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Abstract. We have recently completed the specification and full refine-
ment proof of a large, industrial scale application. The application was
security critical, and the modelling and proof was done to increase the
client’s assurance that the implemented system had no design flaws with
security implications. Here we describe the application, and then dis-
cuss an essential lesson to learn concerning large proof contracts: that
one must forge a path between mathematical formality on the one hand
and practical achievement of results on the other. We present a number
of examples of such decision points, explaining the considerations that
must be made in each case.

In the course of our refinement work, we discovered that the tradi-
tional Z data refinement proof obligations [Spivey 1992b, section 5.6],
were not sufficient to prove our refinement. In particular, these obliga-
tions assume the use of a ‘forward’ (or ‘downward’) simulation. Here we
present a more widely applicable set of 7Z data refinement proof obliga-
tions that we developed for and used on our project. These obligations
allow both ‘forward’ and ‘backward’ simulations, and also allow non-
trivial initialisation, finalisation, and input/output refinement.

1 Introduction

Over the past few years we have been working with the NatWest Development
Team proving the correctness of Smartcard applications for electronic commerce.
Here we describe one of those applications. We have modelled the abstract
behaviour of the product, modelled its more concrete top level design, and have
rigorously proved the correctness of the refinement from one to the other. All
work was done in Z.

In the first half of this paper, we describe the application and the form of the
design step modelled (section 2), and discuss a number of lessons learnt during
the proof process (section 3). These lessons centre around the tension between
mathematical formality and the need to achieve a demonstrable benefit to the
project.



In the second half of this paper (sections 4-7), we focus on one particular
lesson: the importance of a sufficiently rich refinement theory. We discovered
that the traditional Z data refinement proof obligations [Spivey 1992b, section
5.6] (hereafter we refer to these as ‘the Spivey rules’) were not sufficient to prove
our refinement, because they make some simplifications, and assume the use
of a “forward’ (or ‘downward’) simulation. We had to remove some of these
simplifications, and we required the use of a ‘backward’ simulation. We present
a more widely applicable set of Z data refinement proof obligations that we
developed for and used on our project. These obligations allow both ‘forward’
and ‘backward’ simulations, and also allow non-trivial initialisation, finalisation,
and input/output refinement.

2 The application

NatWest Development Team had a product under development that was deeply
security critical. They were developing a Smartcard application to handle elec-
tronic commerce, and they wanted to be sure that these cards would not contain
any bugs in implementation or design that would allow them to be subverted
once in the field. They called in Logica to develop formal models of the system
and the security policy, and to prove that the system design met all the security
properties required.

The system consists of a number of electronic purses that carry financial
value, each hosted on a Smartcard. The purses interact with each other, via
a communication device, to exchange value. Once released into the field, each
purse is on its own, and has to ensure the security of all its transactions without
recourse to a central controller. All the security measures have to be imple-
mented on the card, with no real-time external audit logging or monitoring.

These cards are to be sold to members of the public to enable them to carry
out fully electronic financial transactions with other individuals, with banks,
retailers, etc. Insecurities could allow people to forge the value on their purses,
and so obtain goods for free, thereby severely impacting the commercial viability
of the project.

The task of the formal methods team was to model the system to ensure
it behaved sensibly, and prove that the system design accurately reflected the
behaviour specified.

2.1 Models

We developed two key models. We wrote an abstract model, describing the
world of purses and the exchange of value through atomic transactions. This
model expressed the security properties that the cards must preserve.

We wrote a concrete model, mirroring the design of the purses, which ex-
change value using a protocol of messages.

We rigorously proved that the concrete model is a refinement of the abstract.
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Fig.1. An atomic transaction in the abstract model.
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Fig.2. Part of the n-step protocol used to implement the atomic transaction in the
concrete model.

Abstract model: The abstract model is small, simple, and easy to understand,
running to approximately 20 pages of Z and natural language commentary.

The key operation is to transfer a chosen amount of value from one purse
to another, modelled as an atomic action to decrement the value in the paying
purse and increment the value in the receiving purse (figure 1). This operation
(and all the others, too) preserves the two key system security properties:

— no value may be created in the system
— all value is accounted in the system (no value is lost)

The simplicity of the abstract model allows these properties to be expressed in a
way that the client can easily see are as they desired them to be. 20 pages of Z
may sound a lot for such a simple operation, but the abstract model also includes
anumber of other operations around the periphery of this central behaviour, such
as card locking and query operations.

Concrete model: The concrete model is more complicated, reflecting the real
system design. The key changes from the abstract are:

— transactions are no longer atomic, but instead follow an n-step protocol
(figure 2)

— the communication medium is insecure and unreliable

transaction logging is added to handle lost messages

no global properties: each purse has to be implementable in isolation



This model is approximately 60 pages long, including Z and natural language

commentary. Once again, there are a number of periphery operations and state

components in addition to those to model the central operation of value transfer.
The basic protocol is:

. communication device ascertains the transaction to perform

. receiving purse requests the transfer of an amount from the paying purse
. paying purse sends that amount to the receiving purse

. receiving purse sends an acknowledgement of receipt to the paying purse

I

The protocol, although simple in principle, is complicated by several facts. The
protocol can be stopped at any point by removal of power from a card; the
communication medium could lose a message; a wire tapper could record a
message and play it back to the same or different card later. In the face of all
these possible actions, the protocol must correctly implement the atomic transfer
of value as specified in the abstract model.

2.2 Proofs

All the security properties of the abstract model are functional, and so are
preserved by refinement. It is well known in security circles that some properties
(such as information flow properties) are not, in general, preserved by refinement.
We were saved from such complications in this case, and could concentrate just
on proving refinement between the models.

The purpose of performing the proof i1s to greatly increase the assurance
that the chosen design (the protocol) does, indeed, behave just like the abstract,
atomic transfers. We chose to do rigorous proofs by hand, because our experience
of existing proof tools is that current tools are not yet appropriate for a task of
this size. We did, however, type-check the statements of the proof obligations
and many of the proof steps using a combination of fuzz [Spivey 1992a] and
Formaliser [Flynn et al. 1990] [Stepney]. As part of the development process, all
proofs were also independently checked by external evaluators.

The proofs of the refinement obligations and the proofs of some model con-
sistency obligations take approximately 200 pages. In addition, we produced
approximately 100 pages of formal derivation in support of the underlying the-
ory.

3 Between the devil and the deep blue sea

In developing the models and the proofs we were caught between opposing forces.
On the one hand, we had a real product that was to hit the streets. We were
proving properties because the client wanted to be sure the design was secure,
not because they were a fan of obscure mathematical theories. We had to get the
job done. On the other hand, proofs would give us no added assurance if they
were faked, rushed, or so inelegant that no one would be able to check them.



The formal aspects of the development therefore plotted a course between
perfect mathematical formality on one side and pragmatic ‘just do it” on the
other. Our course weaved from side to side as different concerns appeared. At
each stage we focused on attacking the weakest part of the formal argument.
Sometimes it was lack of faith in the questions we were asking, which forced
us toward greater mathematical formality in search of an underlying theory to
support our decisions. At other times it was the need to press on and cover more
of the purse functionality, forcing us to ‘just do’ the proofs any way we could.

It 1s important to see this process as a continual trade off. There is no
point in having a very sound underlying mathematical theory, but then no time
or money to apply it to the product. Equally, there is no point in proving a
theorem about the product when you have no understanding of whether it is an
appropriate theorem to be proving.

There were a number of specific examples of this trade off, discussed below.

3.1 New proof rules needed

One of the early problems with the development forced us in the direction of
formality to solve 1t.

We had developed an abstract model, with a single atomic transaction, and a
concrete model with the protocol steps. Intuitively it appeared that the concrete
should be a refinement of the abstract, but all our attempts to prove refinement
using the Spivey rules failed. Looking at why the proof failed showed that
there was a serious obstacle, not just an inability to push symbols around. The
problem centred on when non-determinism was resolved: the concrete protocol
resolved the non-determinism inherent in the system later than did the abstract
atomic transaction. The rules of refinement that we were trying to use allow non-
determinism to be resolved earlier in the concrete, but not later. (See section 4.2
for more detail.)

We made some brief attempts to ‘just do it” anyway, trying to modify the
models to resolve the non-determinism differently, and even trying to prove
something other than refinement. But it became clear that a more fundamental
look at the proof rules held better hope for a solution.

There is a larger, more general theory of refinement, of which the Spivey
rules are a specific instance, the forward proof rules. The more general theory
includes another set of rules, the backward proof rules, which cater for the form
of non-determinism resolution we needed. We needed to recast these rules from
their relational form into the Z world of schemas, state transitions, inputs and
outputs. (We have subsequently published a simplified form of these newly
derived Z backwards rules in [Woodcock & Davies 1996]. See section 6 for more
details of the derivation of the full proof rules we derived, including input-output
refinement. )

Armed with an early version of the new rules, we were able to carry out
our proofs successfully. However, as we did so, we found the new rules seemed
too good, making our proofs too easy. We started investigating toy examples,
and found we could prove refinement of patently non-refining systems! Rushing



back in the direction of mathematical formality, we discovered that yes, indeed,

these early proof rules were unsound, and some other aspects that we had origi-

nally thought unnecessary (because they were unnecessary in the forward rules)

needed to be brought in. Some more working to put all the proof rules on a

sound footing, doing all the derivations in detail, gave us the confidence to go

back to our models, knowing that we were now working in the right context.
So, the path we took in this case was

1. ‘just did it’ with the theory we had until the theory (the proof rules available
to us at the time) failed us

. moved toward formality to find a larger, more general theory that included
some new tools (backward rules) to help

. used the new rules until doubt arose

[\]

. investigated the problems (toy examples), then went back to correct
. tightening of the theory
. use the new theory with confidence

S O = W

3.2 Problems with generic proofs

Sometimes doing things elegantly costs too much.

We had first modelled and proved a reduced version of the system, and were
now expanding it to incorporate the full richness of the actual system. As we
added one particular feature, we noticed that it had a similar mathematical
structure to a feature already modelled and proved. The existing feature used
integer addition as a binary operator, and the new feature used maz, but the
proofs seemed to rely only on properties of addition that are shared by max
(such as commutativity).

Rather than just blindly re-doing all the proofs with the new feature, we
decided to generalise the existing proof, and then separately instantiate it, once
for addition and once for maz. This should have cut down on the amount of
work (one set of proofs rather than two) and made it easier for the evaluators
to understand (understand one general proof, rather than two ‘similar’ ones).

As most people who have worked on automated theorem provers probably
know, generalising proofs is much harder than it looks. For example, addition
has an inverse, and we had used subtraction to simplify our original proof, even
though it was not necessary to do so. To generalise the proof so that it was also
applicable to an operator like maxr without an inverse was possible, but made
the proof more complicated.

In other places we made use of properties of addition that are shared by maz,
but not by all binary operators. Thus we had to decide what the key property
was so that the scope of the generality of the proof could be defined.

All this meant our general proof was becoming significantly longer than the
original, and very obscure. There seemed to be no intuitive peg on which to hang
our understanding — we could read the proof only as a series of meaningless
symbols.



Although we saw no theoretical reason why a general proof would not be
possible, we abandoned the attempt. We needed a proof of both features: we
had one already for addition, and our work on the general proof had shown how
the proof of the maxz feature would go. We therefore pressed ahead on a specific
proof for the second feature, finishing it in less time than it would have taken
us to finish the general proof and two instantiations. Furthermore, we found
the proofs actually easier to understand as specifics than as instantiations of the
general proof.

We believe it would have been possible to complete the general proof. It may
well be possible to complete it more elegantly, and produce instantiations that
are intuitively understandable. But in this case we could gain the benefit from
the proof (increased assurance) for less effort by doing two, similar, repeated
proofs.

Our weaving path was

. do a specific proof

. notice the scope for generality and elegance, and start a general proof

. abandon general proof when cost grows too large

. use the experience gained doing the general proof to ‘just do’ two specific
proofs

= W N =

3.3 No need to justify a working strategy

Even if you think there may be a better solution around the corner, if you have a
solution that works, that may be good enough. This is a lesson hardest to accept
if you are an academic at heart. The nature of academic research encourages
reworking and revisiting solutions to find different insights. But in an industrial
context, the benefit of such further work may not be worth the cost.

We had been using our backward proof rules to prove the refinement of the
abstract model by the concrete model. We were successful with some proofs, but
there were always some proofs at which we failed. We modified the models, often
making the failed proofs possible, but then invalidating the previously successful
ones.

The problem centred on the use of the backward proof rules. In the more
conventional forward Spivey proof rules you attempt to show that there is a
reasonable abstract state that an operation can take you to, given that you have
an abstract state to start from and a concrete operation that occurs. In the
backward rules, you instead attempt to show that there is a reasonable abstract
state that an operation can take you from, given that you have an abstract state
to go to and a concrete operation that occurs. This requires you to reason about
the properties of a previous state.

Our model makes such reasoning difficult, because as the protocol progresses
information that is no longer needed is lost from the state, and it is precisely
this information that is needed in order to construct the prior abstract state.
We could not include this extra information in the concrete model because it
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Fig.3. We found that we could implement, but not prove, or that we could prove, but
not implement.

relates to global properties of a number of purses, which cannot be implemented
by a set of independent purses.

However, we knew that these global properties do hold: the protocol forces
them to hold. It is just that a model that expresses them explicitly cannot
be implemented appropriately. If these constraints are in the concrete model,
the refinement can be proved, but the model does not match the implementa-
tion. If these constraints are not in the concrete model, the model matches the
implementation, but we cannot prove the refinement (figure 3).

The solution was to add the constraints in an intermediate model, and then
do an additional refinement to remove them (figure 4) from the final model.

This second refinement could be performed using the conventional forward
rules. This we did, and succeeded in proving both refinements. This issue drove
the entire structure of the development.

This approach raised a question: does there exist a single refinement that
could do the job of these two? Although this question is interesting, as far as our
project in hand was concerned it was irrelevant. We had a solution that worked
(an intermediate model, with two refinements) that was mathematically sound.
Whether or not two refinements are necessary, in this case two refinements are
certainly sufficient. We ignored the forces pulling us toward mathematical el-
egance, and pressed on using a solution that worked, even though we did not
have a theoretical justification for its necessity.

3.4 Rework repaid in easier understanding

In contrast to the previous two examples, we also found that sometimes rework-
ing a successful solution more elegantly and generally can be worthwhile.
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Fig.4. We proved the refinement in two steps.

We developed our models and proofs in two phases: once concentrating on
just the key central functionality, and then again covering all the functionality.
Having done some parts of the derivations repeatedly for different but similar
operations, when we came to the rework we extracted the similar parts, gener-
alised, and defined a number of useful lemmas. These we used to simplify some
of the derivations for the new operations.

While generalising the derivations, we noticed that those operations that
aborted the current transaction did not fit into the mould of the generalised
derivation. However, if the aborting part were extracted, the remaining piece of
the operation did fit. This restructuring made the general derivation more widely
applicable, and significantly simplified the proofs of the aborting operations.

So here our path was

develop complete models and proof for a subset of the system (just do it)
identify commonalities (mathematical elegance)

generalise

e

expand with additional functionality



3.5 Hand-proof delivered the goods

Given a client who wants to “increase assurance through formal methods”, one
has to use the tools to hand and supply the greatest possible increase in assurance
at acceptable cost. It is not necessary to have every mathematical ¢ dotted and
t crossed before you can help real projects.

We decided to do all our proofs by hand, with no machine checking of
the proof steps (although we did type-check all the mathematical statements).
There are a number of good Z theorem provers/checkers around, such as Z/Eves
[Meisels & Saaltink 1997], ProofPower [King & Arthan 1996], and CADiZ [Toyn
1996], but we believe the extra cost of doing proof at the level of rigour enforced
by a theorem prover/checker far outweighs the benefits of greater assurance in
this case. We have done some small scale investigations of the cost of using
CADiZ and Z/Eves for our proofs that support this view.

However, it is likely that if a set of proofs need to be maintained in the face
of continuing changes to a model, tool support may become more important.

3.6 Presentation is important

Having a mathematically correct proof is insufficient if it is presented too badly
to be read and understood by a reviewer.

Part of the development process imposed by the client includes detailed ex-
ternal evaluation of the formal models and proofs. These evaluators have to be
able to read a proof and both understand it intuitively and check it line by line
for correctness. To ensure readability we developed a number of presentation
styles.

We started all proofs with a clear, mathematical statement of the theorem
to be proved, expressed in the conventional hypothesis b conclusion style, where
hypothesis is a declaration and conclusion is a predicate. This rigour ensured
that we knew clearly what was to be proved, and often prompted us to ask why
we were proving this. We also described the theorem in English, explaining what
property was being proved, and explaining why it was reasonable to believe that
it was true.

Many proofs were broken down into a number of subsections, and in these
cases we stated the subtheorems themselves formally and, where possible, intu-
itively justified them. To make it easy to follow this nesting of proofs, when a
subtheorem was proved, we added an end marker O labelled with the section
number, to help bracket the subproof. For example,

3.1 theorem ...
proof steps, leading to two things to prove ...
3.1.1 first sub-theorem
proof of first sub-theorem
03.1.1
3.1.2 second sub-theorem
proof of second sub-theorem



03.1.2
tidy up of whole proof ...
O3.1

Lemmas that were of a more general applicability were extracted into an ap-
pendix, so they could be read in isolation.

We wrote the proofs themselves in one of two styles: either rigorously step by
step, with each step labelled with an inference rule; or more free-flowing English
with the key points expressed mathematically.

We used the rigorous presentation when symbol manipulation was most im-
portant, which often occurred when large schemas were being restructured and
manipulated to extract some key component. This was the predominant style,
and we used it whenever we were in doubt of the validity of our arguments.

The more free-flowing presentation was appropriate when there was little
doubt of the validity of the argument, but the details would be long and cum-
bersome.

A formalist would demand all arguments to be presented step-by-step, with
each step labelled. But with limited resources, it is sometimes better to tighten
up the rigour of some other part (such as the derivation of the proof rules them-
selves) than spend the precious resource expanding “some set-theoretic manip-
ulations can show ...” in detail.

4 A closer look at the need for new proof rules

As explained earlier (section 3.1), in the course of our refinement work it became
apparent to us that the traditional Z data refinement proof obligations [Spivey
1992b, section 5.6] were insufficient for our purpose. We were forced back to
first principles, to derive suitable new proof obligations.

Here we present the two sets of Z data refinement proof obligations we derived
for our work, each of which are more more widely applicable than the Spivey
rules. These new rules cover both ‘forward’ and ‘backward’ simulations, allow
non-trivial initialisation and finalisation steps, and provide the ability to perform
input/output refinement.

In the following sections we describe which assumptions used to derive the
traditional rules we relaxed, and the new proof obligations we derived'.

4.1 Traditional Z data refinement proof obligations — recap

The traditional Z data refinement proof obligations are given in [Spivey 1992b,
section 5.6]. To recap, they comprise the three following proof obligations:
initialisation: for each concrete initial state, there must be a corresponding
abstract initial state.

Clnit -3 A" e Alnit AN R’

! We use Standard 7 [Z Standard 1995] syntax in our small illustrative examples, and
note where this differs from the Z Reference Manual [Spivey 1992b] syntax.



applicability: whenever it is possible to perform the abstract operation AOp,
it must be possible to perform the concrete operation C'Op on the corresponding
concrete state (also known as ‘widening the precondition’).

R;pre AOp - pre COp

correctness: for any abstract state A within the precondition of AOp, corre-
sponding to a before state C' (which, by applicability, is within the precondition
of COp), then, corresponding to any C” reachable from C by COp, there must
be an abstract state A’ related to A by AOp.

R; COp |pre AOpt3 A" e« AOp N R’

4.2 Resolution of non-determinism

The Spivey rules are applicable when the concrete model resolves any remaining
non-determinism sooner (or at the same point as) the abstract model. However,
it is possible to develop models where concrete non-determinism is resolved later
than the abstract non-determinism.

For example, consider the case of two booking offices [Woodcock & Davies
1996, section 17.3]. The Apollo theatre, when you book a ticket, chooses a
particular ticket to give you, and when you arrive at the theatre, gives you that
ticket. It non-deterministically chooses which particular ticket you get early
in the process. The Phoenix cinema, on the other hand, when you book a
ticket, merely notes that yet another ticket has been booked; only when you
arrive at the cinema does it choose which particular ticket to give you. It non-
deterministically chooses which particular ticket you get late in the process.
These two systems are behaviourally equivalent — so each is a refinement of the
other — but with the Spivey rules we can prove only that (early) Apollo refines
(late) Phoenix, not that Phoenix refines Apollo.

Our own application was another, much larger, example of later resolu-
tion. We had an abstract transaction that atomically either succeeded or failed,
straight away. The concrete model implemented the transaction as an n-step
protocol, and whether the transaction succeeded or failed could not be deter-
mined until late in the protocol.

In all such later-resolution cases, the Spivey rules cannot prove the refine-
ment. To see why this is, consider figure 5. This shows a non-deterministic
abstract operation AOpy, followed by a deterministic one AOp;. In our applica-
tion, AOpp 1s the initial atomic transaction that non-deterministically succeeds
or aborts, and AOp; is essentially ‘nothing happening’, ZA. AOpg is refined
by a deterministic concrete operation COpy, and AOp; is refined by a non-
deterministic concrete operation COp;. In our application, COpy is the first
always successful request step of the protocol, and COp; is the later payment
step that either succeeds or aborts.

By the time both operations have been performed, the non-determinism has
been resolved both concretely and abstractly, and so the retrieve relation relates
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Fig.5. A case not provable by the Spivey rules: non-determinism resolved later in the
concrete than in the abstract.

A} and (], and separately relates A, and C4. Because the first operation can
result in one of two abstract states, A; and As, but only a single concrete state,
(15, the retrieve relation has to relate Cis to both A7 and A,.

Now consider what happens when the Spivey rule for correctness is applied
to the second operation, AOp; and COpy:

for any abstract state A within the precondition of AOp (here consider
the state Ay), corresponding to a before state C' (which is Ci2) then,
corresponding to any C' reachable from C by COp (let’s consider C4),
there must be an abstract state A’ related to A by AOp.

But there is no such state A’ that retrieves from state C4 whilst being reachable
from state A; by the abstract operation. The proof fails.

It turns out that the Spivey rules are sufficient — anything they can prove is
indeed a refinement — but not necessary — there are some cases of refinement
that cannot be proved using them. We discovered that our own application fell
into this second class, and so we needed to understand refinement better in order
to derive refinement proof obligations that were sufficient for our case.

5 What is refinement?

There are some specifications that we intuitively feel are refinements, but which
we cannot prove using the Spivey rules as they stand. So, what is a refinement?

5.1 A relational model

[He et al. 1986] give a relational definition of refinement. A ‘global-to-global’
relation can be implemented by moving into some abstract world (by a process
called initialisation), performing a sequence of abstract operations, then moving
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Fig.6. A relational view of refinement (after [He et al. 1986]). The global-to-global
relation g «— g can be implemented abstractly, by initialisation ai, operation(s) aop
and finalisation af. The corresponding concrete relation, defined by ci, cop, and cf,
refines the abstract precisely when it is a subset of the abstract relation.

back into the global world (called finalisation). If another implementation (via
a concrete world) defines a relation that is a subset of the one obtained via
the abstract world, then the concrete implementation refines the abstract one.
(We refer the reader to the original paper for precise definitions of these terms,
sketched in figure 6.)

This subsetting requirement formally captures the notion of ‘refining away
non-determinism’. The [He et al. 1986] definitions require all the various global,
abstract and concrete operations to be total, so there is no danger of subsetting
all the way to the empty set.

We can now ask the question, ‘what is a refinement?’ independent of the
particular choice of refinement proof obligations. Refinement, in this relational
world, 1s simply subsetting.

Reasoning over the whole global relation, which itself is defined in terms of
sequences of operations (‘programs’ in the terminology of [He et al. 1986]) is
difficult. Tt is much more tractable to reason over individual operations, and [He
et al. 1986] give two different sufficient conditions for a collection of concrete
operations to be a refinement of a collection of abstract operations in this re-
lational world. The Spivey rules are derived from one of these conditions, that
for ‘forward simulation’. However, the other condition, for ‘backward simula-
tion’, is the one appropriate for proving refinements with a later resolution of
non-determinism.

5.2 Casting to the Z world

Now that we know what a refinement is in the relational model (expressed in
terms of total operations, with no concept of inputs or outputs), we need to
convert to the Z world (of partial operations, inputs, and outputs), and thereby
translate the relational refinement obligations into corresponding Z ones.
Making certain simplifying assumptions (see section 6), and translating one of
the [He et al. 1986] conditions, that of ‘forward’ simulation, results in the Spivey
rules. If we make the same simplifying assumptions, and translate the other
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Fig.7. Embedding a Z-like state S, input sequence I and output sequence O in the
relational state, and imposing a computational model on the behaviour of I and O.

‘backward’ simulation condition, we get the analogous ‘backward’ Z refinement
rules. (We have since published these simplified backward rules in [Woodcock
& Davies 1996, section 17.3].) If, further, we relax some of the simplifying
assumptions, we get the more powerful refinement rules (see section 6) that we
found necessary for our particular application.

The new (simplified) backward rules allow us to prove that the situation in
figure 5 is indeed a refinement. Formally, we have to show:

COp; R"-3AeRANAOp

Informally:

for any abstract state A’ (consider state A}) corresponding to the after
state C’ (which is state C}) reached from C (which here is state Cj2)
by the concrete operation, there must be an abstract state A (there is!
— it is state As) that both corresponds to C and is related to A’ by the
abstract operation.

6 Relaxing the simplifying assumptions

Now that we have the wider theory from [He et al. 1986] available to us, we can
see some of the other assumptions (beyond the choice of forward simulation)
that go into deriving the Spivey rules, and consider relaxing those assumptions,
too. The proof obligations that result from relaxing some of these assumptions
are given in section 7.

6.1 Computational model

The wider theoretical model of [He et al. 1986] is purely relational; it has no
concept of inputs or outputs. When moving to a Z model, the relational state
needs to be provided with some internal structure, to give it a Z-like state along
with (sequences of) inputs and outputs.

A computational model is then imposed, determining restrictions on how
these input and output sequences can be used in operations. We choose a nat-
ural one (others are possible): each operation consumes the head of the input



sequence, and appends an output to the output sequence (see figure 7). Further-
more, we require the operation itself to depend only on this input and output
(and the state): it is independent of the ‘past outputs’ and ‘future inputs’ se-
quences.

6.2 Observability and Finalisation

It 1s well known that the refinements of a specification provable using the Spivey
rules depend on what parts of the state are ‘observed’ by outputs. For example,
if a Stack specification includes no operation such as Top to observe the state,
then bizarre specifications — such as ones that randomly change the values; or
throw them away altogether — can be proved to be refinements. In the trivial
case where all outputs are indistinguishable then any specification can refine
any other (with identically named operations), by chosing the chaotic retrieve?
R==[A4; C| true].

In [He et al. 1986]’s relational model, the finalisation process captures what
is observable. When deriving the Spivey rules, the only part of the relational
state that is finalised 1s the output sequence. This is why, with those rules, the
outputs provide the only way of observing the state.

In an abstract model, state 1s usually present because it is felt to be needed
to capture the required abstract properties. It is certainly possible to have a
‘large’ abstract state that is not observed, in order to ease the statement of
these properties. (For example, consider a ‘Parity’ specification that keeps the
entire sequence of input bits in the abstract state, but where only the parity
of this sequence is observed.) Providing ‘observation’ operations that merely
observe the state may well pollute the model, especially if these operations do
not map naturally onto any concrete operation. In such cases, a cleaner model
may be possible by finalising (part of) the state to the relevant global state, and
thus observing it directly.

In our own application, our abstract state includes a component, sink, that
records the quantity of the value that has become unavailable to the rest of the
system. A property of sink is quoted as a security requirement: the total value
still available to the system, plus that in the sink, is required to be constant.
The concrete model, following the actual implementation, has the corresponding
information distributed amongst the collection of automonous purses, in various
log files. The retrieve relation relates all these log files in a subtle way to the
abstract sink. We showed that the distributed log files implement the abstract
sink, and thereby satisfy the required security property. There is a concrete
operation that observes the contents of a single purse’s log file, but we did
not wish to clutter our model with a concrete operation that corresponds to
observing all the log files simultaneously, which would correspond to observing
the abstract sink. So, instead of observing this component with an output, we
finalise the sink component of the abstract state, and the log components of the
concrete state, and discharge a finalisation proof obligation.

2 In Standard 7 [Z Standard 1995] notation, schemas are introduced using ‘==", rather
than ‘=’.



6.3 Input/output refinement

With the Spivey rules, the concrete and abstract (and global) models use the
same input and output state; only the Z-state part of the relational state is
allowed to differ. Initialisation of the inputs (how the inputs in the abstract
or concrete model are related to the global ones) is a trivial identity, and the
input initialisation proof obligation vanishes, leaving only the state initialisation
rule. Similarly, finalisation of the outputs is a trivial identity, and finalisation
of the state throws it all away, and so the entire finalisation proof obligation
disappears.

As explained above, we relaxed the assumption about finalising the state to
nothing, to allow non-trivial state finalisation. We also relaxed the assumption
that the inputs and outputs are the same in all models, allowing the concrete
and abstract inputs and outputs to differ (from each other, and from the global
ones, too). So now we can refine our input and output data types from more
abstract to more concrete representations, in the same way that we have always
been able to refine state. This requires an additional definition of how inputs
are initialised and how outputs are finalised.

In the relational world, the retrieve relates the entire abstract and concrete
state (including inputs and outputs as well as the Z-like state). With the Spivey
rules, where the input and output parts are the same in the concrete and abstract
models, there is no need to retrieve them (the retrieve is just the identity).
Relaxing this assumption of equality, we now have to provide a part of the
retrieve relation to map concrete inputs and outputs to abstract ones.

We choose to require that the complete retrieve be written as three indepen-
dent parts: one between inputs, one between outputs, and one between Z-states.
This does restrict the kinds of refinements that are provable. For example,
anything observed by finalisation abstractly has to be observed by finalisation
concretely; the requirement of independence of the retrieves means that we can-
not move the observation into an output. However, we found that the resulting
proof obligations, even with this restriction, are sufficiently powerful to enable
us to prove our own application, and so any more general rules would have been
overly complicated.

As an example of output refinement, consider a global model of traffic lights
where the output is the current colour state, represented as an element of an
enumerated (free) type; the abstract model could use natural numbers to rep-
resent these colours, and the concrete model could say how these numbers are
represented as a sequence of bits.

LIGHT ::= red | amber | green
aLight == {0,1,2}
cLight == {{0,0),(0,1),(1,0)}

The global model talks in terms of global outputs g! : LIGHT, the abstract
model in terms of a! : aLight, and the concrete model in terms of ¢! : cLight.



The abstract output finalisation defines how the abstract numbers represent
the global colours:

_Ame
a! : aLight
g': LIGHT

gl =red = al =0

g! = amber = al =1

gl = green = al =2

We can write this schema equivalently as®:

AFiny == {{g! == red, a! == 0), {g! == amber, a! == 1),
{g! == green, a! == 2)}

The concrete output finalisation defines how the concrete bitstreams represent
the global colours:
CFiny == {{g! == red, ¢! == (0,0)), = amber, ¢! == (0, 1)),
1

{g! == green, c! == {1,

The output retrieve defines how the concrete bitstreams represent the abstract
numbers:

Ry == {{a! == 0,c! == (0,0)), {a! == 1, ! == (0, 1)),
{a! == 2,c! == (1,0))}

We find we need to include the output retrieve in each operation proof, and do a
new output finalisation proof, in order to demonstrate refinement (see section 7).

We need to be a little careful about interpreting outputs when we have a
non-trivial finalisation. Tt is not the raw output itself (a bitstream in the above
example) that is observed, but rather that output as viewed through finalisa-
tion. So when interpreting the above specification, we do not ‘observe’ (0, 0),
we actually ‘observe’ red. In this example, this does not cause too much of a
problem, because there is a bijection between each of the global, abstract and
concrete outputs. However, it is possible to write specifications that ‘confuse’ or
‘merge’ apparently different abstract (or concrete) outputs to the same global
one. For example, consider the case where the ‘Parity’ specification mentioned
in section 6.2 is modified so that the abstract state (a sequence of bits) is appar-
ently ‘observed’ by an abstract output comprising just this sequence, but where
the abstract output is finalised to a global output comprising just the parity of
the sequence. Then in fact only the parity has truly been observed (as can be
demonstrated by refining the specification to a concrete one that outputs just

? by using Standard Z’s [Z Standard 1995] explicit binding construction notation



the parity). So, when reading a specification the output finalisation has to be
read along with the operation definition to understand precisely what is being
observed.

Similar remarks apply to input initialisation.

In our own application, we performed input refinement. The abstract op-
eration inputs a simple go to perform the transaction; the various steps in the
concrete protocol input differing protocol messages.

6.4 State initialisation

With the Spivey rules, there is no Z-like state component in the global state; so
state initialisation is independent of the global state. We relax this constraint
and allow the global state to have a non-trivial Z-like component, and initiali-
sation to depend on this value of the global state. This allows initial states to
be set up with particular state values.

It is possible to model such initialisation by putting the system into some
initial state unconstrained by the global state, then performing a state transition,
using some special input, to ‘initialise’ it. But this is rather clumsy, and can
pollute the model with a state component to capture whether the state has been
initialised yet. More general initialisation permits cleaner models.

Also, having a specific initialisation allows the before global state to be re-
lated to the final global state, which means it is possible to express ‘global-to-
global’ properties, for example, that a certain quantity is preserved.

In our own application, we found we needed to perform an initialisation
based on the global state, because the actual devices entered the modelled world
already having particular values for some of their components (for example,
unique identification number).

6.5 Totalisation

The wider theory is cast in terms of total operations. When moving to a Z
world, we have to decide how to treat Z’s partial operations. We do this by
choosing a totalisation: we assume the operation is chaotic outside its precon-
dition, and moreover, that there is some ‘bottom’ state (representing a broken
system), which is itself propagated appropriately chaotically to ensure that bro-
ken systems stay broken. (We require initialisation and finalisation to be total.)

Such a choice of operation totalisation corresponds to one common interpre-
tation of the meaning of a Z operation outside its precondition: that ‘anything
can happen’. It also explains why refinement allows widening the precondition:
it is simply a reduction of non-determinism, from completely chaotic to some-
thing rather less chaotic.

This chaotic totalisation corresponds to replacing a partial operation relation
op: X «= X with its totalised counterpart op = (X1 x X1) @ op, where X+
is the set X augmented with an extra ‘bottom’ state. Other totalisations are



possible, for example:

Sp= (XL x {L1}) & op
oop:idXJ‘GBop

Other totalisations correspond to other interpretations of the meaning of a 7
operation outside its precondition, and result in different sets of refinement proof
obligations. The most common is the ‘firing condition’ interpretation [Josephs
1991] [Strulo 1995], that nothing can happen outside the precondition.

So, the choice of a particular set of refinement proof obligations determines
how a Z ‘state and operations’-style specification should be interpreted.

In our own application, the traditional ‘anything can happen’ totalisation
was appropriate for our model, so we did not need to derive more exotic rules.

7 Resulting data refinement proof obligations

The simplifying assumptions used to derive the Spivey rules from the relational
refinement model are:

The global relational state comprises only inputs and outputs. There is no
Z-like state to initialise from, so state initialisation does not consider it, or
finalise to, so state finalisation ‘throws it all away’.

The global, abstract, and concrete inputs and outputs are the same: the
input initialisation, the output finalisation, and the respective retrieves, are
the identity relation.

Totalisation gives ‘anything can happen’ outside the precondition.

The ‘forward simulation’ choice is made.

We have relaxed these assumptions in the following ways, to derive more widely
applicable 7 data refinement proof obligations:

The global state can have a Z-like state component, and so the initial state
can be related to the global one.

State finalisation need not ‘throw it all away’; state components can be
observed without using outputs.

Abstract and concrete inputs and outputs can differ, and are related by an
appropriate retrieve; so i/o can be refined.

Totalisation gives ‘anything can happen’ outside the precondition (as for
the Spivey rules). The more widely applicable initialisation and finalisation
steps are required to be total.

Both the ‘forward’ and ‘backward’ choices are made.

These more relaxed choices lead to the more widely applicable Z data refinement
proof obligations, given in sections 7.2 (forward rules) and 7.3 (backward rules).



7.1 Notation

In this section we introduce the various schemas used to define the refinement
proof obligations in the following sections.

We use schemas to capture the global state G, global inputs G- and global
outputs Gi. (We choose to bundle up our inputs and outputs each into a schema,
to avoid polluting the description with their explicit types.)

The abstract model has abstract state A, inputs A- and outputs A;. We
initialise from the global to the abstract state with

Alnit == [G; A" | ...]

We initialise from global inputs to abstract inputs with
Alnito == [Go; A2 | ...]

The abstract operation is
AOp == [AA; Aq; Ay .. ]

and the abstract state finalisation and output finalisations are
AFin ==[A; G" | ...]
AFPingy ==[Ay; G | ...]

The concrete model has concrete state €', inputs Cy and outputs Cj. The cor-
responding concrete initialisations, operation, and finalisations are

Chnit == [G; C" | ...]
Clnity == [ Go; G2 | ... ]
COp == [AC; Cr; C1 | ... ]
CFin==[C; G| ...]
CFin == [Cy; Gy | ...]

The concrete and abstract states, inputs and outputs are related by the retrieve
relations:

==[A; C|...]
R? II[A7; sz|]
Ry II[Ay;Cy|...]
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Fig.8. The more powerful forward rules. The solid lines and states represent the
hypothesised conditions; the dashed lines and circled states have to be proved to exist.

7.2 Forward rules
The forward rules are sketched in figure 8.

initialisation: for each concrete initial state obtained from some global state
(and there must always be at least one), there must be a corresponding abstract
initial state obtained from the same global state.

G+ pre Clnit
CInitt-3A" ¢ AlInit A R/

For each concrete input obtained from some global input (and there must always
be at least one), there must be a corresponding abstract input obtained from
the same global input.

G+ pre Clnits
C[nit7 F E|A7 L 4 Alnit7 A R?

applicability: whenever it is possible to perform the abstract operation AOp,
it must be possible to perform the concrete operation C'Op on the corresponding
concrete state and concrete input.

R; Ry | pre AOp + pre COp

correctness: whenever it is possible to perform the abstract operation, and the
corresponding concrete operation can result in state ¢’ and output C\, then it
must be possible to find an abstract state A’ and output A;, corresponding to
that C” and C}, that is the result of performing the abstract operation.

R; Ry; COp | pre AOpt3A"; A e AOp AN R' AN R
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Fig.9. The more powerful backward rules. The solid lines and states represent the
hypothesised conditions; the dashed lines and circled states have to be proved to exist.

finalisation: for each concrete state that corresponds to some abstract state,
where the concrete state finalises to global state G (and it must finalise), the
corresponding abstract state must finalise to the same global state.

R Fpre CFin
R; CFin = AFin
For each concrete output that corresponds to some abstract output, where the

concrete output finalises to global output Gy (and it must finalise), the corre-
sponding abstract output must finalise to the same global output.

Ry F pre CFim
Ry; CFiny F Ame

7.3 Backward rules

The backward rules are sketched in figure 9.

initialisation: for each concrete initial state obtained from some global state,
that has a corresponding abstract state, that abstract state must be obtainable
from the same global state.

G+ pre Clnit

Clnit; R’ + Alnit
For each concrete input obtained from some global input, that has a correspond-
ing abstract input, that abstract input must be obtainable from the same global
input.

Go - pre Clnit,

C[nit7; R7 F Alnit7



applicability: whenever it is possible to perform the abstract operation from
all the abstract states and inputs corresponding to a chosen concrete state and
input, then 1t must be possible to perform the concrete operation.

C; Cy | (VA; A2 | RA Ro e pre AOp) F pre COp

correctness: for any abstract state A’ corresponding to the after state C'
reached from C by the concrete operation, there must be an abstract state A
that both corresponds to C and is related to A’ by the abstract operation.

C; Cy | (VA; A2 | RA Rr e pre AOp)
FY R R | COpe3A; A»e RA Ry A AOp

When AOp is a total operation, this obligation reduces to
COp; R'; Ry-3A; A e« RAR: AN AOp

finalisation: for each concrete state that finalises to a global state G, there
must be a corresponding abstract state that finalises to the same global state.

R Fpre CFin
CFint3AeRAAFin

For each concrete output that finalises to a global output G, there must be a
corresponding abstract output that finalises to the same global output.

Ry F pre CFim
CFinn -3 A ¢ Ry A AFiny

8 Summary

We have been able to prove the correctness of the refinement of a real industrial
product, working to real development time scales. In the process, we uncovered
a security flaw in one part of the system design, and identified the corrections
needed.

In the process of showing that it is possible to do Z refinement on an industrial
scale and in an industrial context, we have learnt some lessons about how such
a development can usefully be carried out. These lessons centre around the
tension between two forces: the force driving one toward greater mathematical
and aesthetic precision; and the other the desire to ‘just do it’ and achieve
something useful for the project.

It is not possible to say that it is always better to follow the line of formality,
or to say that it is always better to be strictly pragmatic. In some cases one
decision must be made, and in other cases another. The guiding principle is
usually the question of addressing the weakest link. Asking the question: “If
I had only a week to complete this project, will I give greater assurance of



correctness 1f I get this part more mathematically justified, or if I do proofs for
more of the system, or if I present this more neatly, or ...”

A realistic assessment of this question will sometimes force you to get the
maths right (no assurance is achieved if you don’t know that your proof tech-
niques work) and will sometimes force you to use the inelegant tools you have
(no assurance is achieved if you prove nothing about the actual system in hand).

We achieved a very high level of rigour in our proofs. The proofs are far
more detailed than typical proofs done in general mathematics. Despite this the
formal methods activity was never on the critical path of the development. The
formal methods component was usually ahead of schedule, and never caused a
delay in development.

The success of this project has lead the client to do formal development, at
the same level of rigour, on further products they are developing.

The proofs are also built on very sound theory: we investigated the founda-
tions of the proof rules in great detail.

As a byproduct of doing these proofs, we have also improved the foundations
of 7 refinement rules. We have explained how the traditional Z data refinement
proof obligations are the result of making certain simplifying assumptions, and
embedding the Z world of state, inputs and outputs in a relational model. Dif-
ferent assumptions lead to different refinement rules; for our own application, we
had to relax certain assumptions that go into deriving the Spivey rules in order
to prove that our particular concrete specification was indeed a refinement on
the abstract. We have presented here the actual proof obligations we discharged
in our own application.

Other teams may well find they have to relax different assumptions, provide
different computational models, or different totalisation embeddings, in order to
prove their own refinements. ([Cooper et al.] will provide a detailed description
of the precise derivations, in order that others may derive their own appropriate
refinement proof obligations.)
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