A Pattern Language for Scientific
Simulations

Susan Stepney

Department of Computer Science, University of York, UK

Abstract. For computer-based simulations to be scientifically
useful and scientifically credible, they need to be developed to
high standards, and argued fit-for-purpose. The CoSMoS project
has developed an approach to support such development, and
codified its approach in a pattern language. Here we overview
this pattern language, and discuss several example simulation
development patterns and antipatterns.

1 Introduction

Computer-based simulation is a key tool in many fields of scientific re-
search. In silico experiments can be used to explore and understand
complex processes, to guide and complement in vitro and in vivo exper-
iments, to suggest new hypotheses to investigate, and to predict results
where experiments are infeasible. Simulation is an attractive, accessible
tool: producing new simulations of simple systems is relatively easy. But
it is also a dangerous tool: simulations are often complex, buggy, and
difficult to relate to the real-world system.

A simulation needs to be both scientifically useful to the researcher,
and scientifically credible to third parties; it needs to have the properties
of a well-designed scientific instrument. The CoSMoS project has been
developing an approach to simulation of complex systems that supports
such development of simulations as a scientific instruments. The CoSMoS
approach emphasises two key aspects: the use of models to capture the
scientific domain and the simulation platform; and the close co-working
of scientific domain experts and simulation software engineers. This re-
quires the development of a suite of models, of the scientific domain, of
the simulation platform, and of the simulation results, in addition to the
simulation platform implementation. It also provides an approach for de-
veloping a rigorous argument of “fitness for purpose” of the simulation
for its intended task.

The CoSMoS approach is generic: it does not mandate a particular
modelling technique, or particular implementation language. What it
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does mandate is the careful and structured use of models and arguments,
to ensure that the simulation both is well-engineered, and seen to be
well-engineered. In order to help developers through this careful and
structured approach, we have developed a pattern language to help guide
development, promote good simulation engineering practice, and warn of
potential pitfalls. This paper overviews the CoSMoS pattern language.

The structure of the rest of the paper is as follows. Section 2 overviews
the CoSMoS approach and its main features and components. Section 3
overviews the pattern language approach, and defines the pattern tem-
plates used in this paper. Section 4 presents several specific example
patterns and antipatterns. Section 5 concludes.

2 Overview of the CoSMoS approach

The CoSMoS approach enables the construction and exploration of sim-
ulations for the purpose of scientific research. It has been designed to be
adaptable both to a variety of simulation problems and to changing cir-
cumstances during simulation construction and use. Application of the
approach should be tailored to suit the criticality and intended impact
of the research outcomes.

The construction and use of simulations is a necessarily interdisci-
plinary endeavour between scientists who study a particular domain (the
domain experts), and software engineers who construct simulations to fa-
cilitate the study of that domain (the developers). Together, the domain
experts and developers are involved in open-ended scientific research: the
simulations are used as a tool to support theory exploration, hypothesis
generation, and design of real-world experimentation.

To run computer simulations we need to engineer a simulation plat-
form. A properly calibrated simulation platform is the scientific instru-
ment, the basis for running multiple simulation experiments. To engineer
such a platform requires us to explicitly represent some knowledge of the
system being studied in a form that can be implemented on a computer.
This representation, the source code, is either designed manually by the
developers or automatically generated from a higher-level description.

In many existing approaches the source code is the only explicit de-
scription of the aspects of the target domain that are being simulated.
Source code contains numerous implicit assumptions (including abstrac-
tions, simplifications, axioms, idealisations, approximations) concerning
both the scientific aspects of the work, and the engineering design of the
simulation platform. Source code also contains many implementation de-
tails, which are needed to make the simulation run on a computer, but
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are not part of the underlying scientific model. Hence source code is not
a satisfactory basis for modelling.

To mitigate inappropriate assumptions in the design of simulation
platforms, and to have greater confidence that simulation results can
actually tell us something that relates to the real system being studied,
we use a series of related models to drive and describe the development
of the simulation platform and simulation results generated from its use.
Systematic development assists interaction between domain experts and
developers, and improves our confidence in, and interpretation of, the
results of simulations.

2.1 Phases
We identify three main phases in a simulation project.

Discovery, or “deciding what scientific instrument to build”. This es-
tablishes the scientific basis of the project; identifies the domain of
interest, models the domain, and sheds light on scientific questions.

Development, or “building the instrument”. This produces a simula-
tion platform to perform repeated simulation, based on the output
of discovery.

Exploration, or “using the instrument in experiments”. This uses the
simulation platform resulting from development to explore the sci-
entific questions established during discovery.

These phases are not intended to be performed purely sequentially. A
project naturally begins with a discovery phase followed by development
and then exploration. But many iterations of discovery, development and
exploration may be required to build a robust, fit for purpose instrument.
The separation into phases helps provide a focus on what particular
pieces of information are needed at each phase for each model.

Indeed, some projects might not perform all phases. A prior project
may have performed the necessary discovery, and only development and
exploration is needed (although it will be necessary to check that the
assumptions of the prior discovery phase are valid for this project). Sim-
ilarly, a suitable existing simulation platform might exist, and only the
exploration phase is followed in this project (again, it will be necessary to
check that the assumptions underlying the existing simulation platform
are valid for this project). On the other hand, it may be that only the dis-
covery phase occurs, and discovers that a simulation is not appropriate,
or not needed.



80 Susan Stepney

domain platform
model model
results simulation
model platform

Fig. 1. Relationship between simulation components; arrows represent flows
of information. These are all framed by the research context.

2.2 Models

Our simulation approach uses the following model concepts (figure 1):
domain, domain model, platform model, simulation platform, and results
model.

Each of these components has a different role to play in the building,
verifying, and use of the simulation:

Domain represents the real-world system of study.

Domain Model encapsulates understanding of appropriate aspects of
the domain. It focuses on the scientific understanding; no simulation
implementation details are considered.

Platform Model comprises design and implementation details for the
simulation platform, based on the domain model concepts.

Simulation Platform encodes the platform model into a software and
hardware platform with which simulation experiments can be per-
formed.

Results Model encapsulates the understanding of outputs and results
from simulation experiments, in domain terms, enabling comparison
with results from domain experiments.

2.3 Experiments

The models described above are used to build the simulation platform.
The platform can be thought of as a computational implementation of
the model of the real world system under study.

The simulation platform can be used to run simulation experiments
that are analogies of the real world experiments run in the domain. The
results of a simulation experiment (after suitable translation into domain
terms, and data analysis, via the results model) can be compared to the
real world experimental results (see figure 2; the later Data Dictionary
and Calibration pattern descriptions have further details).
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Fig. 2. The relationship between the various models and phases, and how the
simulation platform is used to perform simulation experiments. See text for
details.

Initial runs are used to calibrate the simulation platform. This is
needed to determine how to translate domain parameters and variables
into their corresponding platform values (for example how to translate
between real-world time, and simulated time), and how to take simula-
tion experiment raw output data and analyse it to enable comparison
with domain results.

Subsequent runs can be used to wvalidate the simulation. If these dis-
agree with domain experiments, it may be because:

— the variables and parameters are not being translated appropriately
(calibration may have overfit their values)

— there are faults in the platform model or in the simulation platform
implementation (the simulation platform has not been adequately
engineered)

— there are faults in the domain model (the science is imperfectly un-
derstood)

Once the simulation has been validated, experiment runs can be used
to make predictions about the results of domain experiments. Even in
such a case, predictions should be checked against real world data, par-
ticularly if the simulation experiment is being run outside the calibration
range of the instrument.
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2.4 Arguments

To build confidence in a particular simulation-based study, the team
needs to argue the appropriateness of the entire simulation project (in-
cluding modelling and simulator development, input data, and analysis
of results). This requires an argument, based on evidence, that the sim-
ulation platform is fit for purpose, and is being used appropriately to
perform the simulation experiments. This argument can be used to drive
the shape of the simulation development process: it is easier to argue a
system is fit for purpose if the development has been guided with such
a need in mind, and the system is more likely to be valid if it has been
structured in such a way.

We use the terms “fit for purpose” (with the meaning “good enough
to do the job it was designed to do” [26]) and “appropriate” for our ar-
gument structure. These terms emphasise that they are relative, to the
simulation purpose, and hence that there is a need to revisit arguments
should that purpose change. We choose not use more common termi-
nology such as “valid” or “correct”. These terms have implications of
being absolute terms: “this instrument is correct”, as opposed to “this
instrument is appropriate for a given purpose”. Hence these terms do
not capture the need to revisit arguments if circumstances change. Ad-
ditionally, they have implications of being either true or false: something
is either “valid” or “invalid”, whereas we want to capture a continuum
of possibilities, allowing a simulation platform to have degrees of fitness
for purpose.

An appropriateness argument is usually incomplete: its purpose is to
capture the understanding about fitness for purpose of its audience, so
that it can be referenced in future, challenged and revisited. A thorough
and fully documented argumentation exercise is unnecessary in most
situations, particularly in cases where the simulation criticality is low.

As well as documenting what you do, and arguing that it is the right
thing to do, it is important to document what you don’t do, and argue
why it would be wrong to do it. This saves much grief later in the project,
when a previously dismissed approach is retried, and the reason for its
dismissal rediscovered.

There are two approaches to arguing the fitness for purpose: retro-
spectively, after the simulation platform has been developed, or incre-
mentally, as the development of the simulation platform proceeds.

3 Patterns

As can be seen, the CoSMoS approach has many components: phases,
models, implementations, arguments. In order to help structure a sim-
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ulation project, the approach is captured in the CoSMoS pattern lan-
guage [33]. This pattern language provides the structure, detail, and ra-
tionale for developing all the necessary components, to aid the developer
in producing a high quality, scientifically viable simulation instrument.

In 1977, Christopher Alexander and his co-authors published A Pat-
tern Language [1], one in a series of books “intended to provide a com-
plete working alternative to our present ideas about architecture, build-
ing, and planning”. It is a handbook of 253 patterns, where “Each pat-
tern describes a problem which occurs over and over again in our envi-
ronment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without
ever doing it the same way twice.” [1, p.x]. The patterns describe how
quality buildings should be designed, and together provide a language
covering a wide range of spatial scales, from whole towns, through small
clusters of buildings, and individual buildings, to tiny detailing.

And that, as far as the computing community goes, would have been
that, were it not that the concept of Patterns inspired a group of software
engineers. Buildings are not the only things described by “architecture”:
software engineering uses the same word to describe its own structuring
concepts. In 1995, the so-called “Gang of Four” published Design Pat-
terns [13], which took Alexander’s concept and applied it, to produce a
catalogue of patterns found in good software architectures. Things have
not looked back: there are now analysis patterns [11], coding patterns [5],
patterns conferences and catalogues [7, 21, 27, 38|, antipatterns [6, 25],
metapatterns (patterns that describe patterns), and more (including ar-
guments that the whole software patterns community have completely
missed Alexander’s point [12]).

The initial flurry of publications may have slowed somewhat since
those early days, but Patterns are now part of the everyday culture of
software engineering. One impact of Alexander’s ideas, as adapted by the
Gang of Four, on software development has been to make it clear that
there is much more to object-oriented architecture than just the single
concept of an object. The patterns provide a simple vocabulary, letting
us all talk of the Visitor Pattern, or the Factory Pattern [13], without
having to explain what we mean.

3.1 Pattern template

It is important that a pattern is a practical, tried-and-tested solution to
a problem, not merely something the pattern writer hopes or theorises
might be a good solution.

We use the following template to document a pattern:
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Pattern Template

Intent

What the pattern is for; what its use will achieve.

Context

The place or circumstance where the pattern is applicable.

Discussion

An explanation of what the pattern provides, and how to use it. This
may include references out to other patterns (formatted as the name of
the pattern, followed by the page number where it is defined).

Summary

A pithy summary of how to achieve the pattern’s intent.

Related patterns

A list of related patterns (not otherwise mentioned in the body) and
antipatterns (common mistakes that may be made when applying this
pattern).

We refer to a pattern in the text by its name, in sans serif font: Pattern
Template. In the pattern catalogue, we also give the page number where
the referenced pattern is documented. However, in this paper, only a few
patterns are documented, so instead we provide appendix A documenting
its intent.

A pattern language provides a vocabulary for talking about a problem
situation. This is analogous to the manner in which the names of the
modelling concepts in Domain Driven Design [9] provide a vocabulary
for talking about a software system. A full pattern language is more
than just a vocabulary, however. As in Alexander’s original work [1],
a full language is morphogenetic, in that it provides a way composing
patterns to building a full solution to a problem. Patterns refer to other
patterns, and the consequences of using one pattern impact what other
patterns are relevant and applicable. Such a full pattern language is
much harder to develop; the CoSMoS pattern language provides some
such structure, but is not a fully morphogenetic language yet.
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3.2 Anti-pattern template

Patterns provide guidance on what to do. It is just as important to give
guidance on what not to do, particularly when this superficially appears
to be a good idea, a clever shortcut, a sensible compromise, or even
just normal practice. Antipatterns [6, 25] provide a means to give such
guidance. An antipattern documents a pattern of bad behaviour or an
often repeated mistake, together with a solution of what to do instead,
or how to recover from the mistake. The solution is often a pointer to
which pattern(s) to use instead.
We use the following template to document an antipattern:

Antipattern Template

Problem
What the problem is.

Context

The place or circumstance where the mistake is often made.

Discussion

Further discussion of the problem.

Solution

A pithy summary of what to do instead, or how to recover from the
mistake.

We refer to an antipattern in the text by its name, in italic sans serif
font: Antipattern Template. In the pattern catalogue, we also give the
page number where the referenced antipattern is documented. However,
in this paper, only a few antipatterns are documented, so instead we
provide appendix B documenting its problem statement.

In addition to antipatterns of the form “doing the wrong thing”,
antipatterns can often appear in pairs (for example, Analysis Paralysis
and Premature Implementation) where one of the antipatterns is “doing
too much” and its pair is “doing too little”.
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4 Example patterns and antipatterns

This section describes and discusses a few selected examples of spe-
cific patterns and antipatterns, to help illuminate both the CoSMoS
approach, and the pattern language approach. The high level Research
Context pattern is important for setting the scope of a simulation project.
The more detailed Data Dictionary and Calibration patterns discuss some
of the finer points about ensuring that any experiments performed us-
ing the simulation platform can be related to domain concepts and re-
sults. Finally, the Amateur Science and Proof by Video antipatterns warn
against some problems that can occur when the underlying scientific
purpose for building the simulations is forgotten.

4.1 High level patterns

Patterns are used to capture the overall high-level structure of the CoS-
MoS approach. The top level CoSMoS Simulation Project is summarised
as:

— carry out the Discovery Phase
— carry out the Development Phase
— carry out the Exploration Phase

As noted earlier, not all these phases need be carried out in all projects.
Variants and options allow different routes to be followed through the
pattern language.

Drilling down one level, the Discovery Phase is summarised as:

— identify the Research Context

define the Domain

build a Domain Model

— Argue Appropriate Instrument Designed

The discussion accompanying these summaries captures the concepts
overviewed in §2. These summaries, outlining what is required to achieve
the pattern’s intent, are to be read in a declarative, rather than sequential
manner. The pattern says what needs to be achieved; the subpatterns say
how to achieve each part; but there is no requirement (beyond certain
dependencies) placed on the order these things need to be done.

As an example of a full high-level pattern, we present the Research
Context.
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Research Context

Intent

Identify the overall scientific context and scope of the simulation-based
research being conducted.

Context

A component of the Discovery Phase, Development Phase, and Exploration
Phase patterns. Setting (and resetting) the scene for the whole simulation
project.

Discussion

The role of the research context is to collate and track any contextual
underpinnings of the simulation-based research, and the technical and
human limitations (resources) of the work.

The research context comprises the high-level motivations or goals
for the research use, the research questions to be addressed, hypothe-
ses, general definitions, requirements for validation and evaluation, and
success criteria (how will you know the simulation has been successful).

The scope of the research determines how the simulation results can
be interpreted and applied. Importantly, it captures any requirements for
validation and evaluation of simulation outputs. It influences the scale
and scope of the simulation itself.

Consideration should be made of the intended criticality and impact
of the simulation-based research. If these are judged to be high, then an
exploration of how the work can be validated and evaluated should be
carried out.

Determine any constraints or requirements that apply to the project.
These include the resources available (personnel and equipment), and
the timescale for completion of each phase of the project. Any other
constraints, such as necessity to publish results in a particular format
(for example, using the ODD Protocol), should be noted at this stage.
This helps ensure that later design decisions do not violate the project
constraints. Ensure that the research goals are achievable, given the con-
straints.

As information is gathered during the project, more understanding of
the domain and the research questions will be uncovered. For example,
a Prototype might indicate that a simulation of the originally required
detail is computationally infeasible. The Research Context should be
revisited between the various phases, and also at any point where major
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discoveries are made, in order to check whether the context needs to
change in light of these discoveries.

Summary

— document the research goals

— Document Assumptions relevant to the research context

— identify the team members, including the Domain Expert, the Domain
Modeller, and the Simulation Implementor, their roles, and experience

— agree the Simulation Purpose, including criticality and impact

— note the available resources, timescales, and other constraints

— determine success criteria

— revisit between phases, and at discovery points; if necessary, change
the context, and Propagate Changes

Related patterns

The research context scopes what should go in the models and simula-
tion: beware of modelling Everything but the Kitchen Sink.

It is important to identify if, when, why and how the research context
changes throughout the course of developing and using the simulation.
Beware of Moving the Goalposts.

4.2 Detailed patterns

Here we present two example related detailed patterns, that of the Data
Dictionary, and that of Calibration as mentioned in the Data Dictionary.

Data Dictionary

Intent

Define the modelling data used to build the simulation, and the exper-
imental data that is produced by domain experiments and the corre-
sponding simulation experiments.

Context

A component of the Domain Model, Platform Model, and Results Model.
There is observational data that is present in the Domain Model. It
needs to have instrumentation provided for in the Platform Model and the
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Simulation Platform, to extract the analogous data from the simulation.
This model is also used to capture the simulation outputs as part of the
Results Model.

Discussion

The Domain pattern includes identification of the data sources that pop-
ulate the Data Dictionary. There are two kinds of data in this model:

1. modelling data (parameter values): used to parameterise the various
models, by providing numbers, sizes, timescales, rates, and other
system-specific values; this usually comes from the raw data from
previous experiments, analysed and reduced using previous models
and theories.

2. experimental data: comprising the input values and output results of
the domain experiments and corresponding simulation experiments;
this is broken into three parts:

(a) Calibration data, for setting and tuning the platform parameter
values

(b) validation data, to allow the calibrated simulation platform to
be validated against the Domain Model

(c¢) unseen (predicted) data

The separate Calibration and validation data sets are analogous to
the training and test data sets used in machine learning [18]. This ap-
proach ensures that the simulation is not so tuned that it “overfits” the
calibration (training) data, but is generic enough to also fit the (unseen
during calibration) validation data.

In some systems there may be insufficient experimental data to per-
form calibration and validation. If so, an argument should be used to
demonstrate why this is not considered to be a problem.

Experimental data may be of varying quality. It may be a set of par-
ticular experimental values, with well-characterised errors and a mea-
sured statistical distribution. Or it may be more qualitative, such as
“quantity A is bigger than B”, “event C occurs before D”. Different
qualities of data will require different calibration comparisons.

If the simulation has high criticality (determined from the Research
Context), it would be reasonable to require a further set of truly unseen
validation data, to form the basis for an “acceptance test”, before the
system is used in any critical predictive capacity.

Domain values might be directly used in the platform model and sim-
ulation platform. For example, environmental parameters such as rainfall
rates in an ecological simulation, or robot sensor data in an engineering
simulation.
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Fig. 3. The components of the Data Dictionary in the Domain Model, and how
they relate to components in the Platform Model and the Results Model.

Domain model parameters and data values are not necessarily iden-
tical to the platform model parameters and data values, however. For
example, a single value in a simulation could well be a proxy for a num-
ber of values in the domain. So there needs to be a well-defined transla-
tion mapping of these values between models, captured by the “informs”
arrow in figure 3. Similarly, the data output from a simulation run, cap-
tured and analysed in the Results Model, needs to be translated into
Domain Model terms. The form of these translations is guided by the
translation of domain model concepts to platform model concepts, and
the precise structure is determined by Calibration runs. Translation back
from results model to domain model equivalents (interpreting output in
real-world terms).

Once the simulator has been calibrated and validated, it can be used
to generate data for novel scenarios, to make predictions; the domain
model can potentially be augmented with new experimental data to test
those predictions.

It is possible to extract much more information from a simulation
than from a biological experiment, say, but if it is not observable (even
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indirectly, through surrogates, or by investigating predictions) in the
domain model, it is of little use.

The necessity for suitable data in the Results Model implies require-
ments on the Platform Model: it must be of a form that can produce the
required data, and must be suitably instrumented to output the data.

This careful separation of modelling data (used to build the model)
and experimental data (to be produced by the domain experiment or
analogous simulation experiment) is important, in order not to Program
In the Answer.

Summary

— build a model of the modelling data, used to build the simulation
— build a model of the experimental data that will provide the com-
parison between the Domain Model and the Results Model; include
considerations of data quantity and quality
— determine whether the domain experimental data is of sufficient
quantity and quality to provide adequate calibration, validation (and
if critical) unseen acceptance test data sets
e cither: argue that the domain experimental data is sufficient
e or: argue why apparently insufficient data is not a problem in
this case

Related patterns

Visualisation Model, for presenting experimental output data to the user.

Calibration

Intent

Tune the Simulation Platform parameter values so that simulation results
match the calibration data provided in the Data Dictionary.

Context

A component of the Simulation Platform pattern.

Discussion

Calibration is a standard part of the manufacture and deployment of
any scientific instrument. It often refers to setting the correct zero point
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Fig. 4. Summary of the components of the data model in the Domain Model,
how they relate to components in the Platform Model and the Results Model,
and the relationship that calibration aims to achieve.

and scale. Physical scientific instruments may need to be recalibrated if
environmental conditions change (such as temperature causing expansion
of parts of the device). Simulation scientific instruments should only need
to be calibrated once before use, but do need to be recalibrated if the
simulation platform is changed in any way (see Tweaking).

Calibration is required in order to bring the Simulation Platform to
an experimentation-ready state. Uncertainties in parameters (and po-
tentially in sub-models) are addressed by exploring the parameter space
(or trying different sub-models), in order to obtain from the simulation
platform outputs in agreement with calibration data. Calibration can
be performed through simple, manual adjustments or more elaborate
fitting, e.g. GAs, gradient techniques.

The various kinds of data involved are part of the Data Dictionary.
Figure 3 shows the various data components in detail. The calibration
data is used to adjust the translations and parameter values until the
Results Model data fits the Domain Model experimental results. Figure 4
shows a summary of this, indicating what the calibration exercise affects.
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The Domain Model has input data d; (comprising both parameter
values and experimental data). A domain experiment based on this ex-
perimental data will produce raw output data. After the appropriate
scientific data analyses, this yields the domain results data, d,., conform-
ing to the Results Model.

To move to the simulated world, the domain data needs to be trans-
lated to appropriate Simulation Platform values s;, using T;s. A simula-
tion experiment given input data s; (simulation parameters and exper-
imental setup), will produce raw simulation data s,. This needs to be
translated back into domain world terms, using 754, and then similarly
analysed into the Results Model, to yield the simulation results s,..

The calibration exercise is to adjust the translation functions Ty
and Tsq to achieve d,- = s,.. The relationship between domain and sim-
ulated results need not be exact equality, but can be statistical simi-
larity, or qualitative agreement; the achievable relationship depends on
experimental data quantity and quality. The domain and simulation ex-
periments are not functions in the mathematical sense, since different
experimental runs on the “same” input data will yield different output
data, due to variation, experimental error, and stochasticity.

If the parameters are time varying, there is also the need to translate
from domain time to simulation time.

Calibration is a “data-fitting” process: translation function param-
eters are tuned so that the simulation adequately reproduces the cali-
bration data. As such, common data-fitting issues such as “overfitting”
need to be avoided. In particular, the form of the translation functions
should not be arbitrarily fitted; their design should be constrained and
guided by the kinds of changes made moving from domain to platform
models.

The translation, Ty; may be relatively trivial (not much more than
the identity transformation) if the domain and platform models are very
similar. However, it might be sophisticated, if the platform model has
introduced differences, such as surrogate entities standing in for multiple
domain entities, change of dimension, non-trivial discretisation, and so
on. The complexity of the back-translation, T4 will mirror that of Tys.
If information is lost by Tys that cannot be regained by some T4, then
the Domain Model must be defined so as not to need this information,
and the domain data analysis process will also lose it.

One technique that can be used to help calibrate surrogates is to
express parameters in terms of dimensionless quantities (for example,
the Rayleigh Number or the Reynolds Number) to minimise the effect
of unit choices and other changes.
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The calibration data has to be selected to ensure good calibration.
It should be of broad enough span that the planned Simulation Experi-
ments will not be using the Simulation Platform “out of calibration”. The
validation data should have a similar span, and be kept separate and
independent of the calibration exercise to ensure a fair validation. The
accompanying argument should cover the choice, span, and independence
of this data.

Running experiments “out of calibration” (that is, in an area of ex-
perimental space not well covered by the calibration data) should be
done with caution. One reason for doing so it to explore which might be
the most fruitful areas for further domain experiments.

Calibration might not succeed: it might not be possible to tune the
simulation parameters to make the Simulation Experiment results con-
form sufficiently to the domain experiment results. This could indicate
a problem with the Domain Model, such as missing component or mech-
anism, or with the Platform Model, such as poor discretisation, or in-
appropriate approximations. In the simplest cases, the relevant model
should be changed (for example, by making some components platform
higher fidelity to better simulate the corresponding domain components),
remembering to Propagate Changes, recalibrate, and reargue as appropri-
ate. In more extreme cases, further domain experiments or hypotheses
might be needed to gain a more adequate Domain Model.

Summary

— select the calibration and validation data
— perform calibration, to produce a calibrated Simulation Platform suit-
able for performing Simulation Experiments
e determine the translation from domain data to simulation input
data
e determine the translation from simulation output data to domain
data
e run calibration Simulation Experiments, tuning parameter values
until the platform results match domain results to the required
accuracy
e fix these tuned parameter values in the calibrated Simulation
Platform
— use the validation data to ensure that calibration has not overfitted
the Simulation Platform
— argue that the calibration is appropriate for purpose

Related patterns

Beware of Living in Flatland.
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Do not confuse calibration with Sensitivity Analysis.

With these more detailed patterns, we see that not every item in
the summary is a further, more detailed pattern. Eventually, we reach
“primitive” tasks that do not require a pattern themselves, either because
they are simple, or because they are well-known tasks for which there is
an adequate literature.

4.3 Antipatterns

Here we present two example antipatterns, Amateur Science, which can
happen at the early stages of a simulation project, and Proof by Video,
which tends to happen later on.

Amateur Science

Problem

You do not engage with a domain expert, because you think you know
the domain science well enough.

Context

Building the Domain Model; making simplifying assumptions in the Plat-
form Model; performing platform Calibration; building the Results Model;
running a Simulation Experiment.

Discussion

While modelling it can be easy to use your own understanding of the
domain, rather than referring to the domain expert or relevant literature.
This understanding is, however, nearly always oversimplified and at too
shallow a level: even if a domain looks relatively straightforward from
the outside, it can have hidden subtleties and traps. After all, if it really
were that simple, there would be no need for a simulation instrument.
If you are finding it difficult to Document Assumptions about the Do-
main or Domain Model, you may be engaged in Amateur Science. The next
step up in sophistication is to fall into the Literature Only antipattern.
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Solution

Engage with the Domain Expert, who will soon make it clear that the
real world domain “is more complicated than that”. But beware of Blind
Trust in the expert.

Proof by Video

Problem

The Visualisation Model is all there is.

Context
Building a Results Model during the Exploration Phase

Discussion

The visualised results from the simulation look superficially similar to
those from the domain (be it a static figure or an animation), and so you
judge the simulation to be a “success”. But there is no quantification of
the similarity of the results, so you cannot be sure the correspondence
is more than an optical illusion, and you cannot make any quantitative
statements or predictions.

Solution

Analyse the data from the simulation experiment, and compare the re-
sults quantitatively with domain experiment results, as specified by the
Data Dictionary. Argue how the comparison validates the simulation re-
sults.

Not to be confused with Debug By Video.

It is worthwhile to keep these antipatterns in mind, to help guard
against problems. The “related patterns” section of individual patterns
can warn of potential antipatterns relevant to that pattern (as in the
Calibration case). For an antipattern of the form “doing too little”, it can
also warn against the paired “doing too much” antipattern (as in the
Amateur Science case), and vice versa.



A Pattern Language for Scientific Simulations 97

5 Discussion and conclusions

The CoSMoS approach describes a collection of roles, artefacts, and ar-
guments that go into developing a simulation as a scientific instrument.
The pattern language outlined in this paper provides guidance for us-
ing roles and developing the artefacts and arguments. Three patterns
and two antipatterns have been given in detail, and several more have
been summarised (in the appendixes). The full pattern language [33] has
around one hundred patterns and antipatterns, covering various levels of
detail, phases of the simulation project, and variations on the approach.

Using a pattern language helps provide guidance for the simulator
developer in “bite sized” chunks, and provides a universal vocabulary
for talking about the development project. The patterns are based on
the CoSMoS project partners’ experience of developing a range of simu-
lations used as scientific instruments.
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of environment orientation [22, 23|, of metamodels [4, 24], and of the
CoSMoS workshop proceedings [34-37], is available from the CoSMoS
project website www.cosmos-research.org
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A Referenced patterns and their intent

Argue Appropriate Present the basis of consensus that the sim-
Instrument Designed ulation as a scientific or engineering instru-
ment is appropriate to its purpose and use

Calibration Tune the Simulation Platform parameter
values so that simulation results match the
calibration data provided in the Data Dic-
tionary

Data Dictionary Define the modelling data used to build the
simulation, and the experimental data that
is produced by domain experiments and the
corresponding simulation experiments

Debug By Video Use a visualisation of the simulation results
to help detect problems with the implemen-
tation

Development Phase Produce a Simulation Platform, based on the

output of Discovery Phase

Discovery Phase Establish the scientific basis of the project,
and build the Domain Model

Document Ensure assumptions are explicit and justi-

Assumptions fied, and their connotations are understood

Domain Identify the subject of scientific research:

the real-world system and the relevant in-
formation known about it

Domain Expert Identify the “owner”, or single point of con-
tact, for domain knowledge
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Domain Model

Domain Modeller

Exploration Phase

ODD protocol

Platform Model

Propagate Changes

Prototype

Research Context

Results Model

Simulation
Experiment

Sensitivity Analysis

Simulation
Implementor

Simulation Purpose

Produce an explicit description of the rele-
vant domain concepts

Identify those team members responsible
for producing and maintaining the Domain
Model

Perform Simulation Experiments to explore
the scientific questions established during
Discovery Phase

Present the simulation details in confor-
mance with the ODD protocol [19, 20]

From the Domain Model, develop a plat-
form model suitable to form the require-
ments specification for the Simulation Plat-
form

Ensure that changes in one part of the sys-
tem propagate throughout, to ensure con-
sistency

Build an executable model to explore spe-
cific domain or implementation issues

Identify the overall scientific context and
scope of the simulation-based research be-
ing conducted

Encapsulate the understanding of outputs
and results from Simulation Experiments, in
Domain Model terms

Perform an in silico experiment using the
Simulation Platform

Discover how the uncertainties in the sim-
ulation output values depend on uncertain-
ties in the input and modelling parameter
values

Identify those team members responsible
for producing and maintaining the Simula-
tion Platform

Agree the purpose for which the simulation
is being built and used, within the research
context

101
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Simulation Platform

Visualisation Model

Develop the executable simulation platform
that can be used to run the Simulation Ex-
periment

Visualise the Simulation Experiment results
of the Data Dictionary in a manner relevant
to the users

B Referenced antipatterns and their problem

statements

Amateur Science

Analysis Paralysis

Blind Trust

Everything but the
Kitchen Sink

Literature Only

Living in Flatland

Moving the Goalposts

Program In the
Answer

You do not engage with a domain expert,
because you think you know the domain sci-
ence well enough

You are spending too much time analysing
and modelling the domain, trying to get ev-
erything perfect, and never getting to the
simulation

You accept everything the Domain Expert
tells you, even outside their own expertise

You are putting irrelevant information or
detail into a model, just because you can

You take the domain literature as the only
input to the Domain Model

You are simulating a 2D space, and naively
translating the results to 3D reality

You change the Research Context (for ex-
ample, you pose a new research hypothe-
sis), without checking that the models and
validity arguments still hold

The results from the simulation are an in-
evitable consequence of the simulation pro-
gramming, not an emergent consequence of
the operation of the simulation
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Proof by Video

Premature
Implementation

Tweaking

The Visualisation Model is all there is

You start writing Simulation Platform code
before having a proper understanding of the
domain

You make a series of small, “unimportant”
changes to the working Simulation Platform




