliability, 110

reliability requirements, 226
reliance, 11, 55, 153, 245, 290
rely:, 125, 254

repeat, 41

requirements specification, 8, 210
reuse, 233

ribbon, 43

rich picture, 9, 45, 160, 290
role, 11, 27, 55, 245, 290
Rumbabwe, 117

scope, 4

security requirements, 226
semantics, 187

sequential composition, 137, 287
service, 27, 71, 290

service provision, 11, 55
shed, 44

shuttle, 44

signature, 254

Soft Systems Methodology, 235
software properties, 227
specialisation, 127, 152, 290
standards and statutes, 227
state, 290

state transition model, 134
statechart, 134

static semantics, 291

static structure, 147, 291
statics, 16

status, 131, 290
stereotypical object, 19, 122
Stock Control System, 207
stop behaviour, 264
structural framework, 148
subclass, 291

subrole, 13

superclass, 291

syntax, 291
system, 3, 291
system boundary, 30

tailoring, 26, 157

taxonomy, 152

temporal framework, 148
termination, 132, 265, 277, 291
terms of reference, 46

timeline, 19, 77, 121, 276, 291
timing requirements, 226
trace, 91

transient, 132, 265, 277

validation, 212, 291
viewpoint, 6, 27, 291

warp, 44
weaving frame, 73
weft, 44

297

