
More Powerful Z Data Renement:

pushing the state of the art in industrial

renement

Susan Stepney1, David Cooper1, and Jim Woodcock2

1 Logica UK Ltd, Betjeman House, 104 Hills Road, Cambridge, CB2 1LQ, UK
stepneys@logica.com cooperd@logica.com

2 Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford,
OX1 3QD, UK

Jim.Woodcock@comlab.ox.ac.uk

Abstract. We have recently completed the specication and full rene-
ment proof of a large, industrial scale application. The application was
security critical, and the modelling and proof was done to increase the
client's assurance that the implemented system had no design aws with
security implications. Here we describe the application, and then dis-
cuss an essential lesson to learn concerning large proof contracts: that
one must forge a path between mathematical formality on the one hand
and practical achievement of results on the other. We present a number
of examples of such decision points, explaining the considerations that
must be made in each case.

In the course of our renement work, we discovered that the tradi-
tional Z data renement proof obligations [Spivey 1992b, section 5.6],
were not sucient to prove our renement. In particular, these obliga-
tions assume the use of a `forward' (or `downward') simulation. Here we
present a more widely applicable set of Z data renement proof obliga-
tions that we developed for and used on our project. These obligations
allow both `forward' and `backward' simulations, and also allow non-
trivial initialisation, nalisation, and input/output renement.

1 Introduction

Over the past few years we have been working with the NatWest Development
Team proving the correctness of Smartcard applications for electronic commerce.
Here we describe one of those applications. We have modelled the abstract
behaviour of the product, modelled its more concrete top level design, and have
rigorously proved the correctness of the renement from one to the other. All
work was done in Z.

In the rst half of this paper, we describe the application and the form of the
design step modelled (section 2), and discuss a number of lessons learnt during
the proof process (section 3). These lessons centre around the tension between
mathematical formality and the need to achieve a demonstrable benet to the
project.

In the second half of this paper (sections 4{7), we focus on one particular
lesson: the importance of a suciently rich renement theory. We discovered
that the traditional Z data renement proof obligations [Spivey 1992b, section
5.6] (hereafter we refer to these as `the Spivey rules') were not sucient to prove
our renement, because they make some simplications, and assume the use
of a `forward' (or `downward') simulation. We had to remove some of these
simplications, and we required the use of a `backward' simulation. We present
a more widely applicable set of Z data renement proof obligations that we
developed for and used on our project. These obligations allow both `forward'
and `backward' simulations, and also allow non-trivial initialisation, nalisation,
and input/output renement.

2 The application

NatWest Development Team had a product under development that was deeply
security critical. They were developing a Smartcard application to handle elec-
tronic commerce, and they wanted to be sure that these cards would not contain
any bugs in implementation or design that would allow them to be subverted
once in the eld. They called in Logica to develop formal models of the system
and the security policy, and to prove that the system design met all the security
properties required.

The system consists of a number of electronic purses that carry nancial
value, each hosted on a Smartcard. The purses interact with each other, via
a communication device, to exchange value. Once released into the eld, each
purse is on its own, and has to ensure the security of all its transactions without
recourse to a central controller. All the security measures have to be imple-
mented on the card, with no real-time external audit logging or monitoring.

These cards are to be sold to members of the public to enable them to carry
out fully electronic nancial transactions with other individuals, with banks,
retailers, etc. Insecurities could allow people to forge the value on their purses,
and so obtain goods for free, thereby severely impacting the commercial viability
of the project.

The task of the formal methods team was to model the system to ensure
it behaved sensibly, and prove that the system design accurately reected the
behaviour specied.

2.1 Models

We developed two key models. We wrote an abstract model, describing the
world of purses and the exchange of value through atomic transactions. This
model expressed the security properties that the cards must preserve.

We wrote a concrete model, mirroring the design of the purses, which ex-
change value using a protocol of messages.

We rigorously proved that the concrete model is a renement of the abstract.

paying purse -
atomic payment receiving purse

Fig. 1. An atomic transaction in the abstract model.

paying purse

(1) request

-
(2) payment

I

(3) acknowledgement

receiving purse

Fig. 2. Part of the n-step protocol used to implement the atomic transaction in the
concrete model.

Abstract model: The abstract model is small, simple, and easy to understand,
running to approximately 20 pages of Z and natural language commentary.

The key operation is to transfer a chosen amount of value from one purse
to another, modelled as an atomic action to decrement the value in the paying
purse and increment the value in the receiving purse (gure 1). This operation
(and all the others, too) preserves the two key system security properties:

{ no value may be created in the system
{ all value is accounted in the system (no value is lost)

The simplicity of the abstract model allows these properties to be expressed in a
way that the client can easily see are as they desired them to be. 20 pages of Z
may sound a lot for such a simple operation, but the abstract model also includes
a number of other operations around the periphery of this central behaviour, such
as card locking and query operations.

Concrete model: The concrete model is more complicated, reecting the real
system design. The key changes from the abstract are:

{ transactions are no longer atomic, but instead follow an n-step protocol
(gure 2)

{ the communication medium is insecure and unreliable
{ transaction logging is added to handle lost messages
{ no global properties: each purse has to be implementable in isolation

This model is approximately 60 pages long, including Z and natural language
commentary. Once again, there are a number of periphery operations and state
components in addition to those to model the central operation of value transfer.

The basic protocol is:

1. communication device ascertains the transaction to perform
2. receiving purse requests the transfer of an amount from the paying purse
3. paying purse sends that amount to the receiving purse
4. receiving purse sends an acknowledgement of receipt to the paying purse

The protocol, although simple in principle, is complicated by several facts. The
protocol can be stopped at any point by removal of power from a card; the
communication medium could lose a message; a wire tapper could record a
message and play it back to the same or dierent card later. In the face of all
these possible actions, the protocol must correctly implement the atomic transfer
of value as specied in the abstract model.

2.2 Proofs

All the security properties of the abstract model are functional, and so are
preserved by renement. It is well known in security circles that some properties
(such as information ow properties) are not, in general, preserved by renement.
We were saved from such complications in this case, and could concentrate just
on proving renement between the models.

The purpose of performing the proof is to greatly increase the assurance
that the chosen design (the protocol) does, indeed, behave just like the abstract,
atomic transfers. We chose to do rigorous proofs by hand, because our experience
of existing proof tools is that current tools are not yet appropriate for a task of
this size. We did, however, type-check the statements of the proof obligations
and many of the proof steps using a combination of fuzz [Spivey 1992a] and
Formaliser [Flynn et al. 1990] [Stepney]. As part of the development process, all
proofs were also independently checked by external evaluators.

The proofs of the renement obligations and the proofs of some model con-
sistency obligations take approximately 200 pages. In addition, we produced
approximately 100 pages of formal derivation in support of the underlying the-
ory.

3 Between the devil and the deep blue sea

In developing the models and the proofs we were caught between opposing forces.
On the one hand, we had a real product that was to hit the streets. We were
proving properties because the client wanted to be sure the design was secure,
not because they were a fan of obscure mathematical theories. We had to get the
job done. On the other hand, proofs would give us no added assurance if they
were faked, rushed, or so inelegant that no one would be able to check them.

The formal aspects of the development therefore plotted a course between
perfect mathematical formality on one side and pragmatic `just do it' on the
other. Our course weaved from side to side as dierent concerns appeared. At
each stage we focused on attacking the weakest part of the formal argument.
Sometimes it was lack of faith in the questions we were asking, which forced
us toward greater mathematical formality in search of an underlying theory to
support our decisions. At other times it was the need to press on and cover more
of the purse functionality, forcing us to `just do' the proofs any way we could.

It is important to see this process as a continual trade o. There is no
point in having a very sound underlying mathematical theory, but then no time
or money to apply it to the product. Equally, there is no point in proving a
theorem about the product when you have no understanding of whether it is an
appropriate theorem to be proving.

There were a number of specic examples of this trade o, discussed below.

3.1 New proof rules needed

One of the early problems with the development forced us in the direction of
formality to solve it.

We had developed an abstract model, with a single atomic transaction, and a
concrete model with the protocol steps. Intuitively it appeared that the concrete
should be a renement of the abstract, but all our attempts to prove renement
using the Spivey rules failed. Looking at why the proof failed showed that
there was a serious obstacle, not just an inability to push symbols around. The
problem centred on when non-determinism was resolved: the concrete protocol
resolved the non-determinism inherent in the system later than did the abstract
atomic transaction. The rules of renement that we were trying to use allow non-
determinism to be resolved earlier in the concrete, but not later. (See section 4.2
for more detail.)

We made some brief attempts to `just do it' anyway, trying to modify the
models to resolve the non-determinism dierently, and even trying to prove
something other than renement. But it became clear that a more fundamental
look at the proof rules held better hope for a solution.

There is a larger, more general theory of renement, of which the Spivey
rules are a specic instance, the forward proof rules. The more general theory
includes another set of rules, the backward proof rules, which cater for the form
of non-determinism resolution we needed. We needed to recast these rules from
their relational form into the Z world of schemas, state transitions, inputs and
outputs. (We have subsequently published a simplied form of these newly
derived Z backwards rules in [Woodcock & Davies 1996]. See section 6 for more
details of the derivation of the full proof rules we derived, including input-output
renement.)

Armed with an early version of the new rules, we were able to carry out
our proofs successfully. However, as we did so, we found the new rules seemed
too good, making our proofs too easy. We started investigating toy examples,
and found we could prove renement of patently non-rening systems! Rushing

back in the direction of mathematical formality, we discovered that yes, indeed,
these early proof rules were unsound, and some other aspects that we had origi-
nally thought unnecessary (because they were unnecessary in the forward rules)
needed to be brought in. Some more working to put all the proof rules on a
sound footing, doing all the derivations in detail, gave us the condence to go
back to our models, knowing that we were now working in the right context.

So, the path we took in this case was

1. `just did it' with the theory we had until the theory (the proof rules available
to us at the time) failed us

2. moved toward formality to nd a larger, more general theory that included
some new tools (backward rules) to help

3. used the new rules until doubt arose
4. investigated the problems (toy examples), then went back to correct
5. tightening of the theory
6. use the new theory with condence

3.2 Problems with generic proofs

Sometimes doing things elegantly costs too much.
We had rst modelled and proved a reduced version of the system, and were

now expanding it to incorporate the full richness of the actual system. As we
added one particular feature, we noticed that it had a similar mathematical
structure to a feature already modelled and proved. The existing feature used
integer addition as a binary operator, and the new feature used max , but the
proofs seemed to rely only on properties of addition that are shared by max

(such as commutativity).
Rather than just blindly re-doing all the proofs with the new feature, we

decided to generalise the existing proof, and then separately instantiate it, once
for addition and once for max . This should have cut down on the amount of
work (one set of proofs rather than two) and made it easier for the evaluators
to understand (understand one general proof, rather than two `similar' ones).

As most people who have worked on automated theorem provers probably
know, generalising proofs is much harder than it looks. For example, addition
has an inverse, and we had used subtraction to simplify our original proof, even
though it was not necessary to do so. To generalise the proof so that it was also
applicable to an operator like max without an inverse was possible, but made
the proof more complicated.

In other places we made use of properties of addition that are shared by max ,
but not by all binary operators. Thus we had to decide what the key property
was so that the scope of the generality of the proof could be dened.

All this meant our general proof was becoming signicantly longer than the
original, and very obscure. There seemed to be no intuitive peg on which to hang
our understanding | we could read the proof only as a series of meaningless
symbols.

Although we saw no theoretical reason why a general proof would not be
possible, we abandoned the attempt. We needed a proof of both features: we
had one already for addition, and our work on the general proof had shown how
the proof of the max feature would go. We therefore pressed ahead on a specic
proof for the second feature, nishing it in less time than it would have taken
us to nish the general proof and two instantiations. Furthermore, we found
the proofs actually easier to understand as specics than as instantiations of the
general proof.

We believe it would have been possible to complete the general proof. It may
well be possible to complete it more elegantly, and produce instantiations that
are intuitively understandable. But in this case we could gain the benet from
the proof (increased assurance) for less eort by doing two, similar, repeated
proofs.

Our weaving path was

1. do a specic proof
2. notice the scope for generality and elegance, and start a general proof
3. abandon general proof when cost grows too large
4. use the experience gained doing the general proof to `just do' two specic

proofs

3.3 No need to justify a working strategy

Even if you think there may be a better solution around the corner, if you have a
solution that works, that may be good enough. This is a lesson hardest to accept
if you are an academic at heart. The nature of academic research encourages
reworking and revisiting solutions to nd dierent insights. But in an industrial
context, the benet of such further work may not be worth the cost.

We had been using our backward proof rules to prove the renement of the
abstract model by the concrete model. We were successful with some proofs, but
there were always some proofs at which we failed. We modied the models, often
making the failed proofs possible, but then invalidating the previously successful
ones.

The problem centred on the use of the backward proof rules. In the more
conventional forward Spivey proof rules you attempt to show that there is a
reasonable abstract state that an operation can take you to, given that you have
an abstract state to start from and a concrete operation that occurs. In the
backward rules, you instead attempt to show that there is a reasonable abstract
state that an operation can take you from, given that you have an abstract state
to go to and a concrete operation that occurs. This requires you to reason about
the properties of a previous state.

Our model makes such reasoning dicult, because as the protocol progresses
information that is no longer needed is lost from the state, and it is precisely
this information that is needed in order to construct the prior abstract state.
We could not include this extra information in the concrete model because it

abstract

6

?

cannot prove
renement

unconstrained
concrete

?

can implement
directly

abstract

6

?

can prove
renement

constrained
concrete

?

cannot implement
directly

Fig. 3. We found that we could implement, but not prove, or that we could prove, but
not implement.

relates to global properties of a number of purses, which cannot be implemented
by a set of independent purses.

However, we knew that these global properties do hold: the protocol forces
them to hold. It is just that a model that expresses them explicitly cannot
be implemented appropriately. If these constraints are in the concrete model,
the renement can be proved, but the model does not match the implementa-
tion. If these constraints are not in the concrete model, the model matches the
implementation, but we cannot prove the renement (gure 3).

The solution was to add the constraints in an intermediate model, and then
do an additional renement to remove them (gure 4) from the nal model.

This second renement could be performed using the conventional forward
rules. This we did, and succeeded in proving both renements. This issue drove
the entire structure of the development.

This approach raised a question: does there exist a single renement that
could do the job of these two? Although this question is interesting, as far as our
project in hand was concerned it was irrelevant. We had a solution that worked
(an intermediate model, with two renements) that was mathematically sound.
Whether or not two renements are necessary, in this case two renements are
certainly sucient. We ignored the forces pulling us toward mathematical el-
egance, and pressed on using a solution that worked, even though we did not
have a theoretical justication for its necessity.

3.4 Rework repaid in easier understanding

In contrast to the previous two examples, we also found that sometimes rework-
ing a successful solution more elegantly and generally can be worthwhile.

abstract

6

?

can prove
renement

constrained
concrete

6

?

can prove
renement

unconstrained
concrete

?

can implement
directly

Fig. 4. We proved the renement in two steps.

We developed our models and proofs in two phases: once concentrating on
just the key central functionality, and then again covering all the functionality.
Having done some parts of the derivations repeatedly for dierent but similar
operations, when we came to the rework we extracted the similar parts, gener-
alised, and dened a number of useful lemmas. These we used to simplify some
of the derivations for the new operations.

While generalising the derivations, we noticed that those operations that
aborted the current transaction did not t into the mould of the generalised
derivation. However, if the aborting part were extracted, the remaining piece of
the operation did t. This restructuring made the general derivation more widely
applicable, and signicantly simplied the proofs of the aborting operations.

So here our path was

1. develop complete models and proof for a subset of the system (just do it)

2. identify commonalities (mathematical elegance)

3. generalise

4. expand with additional functionality

3.5 Hand-proof delivered the goods

Given a client who wants to \increase assurance through formal methods", one
has to use the tools to hand and supply the greatest possible increase in assurance
at acceptable cost. It is not necessary to have every mathematical i dotted and
t crossed before you can help real projects.

We decided to do all our proofs by hand, with no machine checking of
the proof steps (although we did type-check all the mathematical statements).
There are a number of good Z theorem provers/checkers around, such as Z/Eves
[Meisels & Saaltink 1997], ProofPower [King & Arthan 1996], and CADi [Toyn
1996], but we believe the extra cost of doing proof at the level of rigour enforced
by a theorem prover/checker far outweighs the benets of greater assurance in
this case. We have done some small scale investigations of the cost of using
CADi and Z/Eves for our proofs that support this view.

However, it is likely that if a set of proofs need to be maintained in the face
of continuing changes to a model, tool support may become more important.

3.6 Presentation is important

Having a mathematically correct proof is insucient if it is presented too badly
to be read and understood by a reviewer.

Part of the development process imposed by the client includes detailed ex-
ternal evaluation of the formal models and proofs. These evaluators have to be
able to read a proof and both understand it intuitively and check it line by line
for correctness. To ensure readability we developed a number of presentation
styles.

We started all proofs with a clear, mathematical statement of the theorem
to be proved, expressed in the conventional hypothesis ` conclusion style, where
hypothesis is a declaration and conclusion is a predicate. This rigour ensured
that we knew clearly what was to be proved, and often prompted us to ask why
we were proving this. We also described the theorem in English, explaining what
property was being proved, and explaining why it was reasonable to believe that
it was true.

Many proofs were broken down into a number of subsections, and in these
cases we stated the subtheorems themselves formally and, where possible, intu-
itively justied them. To make it easy to follow this nesting of proofs, when a
subtheorem was proved, we added an end marker 2 labelled with the section
number, to help bracket the subproof. For example,

3.1 theorem ...
proof steps, leading to two things to prove . . .
3.1.1 rst sub-theorem

proof of rst sub-theorem
2 3.1.1

3.1.2 second sub-theorem
proof of second sub-theorem

2 3.1.2
tidy up of whole proof . . .
2 3.1

Lemmas that were of a more general applicability were extracted into an ap-
pendix, so they could be read in isolation.

We wrote the proofs themselves in one of two styles: either rigorously step by
step, with each step labelled with an inference rule; or more free-owing English
with the key points expressed mathematically.

We used the rigorous presentation when symbol manipulation was most im-
portant, which often occurred when large schemas were being restructured and
manipulated to extract some key component. This was the predominant style,
and we used it whenever we were in doubt of the validity of our arguments.

The more free-owing presentation was appropriate when there was little
doubt of the validity of the argument, but the details would be long and cum-
bersome.

A formalist would demand all arguments to be presented step-by-step, with
each step labelled. But with limited resources, it is sometimes better to tighten
up the rigour of some other part (such as the derivation of the proof rules them-
selves) than spend the precious resource expanding \some set-theoretic manip-
ulations can show . . . " in detail.

4 A closer look at the need for new proof rules

As explained earlier (section 3.1), in the course of our renement work it became
apparent to us that the traditional Z data renement proof obligations [Spivey
1992b, section 5.6] were insucient for our purpose. We were forced back to
rst principles, to derive suitable new proof obligations.

Here we present the two sets of Z data renement proof obligations we derived
for our work, each of which are more more widely applicable than the Spivey
rules. These new rules cover both `forward' and `backward' simulations, allow
non-trivial initialisation and nalisation steps, and provide the ability to perform
input/output renement.

In the following sections we describe which assumptions used to derive the
traditional rules we relaxed, and the new proof obligations we derived1.

4.1 Traditional Z data renement proof obligations { recap

The traditional Z data renement proof obligations are given in [Spivey 1992b,
section 5.6]. To recap, they comprise the three following proof obligations:

initialisation: for each concrete initial state, there must be a corresponding
abstract initial state.

CInit ` 9 A0 AInit ^ R0

1 We use Standard Z [Z Standard 1995] syntax in our small illustrative examples, and
note where this diers from the Z Reference Manual [Spivey 1992b] syntax.

applicability: whenever it is possible to perform the abstract operation AOp,
it must be possible to perform the concrete operation COp on the corresponding
concrete state (also known as `widening the precondition').

R; pre AOp ` pre COp

correctness: for any abstract state A within the precondition of AOp, corre-
sponding to a before state C (which, by applicability, is within the precondition
of COp), then, corresponding to any C 0 reachable from C by COp, there must
be an abstract state A0 related to A by AOp.

R; COp j pre AOp ` 9 A0 AOp ^ R0

4.2 Resolution of non-determinism

The Spivey rules are applicable when the concrete model resolves any remaining
non-determinism sooner (or at the same point as) the abstract model. However,
it is possible to develop models where concrete non-determinism is resolved later
than the abstract non-determinism.

For example, consider the case of two booking oces [Woodcock & Davies
1996, section 17.3]. The Apollo theatre, when you book a ticket, chooses a
particular ticket to give you, and when you arrive at the theatre, gives you that
ticket. It non-deterministically chooses which particular ticket you get early

in the process. The Phoenix cinema, on the other hand, when you book a
ticket, merely notes that yet another ticket has been booked; only when you
arrive at the cinema does it choose which particular ticket to give you. It non-
deterministically chooses which particular ticket you get late in the process.
These two systems are behaviourally equivalent | so each is a renement of the
other | but with the Spivey rules we can prove only that (early) Apollo renes
(late) Phoenix, not that Phoenix renes Apollo.

Our own application was another, much larger, example of later resolu-
tion. We had an abstract transaction that atomically either succeeded or failed,
straight away. The concrete model implemented the transaction as an n-step
protocol, and whether the transaction succeeded or failed could not be deter-
mined until late in the protocol.

In all such later-resolution cases, the Spivey rules cannot prove the rene-
ment. To see why this is, consider gure 5. This shows a non-deterministic
abstract operation AOp0, followed by a deterministic one AOp1. In our applica-
tion, AOp0 is the initial atomic transaction that non-deterministically succeeds
or aborts, and AOp1 is essentially `nothing happening', A. AOp0 is rened
by a deterministic concrete operation COp0, and AOp1 is rened by a non-
deterministic concrete operation COp1. In our application, COp0 is the rst
always successful request step of the protocol, and COp1 is the later payment

step that either succeeds or aborts.
By the time both operations have been performed, the non-determinism has

been resolved both concretely and abstractly, and so the retrieve relation relates

A1

A0

R

C0
COp0

COp1

AOp1
AOp0

C12

A2 A2'

C2'

A1'

C1'

Fig. 5. A case not provable by the Spivey rules: non-determinism resolved later in the
concrete than in the abstract.

A0

1
and C 0

1
, and separately relates A0

2
and C 0

2
. Because the rst operation can

result in one of two abstract states, A1 and A2, but only a single concrete state,
C12, the retrieve relation has to relate C12 to both A1 and A2.

Now consider what happens when the Spivey rule for correctness is applied
to the second operation, AOp1 and COp1:

for any abstract state A within the precondition of AOp (here consider
the state A1), corresponding to a before state C (which is C12) then,

corresponding to any C 0 reachable from C by COp (let's consider C 0

2
),

there must be an abstract state A0 related to A by AOp.

But there is no such state A0 that retrieves from state C 0
2 whilst being reachable

from state A1 by the abstract operation. The proof fails.
It turns out that the Spivey rules are sucient | anything they can prove is

indeed a renement | but not necessary | there are some cases of renement
that cannot be proved using them. We discovered that our own application fell
into this second class, and so we needed to understand renement better in order
to derive renement proof obligations that were sucient for our case.

5 What is renement?

There are some specications that we intuitively feel are renements, but which
we cannot prove using the Spivey rules as they stand. So, what is a renement?

5.1 A relational model

[He et al. 1986] give a relational denition of renement. A `global-to-global'
relation can be implemented by moving into some abstract world (by a process
called initialisation), performing a sequence of abstract operations, then moving

gg

cc cop

a aaop

ai

ci

r r

af

cf

Fig. 6. A relational view of renement (after [He et al. 1986]). The global-to-global
relation g # g can be implemented abstractly, by initialisation ai , operation(s) aop
and nalisation af . The corresponding concrete relation, dened by ci , cop, and cf ,
renes the abstract precisely when it is a subset of the abstract relation.

back into the global world (called nalisation). If another implementation (via
a concrete world) denes a relation that is a subset of the one obtained via
the abstract world, then the concrete implementation renes the abstract one.
(We refer the reader to the original paper for precise denitions of these terms,
sketched in gure 6.)

This subsetting requirement formally captures the notion of `rening away
non-determinism'. The [He et al. 1986] denitions require all the various global,
abstract and concrete operations to be total, so there is no danger of subsetting
all the way to the empty set.

We can now ask the question, `what is a renement?' independent of the
particular choice of renement proof obligations. Renement, in this relational
world, is simply subsetting.

Reasoning over the whole global relation, which itself is dened in terms of
sequences of operations (`programs' in the terminology of [He et al. 1986]) is
dicult. It is much more tractable to reason over individual operations, and [He
et al. 1986] give two dierent sucient conditions for a collection of concrete
operations to be a renement of a collection of abstract operations in this re-
lational world. The Spivey rules are derived from one of these conditions, that
for `forward simulation'. However, the other condition, for `backward simula-
tion', is the one appropriate for proving renements with a later resolution of
non-determinism.

5.2 Casting to the Z world

Now that we know what a renement is in the relational model (expressed in
terms of total operations, with no concept of inputs or outputs), we need to
convert to the Z world (of partial operations, inputs, and outputs), and thereby
translate the relational renement obligations into corresponding Z ones.

Making certain simplifying assumptions (see section 6), and translating one of
the [He et al. 1986] conditions, that of `forward' simulation, results in the Spivey
rules. If we make the same simplifying assumptions, and translate the other

O

S

hi?i I

-
op

O ho!i

S 0

I

Fig. 7. Embedding a Z-like state S , input sequence I and output sequence O in the
relational state, and imposing a computational model on the behaviour of I and O.

`backward' simulation condition, we get the analogous `backward' Z renement
rules. (We have since published these simplied backward rules in [Woodcock
& Davies 1996, section 17.3].) If, further, we relax some of the simplifying
assumptions, we get the more powerful renement rules (see section 6) that we
found necessary for our particular application.

The new (simplied) backward rules allow us to prove that the situation in
gure 5 is indeed a renement. Formally, we have to show:

COp; R0 ` 9 A R ^ AOp

Informally:

for any abstract state A0 (consider state A0
2) corresponding to the after

state C 0 (which is state C 0
2) reached from C (which here is state C12)

by the concrete operation, there must be an abstract state A (there is!
| it is state A2) that both corresponds to C and is related to A0 by the

abstract operation.

6 Relaxing the simplifying assumptions

Now that we have the wider theory from [He et al. 1986] available to us, we can
see some of the other assumptions (beyond the choice of forward simulation)
that go into deriving the Spivey rules, and consider relaxing those assumptions,
too. The proof obligations that result from relaxing some of these assumptions
are given in section 7.

6.1 Computational model

The wider theoretical model of [He et al. 1986] is purely relational; it has no
concept of inputs or outputs. When moving to a Z model, the relational state
needs to be provided with some internal structure, to give it a Z-like state along
with (sequences of) inputs and outputs.

A computational model is then imposed, determining restrictions on how
these input and output sequences can be used in operations. We choose a nat-
ural one (others are possible): each operation consumes the head of the input

sequence, and appends an output to the output sequence (see gure 7). Further-
more, we require the operation itself to depend only on this input and output
(and the state): it is independent of the `past outputs' and `future inputs' se-
quences.

6.2 Observability and Finalisation

It is well known that the renements of a specication provable using the Spivey
rules depend on what parts of the state are `observed' by outputs. For example,
if a Stack specication includes no operation such as Top to observe the state,
then bizarre specications | such as ones that randomly change the values, or
throw them away altogether | can be proved to be renements. In the trivial
case where all outputs are indistinguishable then any specication can rene
any other (with identically named operations), by chosing the chaotic retrieve2

R == [A; C j true].
In [He et al. 1986]'s relational model, the nalisation process captures what

is observable. When deriving the Spivey rules, the only part of the relational
state that is nalised is the output sequence. This is why, with those rules, the
outputs provide the only way of observing the state.

In an abstract model, state is usually present because it is felt to be needed
to capture the required abstract properties. It is certainly possible to have a
`large' abstract state that is not observed, in order to ease the statement of
these properties. (For example, consider a `Parity' specication that keeps the
entire sequence of input bits in the abstract state, but where only the parity
of this sequence is observed.) Providing `observation' operations that merely
observe the state may well pollute the model, especially if these operations do
not map naturally onto any concrete operation. In such cases, a cleaner model
may be possible by nalising (part of) the state to the relevant global state, and
thus observing it directly.

In our own application, our abstract state includes a component, sink , that
records the quantity of the value that has become unavailable to the rest of the
system. A property of sink is quoted as a security requirement: the total value
still available to the system, plus that in the sink , is required to be constant.
The concrete model, following the actual implementation, has the corresponding
information distributed amongst the collection of automonous purses, in various
log les. The retrieve relation relates all these log les in a subtle way to the
abstract sink . We showed that the distributed log les implement the abstract
sink , and thereby satisfy the required security property. There is a concrete
operation that observes the contents of a single purse's log le, but we did
not wish to clutter our model with a concrete operation that corresponds to
observing all the log les simultaneously, which would correspond to observing
the abstract sink . So, instead of observing this component with an output, we
nalise the sink component of the abstract state, and the log components of the
concrete state, and discharge a nalisation proof obligation.

2 In Standard Z [Z Standard 1995] notation, schemas are introduced using `==', rather
than ` b='.

6.3 Input/output renement

With the Spivey rules, the concrete and abstract (and global) models use the
same input and output state; only the Z-state part of the relational state is
allowed to dier. Initialisation of the inputs (how the inputs in the abstract
or concrete model are related to the global ones) is a trivial identity, and the
input initialisation proof obligation vanishes, leaving only the state initialisation
rule. Similarly, nalisation of the outputs is a trivial identity, and nalisation
of the state throws it all away, and so the entire nalisation proof obligation
disappears.

As explained above, we relaxed the assumption about nalising the state to
nothing, to allow non-trivial state nalisation. We also relaxed the assumption
that the inputs and outputs are the same in all models, allowing the concrete
and abstract inputs and outputs to dier (from each other, and from the global
ones, too). So now we can rene our input and output data types from more
abstract to more concrete representations, in the same way that we have always
been able to rene state. This requires an additional denition of how inputs
are initialised and how outputs are nalised.

In the relational world, the retrieve relates the entire abstract and concrete
state (including inputs and outputs as well as the Z-like state). With the Spivey
rules, where the input and output parts are the same in the concrete and abstract
models, there is no need to retrieve them (the retrieve is just the identity).
Relaxing this assumption of equality, we now have to provide a part of the
retrieve relation to map concrete inputs and outputs to abstract ones.

We choose to require that the complete retrieve be written as three indepen-
dent parts: one between inputs, one between outputs, and one between Z-states.
This does restrict the kinds of renements that are provable. For example,
anything observed by nalisation abstractly has to be observed by nalisation
concretely; the requirement of independence of the retrieves means that we can-
not move the observation into an output. However, we found that the resulting
proof obligations, even with this restriction, are suciently powerful to enable
us to prove our own application, and so any more general rules would have been
overly complicated.

As an example of output renement, consider a global model of trac lights
where the output is the current colour state, represented as an element of an
enumerated (free) type; the abstract model could use natural numbers to rep-
resent these colours, and the concrete model could say how these numbers are
represented as a sequence of bits.

LIGHT ::= red j amber j green

aLight == f0; 1; 2g

cLight == fh0; 0i; h0; 1i; h1; 0ig

The global model talks in terms of global outputs g ! : LIGHT , the abstract
model in terms of a! : aLight , and the concrete model in terms of c! : cLight .

The abstract output nalisation denes how the abstract numbers represent
the global colours:

AFin!

a! : aLight

g ! : LIGHT

g ! = red) a! = 0

g ! = amber) a! = 1

g ! = green) a! = 2

We can write this schema equivalently as3:

AFin! == fg ! == red ; a! == 0; g ! == amber ; a! == 1;

g ! == green; a! == 2g

The concrete output nalisation denes how the concrete bitstreams represent
the global colours:

CFin! == fg ! == red ; c! == h0; 0i; g ! == amber ; c! == h0; 1i;

g ! == green; c! == h1; 0ig

The output retrieve denes how the concrete bitstreams represent the abstract
numbers:

R! == fa! == 0; c! == h0; 0i; a! == 1; c! == h0; 1i;

a! == 2; c! == h1; 0ig

We nd we need to include the output retrieve in each operation proof, and do a
new output nalisation proof, in order to demonstrate renement (see section 7).

We need to be a little careful about interpreting outputs when we have a
non-trivial nalisation. It is not the raw output itself (a bitstream in the above
example) that is observed, but rather that output as viewed through nalisa-

tion. So when interpreting the above specication, we do not `observe' h0; 0i,
we actually `observe' red . In this example, this does not cause too much of a
problem, because there is a bijection between each of the global, abstract and
concrete outputs. However, it is possible to write specications that `confuse' or
`merge' apparently dierent abstract (or concrete) outputs to the same global
one. For example, consider the case where the `Parity' specication mentioned
in section 6.2 is modied so that the abstract state (a sequence of bits) is appar-
ently `observed' by an abstract output comprising just this sequence, but where
the abstract output is nalised to a global output comprising just the parity of
the sequence. Then in fact only the parity has truly been observed (as can be
demonstrated by rening the specication to a concrete one that outputs just

3 by using Standard Z's [Z Standard 1995] explicit binding construction notation

the parity). So, when reading a specication the output nalisation has to be
read along with the operation denition to understand precisely what is being
observed.

Similar remarks apply to input initialisation.

In our own application, we performed input renement. The abstract op-
eration inputs a simple go to perform the transaction; the various steps in the
concrete protocol input diering protocol messages.

6.4 State initialisation

With the Spivey rules, there is no Z-like state component in the global state, so
state initialisation is independent of the global state. We relax this constraint
and allow the global state to have a non-trivial Z-like component, and initiali-
sation to depend on this value of the global state. This allows initial states to
be set up with particular state values.

It is possible to model such initialisation by putting the system into some
initial state unconstrained by the global state, then performing a state transition,
using some special input, to `initialise' it. But this is rather clumsy, and can
pollute the model with a state component to capture whether the state has been
initialised yet. More general initialisation permits cleaner models.

Also, having a specic initialisation allows the before global state to be re-
lated to the nal global state, which means it is possible to express `global-to-
global' properties, for example, that a certain quantity is preserved.

In our own application, we found we needed to perform an initialisation
based on the global state, because the actual devices entered the modelled world
already having particular values for some of their components (for example,
unique identication number).

6.5 Totalisation

The wider theory is cast in terms of total operations. When moving to a Z
world, we have to decide how to treat Z's partial operations. We do this by
choosing a totalisation: we assume the operation is chaotic outside its precon-
dition, and moreover, that there is some `bottom' state (representing a broken
system), which is itself propagated appropriately chaotically to ensure that bro-
ken systems stay broken. (We require initialisation and nalisation to be total.)

Such a choice of operation totalisation corresponds to one common interpre-
tation of the meaning of a Z operation outside its precondition: that `anything
can happen'. It also explains why renement allows widening the precondition:
it is simply a reduction of non-determinism, from completely chaotic to some-
thing rather less chaotic.

This chaotic totalisation corresponds to replacing a partial operation relation

op : X # X with its totalised counterpart

op = (X ? X ?) op, where X ?

is the set X augmented with an extra `bottom' state. Other totalisations are

possible, for example:

op = (X ? f?g) op

op = id X ? op

Other totalisations correspond to other interpretations of the meaning of a Z
operation outside its precondition, and result in dierent sets of renement proof
obligations. The most common is the `ring condition' interpretation [Josephs
1991] [Strulo 1995], that nothing can happen outside the precondition.

So, the choice of a particular set of renement proof obligations determines
how a Z `state and operations'-style specication should be interpreted.

In our own application, the traditional `anything can happen' totalisation
was appropriate for our model, so we did not need to derive more exotic rules.

7 Resulting data renement proof obligations

The simplifying assumptions used to derive the Spivey rules from the relational
renement model are:

{ The global relational state comprises only inputs and outputs. There is no
Z-like state to initialise from, so state initialisation does not consider it, or
nalise to, so state nalisation `throws it all away'.

{ The global, abstract, and concrete inputs and outputs are the same: the
input initialisation, the output nalisation, and the respective retrieves, are
the identity relation.

{ Totalisation gives `anything can happen' outside the precondition.
{ The `forward simulation' choice is made.

We have relaxed these assumptions in the following ways, to derive more widely
applicable Z data renement proof obligations:

{ The global state can have a Z-like state component, and so the initial state
can be related to the global one.

{ State nalisation need not `throw it all away'; state components can be
observed without using outputs.

{ Abstract and concrete inputs and outputs can dier, and are related by an
appropriate retrieve; so i/o can be rened.

{ Totalisation gives `anything can happen' outside the precondition (as for
the Spivey rules). The more widely applicable initialisation and nalisation
steps are required to be total.

{ Both the `forward' and `backward' choices are made.

These more relaxed choices lead to the more widely applicable Z data renement
proof obligations, given in sections 7.2 (forward rules) and 7.3 (backward rules).

7.1 Notation

In this section we introduce the various schemas used to dene the renement
proof obligations in the following sections.

We use schemas to capture the global state G , global inputs G? and global
outputs G!. (We choose to bundle up our inputs and outputs each into a schema,
to avoid polluting the description with their explicit types.)

The abstract model has abstract state A, inputs A? and outputs A!. We
initialise from the global to the abstract state with

AInit == [G ; A0 j : : :]

We initialise from global inputs to abstract inputs with

AInit? == [G?; A? j : : :]

The abstract operation is

AOp == [A; A?; A! j : : :]

and the abstract state nalisation and output nalisations are

AFin == [A; G 0 j : : :]

AFin! == [A!; G! j : : :]

The concrete model has concrete state C , inputs C? and outputs C!. The cor-
responding concrete initialisations, operation, and nalisations are

CInit == [G ; C 0 j : : :]

CInit? == [G?; C? j : : :]

COp == [C ; C?; C! j : : :]

CFin == [C ; G 0 j : : :]

CFin! == [C!; G! j : : :]

The concrete and abstract states, inputs and outputs are related by the retrieve
relations:

R == [A; C j : : :]

R? == [A?; C? j : : :]

R! == [A!; C! j : : :]

R'
R!

R
R!

C'; C! C; C!C; C?C'; C?

A'; A! A; A!A; A?A'; A?

G
G?

G'
G!

R
R?

R'
R?

Correctness

C COp

AOp

Initialisation

AInit

CInit

Finalisation

AFin

CFin

Fig. 8. The more powerful forward rules. The solid lines and states represent the
hypothesised conditions; the dashed lines and circled states have to be proved to exist.

7.2 Forward rules

The forward rules are sketched in gure 8.

initialisation: for each concrete initial state obtained from some global state
(and there must always be at least one), there must be a corresponding abstract
initial state obtained from the same global state.

G ` pre CInit

CInit ` 9 A0 AInit ^ R0

For each concrete input obtained from some global input (and there must always
be at least one), there must be a corresponding abstract input obtained from
the same global input.

G ` pre CInit?

CInit? ` 9 A? AInit? ^ R?

applicability: whenever it is possible to perform the abstract operation AOp,
it must be possible to perform the concrete operation COp on the corresponding
concrete state and concrete input.

R; R? j pre AOp ` pre COp

correctness: whenever it is possible to perform the abstract operation, and the
corresponding concrete operation can result in state C 0 and output C!, then it
must be possible to nd an abstract state A0 and output A!, corresponding to
that C 0 and C!, that is the result of performing the abstract operation.

R; R?; COp j pre AOp ` 9 A0; A! AOp ^ R0 ^ R!

Correctness

R'
R!

R
R!

C'; C! C; C!C; C?C'; C? COp

A'; A! A; A!A; A?A'; A? AOp

Initialisation

AInit

G
G?

G'
G!

CInit

R
R?

R'
R?

Finalisation

AFin

CFin

Fig. 9. The more powerful backward rules. The solid lines and states represent the
hypothesised conditions; the dashed lines and circled states have to be proved to exist.

nalisation: for each concrete state that corresponds to some abstract state,
where the concrete state nalises to global state G (and it must nalise), the
corresponding abstract state must nalise to the same global state.

R ` pre CFin

R; CFin ` AFin

For each concrete output that corresponds to some abstract output, where the
concrete output nalises to global output G! (and it must nalise), the corre-
sponding abstract output must nalise to the same global output.

R! ` pre CFin!

R!; CFin! ` AFin!

7.3 Backward rules

The backward rules are sketched in gure 9.

initialisation: for each concrete initial state obtained from some global state,
that has a corresponding abstract state, that abstract state must be obtainable
from the same global state.

G ` pre CInit

CInit ; R0 ` AInit

For each concrete input obtained from some global input, that has a correspond-
ing abstract input, that abstract input must be obtainable from the same global
input.

G? ` pre CInit?

CInit?; R? ` AInit?

applicability: whenever it is possible to perform the abstract operation from
all the abstract states and inputs corresponding to a chosen concrete state and
input, then it must be possible to perform the concrete operation.

C ; C? j (8 A; A? j R ^ R? pre AOp) ` pre COp

correctness: for any abstract state A0 corresponding to the after state C 0

reached from C by the concrete operation, there must be an abstract state A

that both corresponds to C and is related to A0 by the abstract operation.

C ; C? j (8 A; A? j R ^ R? pre AOp)
` 8 R0; R! j COp 9 A; A? R ^ R? ^ AOp

When AOp is a total operation, this obligation reduces to

COp; R0; R! ` 9 A; A? R ^ R? ^ AOp

nalisation: for each concrete state that nalises to a global state G , there
must be a corresponding abstract state that nalises to the same global state.

R ` pre CFin

CFin ` 9 A R ^ AFin

For each concrete output that nalises to a global output G!, there must be a
corresponding abstract output that nalises to the same global output.

R! ` pre CFin!

CFin! ` 9 A! R! ^ AFin!

8 Summary

We have been able to prove the correctness of the renement of a real industrial
product, working to real development time scales. In the process, we uncovered
a security aw in one part of the system design, and identied the corrections
needed.

In the process of showing that it is possible to do Z renement on an industrial
scale and in an industrial context, we have learnt some lessons about how such
a development can usefully be carried out. These lessons centre around the
tension between two forces: the force driving one toward greater mathematical
and aesthetic precision; and the other the desire to `just do it' and achieve
something useful for the project.

It is not possible to say that it is always better to follow the line of formality,
or to say that it is always better to be strictly pragmatic. In some cases one
decision must be made, and in other cases another. The guiding principle is
usually the question of addressing the weakest link. Asking the question: \If
I had only a week to complete this project, will I give greater assurance of

correctness if I get this part more mathematically justied, or if I do proofs for
more of the system, or if I present this more neatly, or . . . "

A realistic assessment of this question will sometimes force you to get the
maths right (no assurance is achieved if you don't know that your proof tech-
niques work) and will sometimes force you to use the inelegant tools you have
(no assurance is achieved if you prove nothing about the actual system in hand).

We achieved a very high level of rigour in our proofs. The proofs are far
more detailed than typical proofs done in general mathematics. Despite this the
formal methods activity was never on the critical path of the development. The
formal methods component was usually ahead of schedule, and never caused a
delay in development.

The success of this project has lead the client to do formal development, at
the same level of rigour, on further products they are developing.

The proofs are also built on very sound theory: we investigated the founda-
tions of the proof rules in great detail.

As a byproduct of doing these proofs, we have also improved the foundations
of Z renement rules. We have explained how the traditional Z data renement
proof obligations are the result of making certain simplifying assumptions, and
embedding the Z world of state, inputs and outputs in a relational model. Dif-
ferent assumptions lead to dierent renement rules; for our own application, we
had to relax certain assumptions that go into deriving the Spivey rules in order
to prove that our particular concrete specication was indeed a renement on
the abstract. We have presented here the actual proof obligations we discharged
in our own application.

Other teams may well nd they have to relax dierent assumptions, provide
dierent computational models, or dierent totalisation embeddings, in order to
prove their own renements. ([Cooper et al.] will provide a detailed description
of the precise derivations, in order that others may derive their own appropriate
renement proof obligations.)

Acknowledgements

The work described in the paper took place as part of a development funded by
the NatWest Development Team.

Part of the renement work was carried out by Eoin Mc Donnell.

References

[Cooper et al.]
David Cooper, Susan Stepney, and Jim Woodcock. Renement: Theory and Prac-
tice. (in preparation).

[Flynn et al. 1990]
Mike Flynn, Tim Hoverd, and David Brazier. Formaliser|an interactive support
tool for Z. In John E. Nicholls, editor, Z User Workshop: Proceedings of the 4th
Annual Z User Meeting, Oxford 1989, Workshops in Computing, pages 128{141.
Springer Verlag, 1990.

[He et al. 1986]
He Jifeng, C. A. R. Hoare, and Je W. Sanders. Data renement rened (resume).
In ESOP'86, number 213 in Lecture Notes in Computer Science, pages 187{196.
Springer Verlag, 1986.

[Josephs 1991]
Mark B. Josephs. Specifying reactive systems in Z. Technical Report TR-19-91,
Programming Research Group, Oxford University Computing Laboratory, 1991.

[King & Arthan 1996]
D.J. King and R.D. Arthan. Development of Practical Verication Tools. The
ICL Systems Journal, 11(1), May 1996.

[Meisels & Saaltink 1997]
Irwin Meisels and Mark Saaltink. The Z/EVES Reference Manual. 267 Richmond
Road, Suite 100, Ottawa, Ontario, K1Z 6X3, Canada, June 1997. TR-97-5493-03c,
http://www.ora.on.ca/z-eves/.

[Spivey 1992a]
J. Michael Spivey. The fuzz Manual. Computer Science Consultancy, 2nd edition,
1992. ftp://ftp.comlab.ox.ac.uk/pub/Zforum/fuzz.

[Spivey 1992b]
J. Michael Spivey. The Z Notation: a Reference Manual. Prentice Hall, 2nd edition,
1992.

[Stepney]
Susan Stepney. Formaliser Home Page. http://public.logica.com/~formaliser/.

[Strulo 1995]
Ben Strulo. How ring conditions help inheritance. In Jonathan P. Bowen and
Michael G. Hinchey, editors, ZUM'95: 9th International Conference of Z Users,
Limerick 1995, Lecture Notes in Computer Science. Springer Verlag, 1995.

[Toyn 1996]
Ian Toyn. Formal reasoning in the Z notation using CADiZ. In N. A. Merriam,
editor, 2nd International Workshop on User Interface Design for Theorem Prov-
ing Systems. Department of Computer Science, University of York, July 1996.
http://www.cs.york.ac.uk/~ian/cadiz/home.html.

[Woodcock & Davies 1996]
Jim Woodcock and Jim Davies. Using Z: Specication, Renement, and Proof.
Prentice Hall, 1996.

[Z Standard 1995]
Z Notation version 1.2. Committee Draft Standard: CD13568. ISO
panel JTC1/SC22/WG19, BSI panel IST/5/-/19/2, September 1995.
http://www.comlab.ox.ac.uk/oucl/groups/zstandards/.

