
DOI 10.1007/s00165-011-0216-1
BCS © 2011
Formal Aspects of Computing

Formal Aspects
of Computing

Atomicity failure and the retrenchment
atomicity pattern
Richard Banach1, Czesław Jeske1, Anthony Hall2, Susan Stepney3

1 School of Computer Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
E-mail: banach@cs.man.ac.uk, cjeske@cs.man.ac.uk
2 Independent Consultant, Oxford, UK. E-mail: anthony@anthonyhall.org
3 Department of Computer Science, University of York, Heslington, York YO10 5DD, UK. E-mail: susan.stepney@cs.york.ac.uk

Abstract. The issues surrounding the question of atomicity, both in the past and nowadays, are briefly reviewed,
and a picture of an ACID (atomic, consistent, isolated, durable) transaction as a refinement problem is pre-
sented. An example of a simple air traffic control system is introduced, and the discrepancies that can arise when
read-only operations examine the state at atomic and finegrained levels are handled by retrenchment. Non-ACID
timing aspects of the ATC example are also handled by retrenchment, and the treatment is generalised to yield
the Retrenchment Atomicity Pattern. The utility of the pattern is confirmed against a number of different case
studies. One is the Mondex Electronic Purse, its protocol treated as a conventional atomic transaction. Another
is the recovery protocol of Mondex, viewed as a compensated transaction (leading to the view that compensated
transactions in general fit the pattern). A final one comprises various unruly phenomena occurring in the imple-
mentations of software transactional memory systems, which can frequently display non-ACID behaviour. In all
cases the Atomicity Pattern is seen to perform well.

Keywords Atomic actions, Refinement, Retrenchment, Air traffic control, Mondex, Compensated transactions,
Software transactional memory.

1. Introduction

Atomicity is by no means a new issue in the design of computer systems: insights about mutual exclusion primitives
and their consequences have developed since the earliest days of the subject [BA82, Ray88, LMWF94, Lyn96].
The deepening understanding of atomicity mechanisms led to the development of efficient distributed operating
systems [SBG05, HB03, CDK05], and bolstered with maturing knowledge about data representation, has led
to the flowering of a database industry offering products which are sufficiently reliable, and sufficiently easily
usable, that they now occupy mission critical positions in many organisations [BHG87, GMUW03, EN03, CB04,
Lon04, ZBM03]. The vast information resources available on the web provide ever increasing opportunities for
applications in all spheres to benefit from a distributed approach.

Correspondence and offprint requests to: R. Banach, E-mail:banach@cs.man.ac.uk.

R. Banach et al.

The watchword of the implementation of an atomic action in these paradigms is the ACID (atomic, consis-
tent, isolated, durable) transaction [JK97]. This provides the default goal to which implementations now aspire,
providing the maximum possible conceptual clarity for the transaction concept, convenient for higher levels of
applications.

At the heart of the atomicity question is some notion of refinement. One has a picture of a task, performed
atomically at the abstract level, but broken up into fragments, usually co-operating via a protocol, at a more
concrete level. The two are supposed to achieve the same ends, so the concrete level ought to be some sort of
refinement of the abstract level. Now it is not the job of this paper to get embroiled in a discussion of the variety
of possibilities for, or optimal formulation(s) of refinement, for achieving the proposed tieup between abstract
and concrete levels. Many formulations exist for capturing one notion of refinement or another, and each can
have its merits weighed, when confronted with the present challenge—in fact many of the possibilities that exist
are adequate to the task. In this paper we will, as needed, make use of the results of one particular detailed study
of the problem [BS08b, BS08a], one whose precise results prove to be especially convenient for our purposes since
they integrate so well with the problems studied here.

In the ideal ACID-refinement-based formulation, the protocol always either runs to a successful conclusion, or
the whole attempt gets wiped, leaving no trace. Nowadays however, although the ACID ideal is still highly prized,
the necessity to relax some or all of its precepts to avoid excessive performance penalties is widely recognised.
This is prompted by scenarios such as web services [Pap07, WS], long-lived workflows [GG, EL97, SGMA89],
and highly concurrent and highly distributed environments [JK97].

Our aim in this paper is to illustrate the capabilities of retrenchment [RET, BPJS07, BJP08, BP00, BP03, PB03]
in dealing with the various kinds of circumstance which arise that can spoil the ideal ACID based refinement
view of atomicity. On the one hand, the ‘atomic action refined to distributed algorithm’ perspective generates a
strong pull to find common structure across many such situations. On the other, the necessity of departure from
the ideal can arise in a myriad ways, leading to a proliferation of incompatible special cases if a common account
is pitched at an inappropriate level. It turns out that retrenchment can provide a vehicle for capturing a useful
degree of commonality across such situations, while leaving room for incompatibilities regarding specific details.

The commonality arises via the retrenchment Atomicity Pattern, which we introduce and explore in this paper.
This is an arrangement of refinements and retrenchments that we show is common to atomicity situations. The
idea is developed in the remainder of this paper as follows.

We start by outlining the formulation of refinement and retrenchment used in this paper in Sect. 2. In Sect. 3
we then introduce our main example, a pidgin air traffic control (ATC) display application, abstracted from the
CDIS development [Hal96], in which critical pieces of information must reach a family of displays in the correct
order (and ultimately in a timely fashion). An ‘ideal specification’ of this is atomic; a ‘more realistic specification’
captures some of the realities of asynchrony and of constraints on timing delays. The gap between them is bridged
by a series of small retrenchments. (The small size of the model evolution steps is rather reminiscent of the Event-B
approach [Abr03, ACM], and of many practical ASM refinements [BS03, Bör03].) In Sect. 4 we indicate how one
might proceed towards an implementation from such a starting point. In Sect. 5 we abstract from the phenomena
introduced thus far, to present a general structure for capturing a whole class of similar situations involving
atomicity, its refinement, and its possible breakdown. This is the Atomicity Pattern itself. In Sect. 6 we confront
the Atomicity Pattern with a different scenario, namely the atomicity issues arising in the refinement development
of the Mondex Purse [SCW00, WSC+08], and we see that the proposed structure can account adequately for
the phenomena in Mondex. In Sect. 7 we explore compensated transactions, which are (in principle long lived)
transactions accompanied by ‘compensations’. The latter are invoked when the main transaction aborts, in order
to not have to undo potentially large amounts of useful work accomplished already, and also to deal with the
consequences of side effects in the environment that cannot be rolled back. A reinterpretation of Mondex failed
transactions (which in the original Mondex picture are viewed as another kind of successful transaction), proves
to be a nice vehicle for such compensated transaction notions, and we see that the Atomicity Pattern fits the
bill here too. In Sect. 8 we briefly explore transactional memory models, and see that some of the phenomena
encountered there also fit the Atomicity Pattern bill rather well. Section 9 recapitulates and concludes.

N. B. Aside from when it is occasionally necessary to stray into notational paradigms appropriate to other
specialised application areas, we express all our models using the Z notation, for its relative conciseness (which
we amplify by taking occasional notational liberties).

Atomicity failure and the retrenchment atomicity pattern

2. Refinements and retrenchments

In this section we briefly review the notions of refinement and retrenchment used in the remainder of the paper. We
give these in Z [ISO02, Spi92, WD96, DB01] since that is the vehicle for the majority of the examples we discuss.
For refinement, we adapt slightly the formulation in [CSW02] as used in the Mondex development [SCW00]. The
retrenchment rules are adapted to fit conveniently with the refinement ones. It will suffice to quote the forward
rules for refinement and retrenchment.

The context of the rules for both refinement and retrenchment is a pair of (abstract and concrete) ADTs:
(A,AInit, {AOp,AIOp,AOOp | Op ∈ OpsA}), and (C ,CInit, {COp,CIOp,COOp | Op ∈ OpsC }). Here A is
the abstract state schema, AInit is its initialisation, and for Op ∈ OpsA, we have the operation schemas and
their input space and output space schemas: AOp,AIOp,AOOp . Similarly, for the concrete side, we have C the
concrete state schema, with CInit its initialisation, and for Op ∈ OpsC , we have the operation schemas and their
input space and output space schemas: COp,CIOp,COOp .

For refinement, the two ADTs are related by the retrieve relation RA,C on states, and on a per operation basis,
the input and output relations RIA,C ,Op and ROA,C ,Op, which relate the abstract and concrete input spaces and
output spaces respectively. For refinement we stipulate that OpsA ⊆ OpsC , but such that any Op ∈ OpsC −OpsA
is a refinement of a corresponding unstated abstract operation whose definition is skip on the abstract state
schema A.

Forward refinement is given by three main proof obligations (POs), initialisation, applicability and correctness:

∀C ′ • CInit ⇒∃A′ • AInit ∧R′
A,C

∀A; AIOp ; C ; CIOp • RA,C ∧RIA,C ,Op ∧ pre AOp ⇒ pre COp

∀A; AIOp ; C ; CIOp ; C ′; COOp • RA,C ∧RIA,C ,Op ∧ pre AOp ∧COp ⇒∃A′; AOOp • AOp ∧R′
A,C ∧ROA,C ,Op

For purposes of intuition, we can say the following. The initialisation PO ensures that the starting condi-
tions of the abstract system correspond appropriately to those of the concrete system. The applicability PO then
demands that if an abstract operation may be called (from some abstract before-state and input), then the cor-
responding concrete operation can also be called from a matching concrete before-state and input. Finally, the
correctness PO demands that when a call of a concrete operation completes, yielding a specific after-state and
output, then there is an abstract after-state and output that matches the concrete ones, and this after-state and
output pair could have been yielded by a call of the abstract operation from the matching before-state and input.

For retrenchment, the two ADTs are related by the retrieve relation RA,C on states as before, and on a per
operation basis, the within, output, and concedes relations WA,C ,Op,OA,C ,Op, and CA,C ,Op . For retrenchment
OpsA ⊆ OpsC , and there is no restriction on operations in OpsC − OpsA.

Two POs define a retrenchment between two models: initialisation and correctness:

∀C ′ • CInit ⇒∃A′ • AInit ∧R′
A,C

∀A; AIOp ; C ; CIOp ; C ′; COOp • RA,C ∧WA,C ,Op ∧COp ⇒∃A′; AOOp • AOp ∧ ((R′
A,C ∧OA,C ,Op)∨CA,C ,Op)

Note that applicability issues are subsumed via the within relation, thus we assume also that the following
well-behavedness PO holds:

∀A; AIOp ; C ; CIOp • RA,C ∧WA,C ,Op ⇒ pre AOp ∧ pre COp

On an intuitive level, we can describe these POs as demanding the following, which is to be compared with the
above remarks for refinement. Initialisation is identical. For correctness, the within relation, which is a (n otherwise
unrestricted) relation over all before-state variables and inputs, gives the capability of narrowing the focus of what
the PO speaks about; this may be appropriate in case the abstract and concrete systems are too different to allow
a full comparison, or a full comparison is inappropriate for some other reason—in any event the use of a within
relation such that RA,C ∧WA,C ,Op is properly stronger than pre AOp ∧ pre COp (that the former merely implies
the latter being well-behavedness itself) ought to be fully validated against the external requirements. The output
relation is over all variables of the abstract and concrete transitions. The permitted presence of all of the variables
(i.e. outputs and after-states, and including before-states and inputs, if required) allows properties stronger than
the mere conjunction of the retrieve relation on after-states with a relation on outputs to be expressed—such
a possibility plays a vital role in the retrenchment-enhanced refinements (RE-Refs) of the Atomicity Pattern below.

R. Banach et al.

Finally, the concession allows a description to be made (while still remaining within the remit of the formal frame-
work) of the state of affairs that results when a pair of corresponding transitions is unable to reestablish the retrieve
relation on after-states—again, the allowed presence of all of the variables maximises the expressive power.

As well as the POs, which are useful for establishing the retrenchment, we will be interested in the associated
simulation relation for the operation Op, which holds when the hypothesis and conclusion of the correctness PO
hold, avoiding the ‘don’t care’ discharge of the PO.

�A,C ,Op ≡ RA,C ∧WA,C ,Op ∧COp ∧AOp ∧ ((R′
A,C ∧OA,C ,Op) ∨CA,C ,Op)

The truth of �A,C ,Op implies genuine AOp and COp transitions that make the retrenchment data true in a
suitable way, unlike the PO itself. Obviously there is an analogous notion for refinement, but we will not need it.

3. The abstract pidgin ATC system

In an air traffic control system, there is (among other things) a family of workstations WS , at which the air traffic
controllers sit and do their work. The workstations display a variety of items of information to the controllers,
some of them more critical than others. For the most critical items, correct ordering and timeliness are important
issues: the controllers must be made aware of changes in the critical items as they occur, within a tightly controlled
LATENCY , so that safety in the aerodrome is not compromised.

For simplicity, we assume that there is just one critical item, the QNH value (modelled as a natural number
say), and that this is the only item on the workstation display. For an air traffic control system this is, admittedly,
a rather drastic simplification.

The system ideal is atomic update of all the displays, so we can build an abstract A model consisting of a
single QNH value, updated by an ANewQnh operation, and observed by an AShowWs operation which outputs
the QNH value displayed on each workstation:1

Aworld
Aqnh : QNH

ANewQnh
�Aworld
Aqnh? : QNH

Aqnh ′ � Aqnh?

AShowWs
Aworld
Adisp! : WS → QNH

Adisp! � WS × {Aqnh}

The atomicity of the ideal model is reflected in the fact that AShowWs always outputs a constant function.
However, the reality is that the updates to the system QNH value are broadcast to the individual workstations
over a network. This generates transmission delays, and the various tolerances in the system cause these to be
observable, within limits. These aspects require a more detailed model than the ideal A model, and we approach
the construction of the appropriate ‘realistic specification’ in a number of steps.

First we build the AH model, which just includes history information:

AHworld
AHhist : seq1 QNH

AHNewQnh
�AHworld
AHqnh? : QNH

AHhist ′ � AHhist � 〈AHqnh?〉

AHShowWs
AHworld
AHdisp! : WS → QNH

AHdisp! � WS × {last AHhist}

1 N.B. Each model-specific schema and variable is prefixed by a letter or two indicating the relevant model: A for abstract, AH for A with
history, AA for A with asynchrony, AT for AA with time, C for concrete, and D is the alphabetic successor of C.

Atomicity failure and the retrenchment atomicity pattern

With suitable initialisations, it is not hard to see that the A and AH models are interrefinable under (equality
output relations and) the retrieve relation:

RA,AH

Aworld
AHworld

Aqnh � last AHhist

Next, we build the AA model. This introduces some asynchrony into the system by allowing the AAShowWs
operation (which corresponds to the AHShowWs operation in the previous model) to output a selection of val-
ues from the history. The only restriction on these is that displaying QNH values out of order is forbidden. This
constraint is satisfied by keeping a record of the current QNH value for each workstation, and allowing it to
advance using the new operation AAWsUpdate:2

AAworld
AAhist : seq1 QNH
AAseq : WS → N

ran AAseq ⊆ dom AAhist

AAWsUpdate
�AAworld
AAws? : WS

(AAseq ′ AAws?) ≥ (AAseq AAws?)
RestSame......

AANewQnh
�AAWorld
AAqnh? : QNH

AAhist ′ � AAhist � 〈AAqnh?〉
RestSame......

AAShowWs
AAworld
AAdisp! : WS → QNH

AAdisp! � AAseq o
9 AAhist

Although we managed to relate the A model and the AH model using refinement (as formulated in Sect. 2), this
time, our conventional refinement notion is too demanding to describe the relationship between the AH model
and the AA model, since the outputs of the two ShowWs operations do not match up according to any plausible
output relation that we could imagine drawing up.3 We need the greater flexibility of retrenchment to capture
what is going on. The retrenchment needed is given by the retrieve relation RAH ,AA and the output relation for
ShowWs, with all other retrenchment data trivial:4

OAH ,AA,ShowWs

AHworld ′
AAworld ′
AHdisp! : WS → QNH
AAdisp! : WS → QNH

AAdisp! � AAseq ′ o
9 AAhist ′

AHdisp! � WS × {last AAhist ′}

RAH ,AA

AHworld
AAworld

AHhist � AAhist

A retrenchment output relation generalises a refinement one, in the sense that it can refer to the state variables in
relating the observed outputs, whereas a refinement output relation cannot do so. This extra flexibility is needed
here: the AH output is the constant value resulting from the latest atomic update, whereas the AA output is a
selection of potentially older values from the system history, since there may be some workstations which are not
completely up to date.

2 Henceforth, in Z schemas, the phrase RestSame...... means that any other variables in scope but not explicitly assigned to in the schema
are to remain unchanged, something typically handled less tersely in legal Z by including a suitable � schema for the unaffected variables
inside the main schema to specify the lack of change of the unaffected variables.
3 Beyond this, the AA operation AAWsUpdate, does not correspond to any AH model operation. However, we can allow this in a refine-
ment if the new operation refines an (unstated) AH model operation whose body is skip. Now since AAWsUpdate only manipulates the AA
variable AAseq, which is invisible (via the retrieve relation RAH ,AA) to the AH model, the AAWsUpdate operation will indeed refine skip.
See Sect. 2 for more details.
4 That is given by identities on inputs and outputs, false for concessions.

R. Banach et al.

The retrenchment just introduced is of a special kind, which we call a RE-Ref since it falls short of being a
refinement by the smallest of margins, namely that its output relation needs to be more complicated than just a
simple relation between the output spaces. Although it is more complicated, the additional complexity is itself
highly constrained. We can define an RE-Ref more precisely thus:

Definition 3.1 A RE-Ref is a retrenchment with data as follows. The retrieve relation is a relation between the
state spaces only (as usual). For all operations Op the following hold. The within relation is a relation between
input spaces only (i.e. it is given by a predicate that does not mention the before-states). The concession is trivial
(i.e. it is given by the predicate false). The output relation is a relation between output spaces and after-states
only, constrained in the following manner. There is a (partial) function REfA,C ,Op from after-states to outputs,
such that REfA,C ,Op is implied by �A,C ,Op, and REfA,C ,Op implies OA,C ,Op .

REfA,C ,Op : A′; C ′ �→ AOOp ; COOp

�A,C ,Op ⇒REfA,C ,Op

OA,C ,Op : AOOp ; COOp ; A′; C ′

REfA,C ,Op ⇒OA,C ,Op

In a nutshell, whatever the output relation says, must be derivable from a functional relationship from after-
states to outputs.

We see that if we completely removed the outputs from the systems, we would have a perfectly good refinement,
and the observed relationship between the outputs that we actually have in the two systems would be derivable
from it. Putting it another way, if it is only such asynchrony that a change of model is introducing, then the true
information contained in the state histories of the models is not being lost, and so any disagreement in the outputs
of read-only operations on the states should be explicable from the state histories themselves; i.e. the change of
model indeed ought to be capable of being described by an RE-Ref as we defined it above.

Of course, similar observations apply when it is the inputs at stake rather than outputs. In that case the
asynchrony considerations mean that corresponding inputs arrive at different times in the two models. This
can be handled in the within relation of the later occurring of the two operations, as follows. The functional
relationship REfA,C ,Op : A′; C ′ �→ AOOp ; COOp of Definition 3.1 is removed (the output relation revert-
ing to a relation on outputs alone, as befits a refinement), and the within relation acquires a corresponding
functional relationship from before-states to inputs (which we will also refer to as REfA,C ,Op for simplicity):
REfA,C ,Op : A; C �→ AIOp ; CIOp, with �A,C ,Op implying REfA,C ,Op as before, and WA,C ,Op implying
REfA,C ,Op . A case in point of such behaviour is to be found in Sect. 6.5

The utility of RE-Refs in handling issues of asynchrony is the first contribution that retrenchment makes to
the atomicity arena in situations where atomicity in the very strictest sense does not quite hold up.

The next step in the development of the ATC system is to introduce the time aspect, so that we can bring
the asynchrony under control. This leads to the AT model, containing an ATtimenow variable with values in
TIME (which we model using the naturals in this paper, but which could be any totally ordered set), and where
ATtimenow is updated by an ATTick operation. Also each update of the QNH value is timestamped, with the
values being recorded in the AThisttime variable (which is thus also totally ordered):

TIME �� N

ATworld
AThist : seq1 QNH
ATseq : WS → N

ATtimenow : TIME
AThisttime : seq1 TIME

dom AThist � dom AThisttime
ran ATseq ⊆ dom AThist
∀ i , j : dom AThisttime • i ≤ j |

AThisttime(i) ≤ AThisttime(j)
last AThisttime ≤ ATtimenow

ATTick
�ATworld

ATtimenow ′ � ATtimenow + 1
RestSame......

ATWsUpdate
�ATworld
ATws? : WS

(ATseq ′ ATws?) ≥ (ATseq ATws?)
RestSame......

5 Although it may seem strange to have inputs (which are normally freely assigned) functionally dependent on state (which is normally
invisible), we recall that the abstract system, the one synchronising late, is having its behaviour designed to simulate the behaviour of the
concrete system, for which the corresponding ‘freely assigned’ input has occurred earlier, and has been appropriately remembered in the state.

Atomicity failure and the retrenchment atomicity pattern

ATNewQnh
�ATworld
ATqnh? : QNH

AThist ′ � AThist � 〈ATqnh?〉
AThisttime ′ � AThisttime � 〈ATtimenow〉
RestSame......

ATShowWs
ATworld
ATdisp! : WS → QNH

ATdisp! � ATseq o
9 AThist

Thus far we have a straightforward superposition refinement [BKS83, FF90, Kat93] of the AA model, since we
have just added some new data and operations, and no new observations of the new data. All the old data and
operations remained unchanged. A retrieve relation that simply forgets the time in abstracting from the AT model
easily proves the refinement.

However this is not enough. We need to distinguish well behaved workstations from badly behaved ones.
The former get their updates done within LATENCY timesteps, the others don’t. A well behaved workstation
satisfies:

ATWellBhWs
ATworld
ws? : WS

∀ sq : dom AThist
∖

(1 .. ATseq ws?) • ATtimenow − (AThisttime sq) ≤ LATENCY

i.e. all its unprocessed updates were introduced at most LATENCY ago. We want the refinement part of the
eventual relationship between the AA and AT models to insist that all workstations are well behaved:6

RAA,AT

AAworld
ATworld

AAworld “ = ” ATworld
∀ws? : WS • ATWellBhWs

To deal with the (small but nonzero) possibility that network delays turn out to be greater than desirable, leading
to the failure of the retrieve relation, we need more of the expressivity of retrenchment. It is actually the innocuous
ATtick operation we need to focus on, since it is the passage of time which causes workstations to become badly
behaved. At this point we stub our toe on a small retrenchment pebble.

Since there is no Tick operation in the AA model, normal retrenchment policy dictates that there will be no
retrenchment data (i.e. within, output or concedes relations) associated with Ttick . The normal policy is justi-
fied by observing that genuinely new operations introduced during a model evolution step, will concern aspects
absent from the prior model, and thus any attempt to relate them to the prior model are likely to appear artificial.
However, the passage of time may reasonably be taken as a universal (if usually unstated) feature of models, so
that viewing the present case as a retrenchment of an unstated skip is entirely justified. This understood, the
retrenchment’s within and output relations can be trivial, the concession being where the interest lies:

CAA,AT ,Tick

�AAworld
�ATworld

∀ws? : WS • ∃ sq : dom AThist
∖

(1 .. ATseq ws?) • ATtimenow − (AThisttime sq) � LATENCY
⇒ ¬ ATWellBhWs ′

This shows that any workstation with a LATENCY -old update outstanding, will become badly behaved at the
next tick unless it is updated beforehand.

6 We use “ = ” between schemas to abbreviate a set of equalities between corresponding variables that differ only in the model-identifying
prefix.

R. Banach et al.

A

C D

U

AH AA AT

∗

Fig. 1. Models, refinements (vertical arrows), retrenchments (horizontal arrows), making up a commuting diagram of the ATC specification
development

We now have a route from the utterly atomic A model, to model AT, which abstracts the inevitable asynchrony
of an implementation, but which allows the quality of that asynchrony to be quantified via a retrenchment. The
A model specifies an unattainable perfection, while the AT model represents a more complex but more realistic
specification. Refinement alone can never reconcile these two widely separated viewpoints, but retrenchment can.

The retrenchment from A to AT itself is the composition of the A–AH refinement with the AH–AA and
AA–AT retrenchments [BJP08]. We omit the details of the calculation, save to say that the situation is sufficiently
straightforward, that the result is obtained by simply translating the variables occurring in the non-trivial bits of
the earlier retrenchments to those of the A and AT models, in the obvious way.

The retrenchment utilises the LATENCY parameter and permits a stochastic analysis of the circumstances
under which the relevant concession becomes valid. Such an analysis would consider a sample space of system
runs, constructed by taking into account the many external factors that influence the behaviour of the system,
but that lie outside of the formal model. The likelihood and severity of timing failures could then be derived.
The output of such an analysis can provide a useful negotiating pivot between customer and supplier—the cus-
tomer would be interested in a precise statement of what constituted timing failure and how often it occurred,
but the details of what happened subsequently would be more a matter for the supplier, taking into account the
higher level invariants demanded of the system. This scenario illustrates in miniature the second contribution
that retrenchment makes to the atomicity issue, namely the straightforward incorporation into a formal account,
of matters that make implementations of atomic actions insufficiently ACIDic.

What we have so far is the solid arrows of the upper layer of Fig. 1, which is a commuting diagram of vertical
refinements and horizontal retrenchments. These connect a family of models involved in our ATC development,
abstracted from CDIS [Hal96]. Customarily, the refinement component of the A–AT retrenchment (i.e. A–AH)
would enable the A–AT retrenchment to be lifted to generate a more abstract model U using results in [BJ09, Jes05].
However the fact that A and AH are interrefinable, means that nothing useful would be gained by doing this.

4. Towards an implementation of the pidgin ATC system

Considering the move towards an implementation of the ATC System, we refine our preceding models. We start
with model AA, since that is the first along the A–AT path which incorporates asynchrony, which is unavoidable
in any implementation. So as not to detract from the main focus of interest of the paper, our remarks will be
merely indicative rather than comprehensive. We sketch model C, a refinement of AA, and then model D, a
refinement of AT, connecting these two developments afterwards with a suitable retrenchment. Of course if we
were doing implementation for real, we would not do both. The discussion of the various possibilities is intended
to highlight the greater flexibility that the combination of refinement and retrenchment allows (compared with
using refinement alone), in treating the requirements in an order dictated by appropriateness for development
rather than theoretical constraint.

Model C’s ‘more realistic’ description of the system contains a family of workstations, each containing its own
portion of the system state; hence the map Cwsqnh.7 The network is modelled as an ‘ether’ of messages containing
QNH updates, to which individual workstations help themselves. To disambiguate and preserve order, we have
a sequence number type SQNO (modelled as a positive natural number say), and the ether thus becomes a map
Cethqnh from sequence numbers to QNH values. Each workstation keeps track of where it is up to with a local
copy of the latest sequence number it has processed (via the map Cwsseq).

7 This is best captured formally via Z promotion, though for brevity we will not use that here.

Atomicity failure and the retrenchment atomicity pattern

Cworld
Cmaxseq : SQNO
Cwsseq : WS → SQNO
Cwsqnh : WS → QNH
Cethqnh : SQNO �→ QNH

dom Cethqnh � 1 .. Cmaxseq
Cwsqnh � Cwsseq o

9 Cethqnh

CWsUpdate
�Cworld
Cws? : WS

(Cwsseq ′ Cws?) ≥ (Cwsseq Cws?)
RestSame......

CNewQnh
�CWorld
Cqnh? : QNH

Cmaxseq ′ � Cmaxseq + 1
Cethqnh ′ Cmaxseq ′ � Cqnh?
RestSame......

CShowWs
Cworld
Cdisp! : WS → QNH

Cdisp! � Cwsseq o
9 Cethqnh

Noting that SQNO �� N1, the reader will quickly realise that the C model that we have just built is (mathemat-
ically) little more than a slightly verbose restatement of the AA model, with an additional dependent variable,
Cwsqnh. Recognising this, we conclude that the C model will be interrefinable with AA. Obviously we could
contemplate more dramatic refinements of the AA model, but what we have done will suffice for purposes of
illustration.

Similarly, we can build a model D, refining AT. It follows the pattern established by the C model. Thus we
use the same sequence number type, and use it to index both QNH values and their timestamps. Otherwise, the
structure is as in the AT model.

Dworld
Dmaxseq : SQNO
Dwsseq : WS → SQNO
Dwsqnh : WS → QNH
Dethqnh : SQNO �→ QNH
Dtimenow : TIME
Dethtime : SQNO �→ TIME

dom Dethtime � dom Dethqnh � 1 .. Dmaxseq
Dwsqnh � Dwsseq o

9 Dethqnh

DTick
�Dworld

Dtimenow ′ � Dtimenow + 1
RestSame......

DWsUpdate
�Dworld
Dws? : WS

(Dwsseq ′ Dws?) ≥ (Dwsseq Dws?)
RestSame......

DNewQnh
�Dworld
Dqnh? : QNH

Dmaxseq ′ � Dmaxseq + 1
Dethqnh ′ Dmaxseq ′ � Dqnh?
Dethtime ′ Dmaxseq ′ � Dtimenow
RestSame......

DShowWs
Dworld
Ddisp! : WS → QNH

Ddisp! � Dwsseq o
9 Dethqnh

The two refinements AA–C and AT–D will be related not only by the AA–AT retrenchment, but by a retrench-
ment C–D. This latter retrenchment will be the obvious counterpart of the AA–AT retrenchment at the lower
level of abstraction of C and D. In detail, the retrenchment will depend on the C–D analogue of ATWellBhWs,
which asserts that all the unprocessed updates of a workstation were introduced less than LATENCY ago:

DWellBhWs
Dworld
ws? : WS

∀ sq : (Dwsseq ws?) + 1 .. Dmaxseq • Dtimenow − (Dethtime sq) ≤ LATENCY

R. Banach et al.

As before, the refinement part of the C–D retrenchment insists that all workstations are well behaved:

RC ,D

Cworld
Dworld

Cworld “ = ” Dworld
∀ws? : WS • DWellBhWs

The concession again polices the DTick event, singling out those workstations whose updates lag more than
LATENCY behind the arrival of unprocessed QNH values:

CC ,D,Tick

�Cworld
�Dworld

∀ws? : WS • ∃ sq : (Dwsseq ws?) + 1 .. Dmaxseq • Dtimenow − (Dethtime sq) � LATENCY
⇒ ¬ DWellBhWs ′

We can complete the details of the retrenchment with trivial within and output relations. Using the techniques
elaborated in [BJP08], we can then calculate the composition of the AA–AT retrenchment with the AT–D refine-
ment, and compare it with the result of calculating the composition of the AA–C refinement with the C–D
retrenchment. In the simple situation that we have here, these turn out to be the same. Thus we have the com-
muting square of retrenchments and refinements shown in the lower right half of Fig. 1.

In fact, commuting squares such as this can be built not only by hand, as we indicated above, but also using
generic constructions such as are described in [BJ09, Jes05]—specifically we would need the Postjoin Theorem
from one or other of these references. Typically, the relevant theorem constructs a system that ‘completes the
square’ in a generic way, up to a notion of universality that invariably includes inter-refinability; in other words we
can replace the generically constructed system by one inter-refinable with it without losing any of the properties
of the construction, a useful property that helps keep the ‘square completing’ system looking close to applica-
tions level concerns. Obviously, one could develop the C and D models even further towards implementation by
making the modelling increasingly realistic.

The above takes care of the lower layer of Fig. 1, aside from the model labelled ‘*’. Model ‘*’ refines AH and
is retrenchable to C. It can be obtained via the lowering construction in [BJ09, Jes05] from AH, AA, C and their
relationships, or independently, again yielding a commuting square. The fact that AA and C are interrefinable,
means that ‘*’ contains nothing new beyond AH, and the fact that its workstation updates must be atomic, means
that it is unrealistic.8

5. The retrenchment atomicity pattern

The last few remarks indicate that a protocol implementation at the most abstract level possible9 has to be refin-
able from the C model, not from the A model. And yet the A model captures the most transparent expression
of what one would like the protocol to do, so it would be regrettable if we had to exclude it from a rigorous
development. The way to reconcile these views, is to pursue the suggestion that an RE-Ref can indeed be usefully
viewed as a kind of refinement, rather than as a retrenchment, which, strictly speaking, it is. Taking this view
straightens out the composition along the path A–AH–AA–C into an RE-Ref, collapsing the left hand part of
Fig. 1 as it does so. The resulting RE-Ref from A to C now expresses, as an almost-refinement, a useful change
in modelling perspective, depicted in the vertical direction. Moreover, incorporating the ACIDity losing aspects
of the retrenchment from model C to model D via the composition A–C–D, and then performing the lifting
construction from [BJ09, Jes05], results in a model U entirely equivalent to the one constructed before, since
the overall composition A–C–D yields the same composed retrenchment from model A to model D as obtained
previously.

8 Unrealistic because of the interpretation of the model as a distributed system, rather than any mathematical difficulty.
9 That is incorporating the fewest constraints while retaining implementability.

Atomicity failure and the retrenchment atomicity pattern

A

C D

U

RE-Ref

Ret

Ret

Ref

Fig. 2. The Atomicity Pattern

This is a useful observation since it is often initially easier to express the ACIDity losing aspects of some devel-
opment within a more concrete model than in a more abstract one, since the ACIDity losing aspects are often
centred on lower level details (relatively speaking), and the way that these are reflected at more abstract levels is
not always entirely obvious. A collection of models A, C, D, U, and their interconnection via two retrenchments, a
refinement and an RE-Ref, as above, constitutes the retrenchment Atomicity Pattern; see Fig. 2. We claim that this
arrangement recurs frequently in situations featuring loss of atomicity, and thus deserves to be highlighted—a
claim we support in the rest of the paper.

Referring to Fig. 1, we see that Fig. 1 is an instance of the Tower Pattern [BPJS]. This makes the Atomicity
Pattern a special case of the Tower. However, a number of features make the Atomicity Pattern deserve to be
singled out specially.

First and foremost, is the use of RE-Refs (specifically avoiding more general kinds of retrenchment) in the left
hand side of the diagram—this collapses the zig-zag that would result if the retrenchment aspects were singled
out as such there. The pure loss of atomicity implicit in the fact that we have an atomic action at one level of
abstraction which is refined to a multi-step protocol at another, means that the abstract and concrete states will be
adrift of the ‘not in the middle of the protocol’ ideal form when the protocol is actually running. This situation has
been thoroughly studied in [BS08a, BS08b], and the precise relationships between possible abstract and concrete
states during a protocol run are now well understood.10 The fact that the concrete level is still a refinement (in the
strict sense) of the abstract level in the absence of I/O, means that the states differ, but that they differ only in a
very controlled way. This close, yet non-ideal relationship between the states, means that any observed operation
inputs and outputs which are related to those state values will also be in a close, yet non-ideal relationship. For
this reason, the very restricted RE-Refs are sufficient for this kind of situation.

Second, is the fact that the fairly large gap between the A and C models encourages us to take a broad
perspective on how an atomic and a non-atomic model ought to be synchronised. Following the line developed
in [BS08a, BS08b], the synchronisation mechanism is in fact captured in the retrieve relation between the two
models. Considering our example, the finegrained path A–AH–AA–C strongly suggests an early synchronisation;
i.e. in each protocol run, ANewQnh is synchronised (via the retrieve relation) with CNewQnh,11 with the rest of
the concrete protocol following behind. This gives a refinement from the A model to the C model with retrieve
relation RA,Cearly

below. However, this is but one possibility.
In general, the single step of an atomic protocol can be mapped to practically any step of a concrete proto-

col which implements the atomic one, provided the various (in general nondeterministic) outcomes of the two
descriptions match up via the retrieve relation (see [BS08a, BS08b] for details). Different choices merely lead to
different retrieve relations between the two models.12 As an example, consider a late synchronisation option in our
CDIS example. This matches ANewQnh with the last CWsUpdate in a protocol run, identified via CWsUpdatelast
below, and implicitly requires that CNewQnh and all earlier occurrences of CWsUpdate become refinements of

10 In [BS08a, BS08b], there was no concept of loss of atomicity, so suitably designed notions of refinement could cope, without any need
for retrenchment. In the present context, the different kinds of synchronisation that refinement permits us to have, inform the kinds of
retrenchment one might need to handle loss of atomicity.
11 Many conventional refinement notions demand that abstract operations are refined by operations with the same name. However this is just
a technical convenience, and is easily generalised to the case where for each concrete step of interest, one can identify a step of some abstract
operation of which it is a refinement; official Z refinement is like this. Our discussion presupposes this generalisation where necessary.
12 Observe an interesting phenomenon. When a refinement preserves the atomicity, i.e. abstract and concrete steps match up 1–1 in related
runs, it is usually the case that the retrieve relation is ‘obvious’—there is essentially only one choice that makes sense. The situation changes
dramatically when atomicity is not preserved. Then, the variety of possible synchronisations leads to a variety of accompanying retrieve
relations. Moreover, rarely is any of them ‘obvious’, even though, according to the results of [BS08a, BS08b], they can all be mechanistically
calculated from the details of the chosen synchronisation.

R. Banach et al.

abstract skips. Such a synchronisation is given by retrieve relation RA,Clate
. (N.B. In our example, both early and

late formulations of the refinement are forward simulations, since the broadcast protocol is deterministic; i.e. all
the workstations always get successfully updated (assuming weak fairness). In general, early synchronisation
requires backward simulation to handle nondeterminism after the synchronisation point. See [BS08a, BS08b]
again for the technical details.)

RA,Cearly

Aworld
Cworld

Aqnh � Cethqnh Cmaxseq

RA,Clate

Aworld
Cworld

Aqnh � Cethqnh(min ran Cwsseq)

CWsUpdatelast
CWsUpdate

∀ws : WS • ws �� ws? ⇒ (Cwsseq ws) > (Cwsseq ws?)

Third, is a fact prompted by the preceding parenthetic remark. The detailed complexities of simulations in which
the concrete state is matched to the abstract state after each concrete step of the protocol, can be largely avoided
if we take a more coarse grained approach to refinement, à la ASM refinement [BS03, Bör03, Sch01, Sch05].
Here, the refinement becomes insensitive to state values in the middle of a concrete protocol run, and the retrieve
relation is only required to match up abstract and concrete states at the beginning and end. This en bloc approach
can yield considerable simplifications in the description of a single run of the protocol, but makes the description
of interleaved concurrent protocol runs by independent agents rather more problematic.

In our example, ANewQnh together with a suitable collection of AShowWss would be refined en bloc to an
entire concrete protocol run with suitable CShowWss interspersed. Done properly, this would make the previ-
ously observed discrepancies between abstract and concrete outputs disappear, since the coarser grain would
enable us to schedule the abstract and concrete ShowWss so that they matched up, the details of the scheduling
being concealed in the interior of the coarse grained refinement. We do not give the details here, due to the
technical complexity of dealing with the many interleavings of independent updates. This approach gives further
encouragement to the view that an RE-Ref is after all a sensible species of refinement.

6. The mondex purse, as atomic action

Having developed the Atomicity Pattern, in this section we confront it with a different but nevertheless realistically
grounded example, the Mondex Purse, to verify the genericity of the description of atomicity situations that it
furnishes.

The Mondex Purse is a smartcard electronic purse for containing genuine money, and as such, is a security
critical application. The 1990s development of Mondex was the among the first of such developments to achieve
the highest possible ITSEC rating of E6 (see [WSC+08]), equivalent these days to a Common Criteria rating of
EAL7 [Dep91]. The ITSEC E6 rating requires there to be an abstract model, a concrete model, and a proof of
correspondence between them. For Mondex, the proof was a manual refinement proof between two Z models,
an abstract model and a concrete model. The details of the Mondex project as a whole are commercially sen-
sitive. However, in a rare departure from the usual practice regarding commercially sensitive developments, a
desensitised public version of the less sensitive and intellectually more interesting parts of the development was
produced in [SCW00]. The development in [SCW00] remains an impressive achievement, and a trailblazer for
showing that fully formal techniques could be applied within realistic time and cost limitations on industrial scale
applications.

More recently, the Mondex refinement proof was adopted as the first case study in the Verification Grand
Challenge; see [JOW06, Woo06, WB07]. In this, the objective was to redo the previously hand-done proofs using
state of the art verification tools. The first such attempt to be successfully carried through to completion was by
the Augsburg group [SGHR06, SGH+07]. Reports of successful treatments by other groups soon followed, and
the results of a variety of approaches to the task are reported in [JW08]. These not only attest to the viability of
doing such developments in a fully mechanised manner, but also confirm the solidity of the original manual proof.

Atomicity failure and the retrenchment atomicity pattern

To purse

From purse

CStartTo

CStartFrom

idle

idle
epr

epv

epa

idle

idleCReq CAck

CVal

req val ack

Fig. 3. The Mondex Concrete Protocol

Despite the above, the exigencies of refinement caused a number of issues to be treated in a less than ideal
manner in Mondex. In the actual (commercially sensitive version of the) development, these were dealt with via
informal arguments, which fully justified the positions taken on the issues in question. Nevertheless, a suitably
formal treatment would obviously have been better, not least because a proper formalisation opens the way to
mechanically checking the arguments made, with a consequent improvement in dependability. This being the case,
as well as its amply borne out prospects for mechanical verification, Mondex provides a superb platform for testing
out the efficacy of the retrenchment approach to handling situations which turn out to be awkward for refine-
ment—a number of existing case studies bear this aspect out equally amply [BPJS, BPJS06a, BPJS06b, BJPS07].

Turning to the Mondex development itself, at the top level, there is an abstract A model, which is a model of
atomic funds transfer between purses. According to this, a transaction can do one of the following: (a) complete
successfully (lodging the funds transferred instantaneously in the destination purse), AbTransferOkay ; (b) atom-
ically ‘lose’ the funds (placing them in a special ‘lost’ component of the state, implying that it is known (by the
system state) that the funds are lost, permitting offline recovery later), AbTransferLost ; (c) nothing at all happens
(at this level of abstraction), AbIgnore. One absolute requirement that the A model embodies, is the prohibition
of failing but non-recoverable transfers. Considering that real money is involved, this is as we would wish.

Here are the essentials of Mondex in a cut down world of only two purses, the To purse and the From purse,
which are hardwired into the state. Two purses are in fact sufficient for our purposes for the following reason. In a
realistic Mondex world, there are many purses, but the community of purses can be partitioned as follows. There
are (non-intersecting) pairs of purses involved in transactions (and that is where the atomicity issues of interest
to us lie); and there are the remaining purses, which are either idle or are involved—with another purse—in the
setting up of a new non-intersecting pair—and no purse of this kind exhibits any atomicity issue of concern to
us. Therefore, looking at a single pair is adequate.

Abworld
Afrombal : N

Afromlost : N

Atobal : N

Atolost : N

AbIgnore
�Abworld

AbTransferOkay
�Abworld
Avalue? : N

0 < Avalue? ≤ Afrombal
Afrombal ′ � Afrombal − Avalue?
Atobal ′ � Atobal + Avalue?
Afromlost ′ � Afromlost
Atolost ′ � Atolost

AbTransferLost
�Abworld
Avalue? : N

0 < Avalue? ≤ Afrombal
Afrombal ′ � Afrombal − Avalue?
Atobal ′ � Atobal
Afromlost ′ � Afromlost + Avalue?
Atolost ′ � Atolost

In reality of course, some procedure involving a lot of low level activity takes place. Two purse owners wishing
to participate in a funds transfer insert their purses, the From purse and the To purse, into an interface device,
and type in the instructions. The device then initiates the funds transfer process by informing the two purses of
the details of the required transaction. A protocol, described by the C model (which refines the A model), is then
enacted. Figure 3 shows how it works.

The protocol starts its run by calling the CStartFrom and CStartTo events in the respective purses, assuming
that both purses are in an idle state. These two events prime both purses with the information needed to execute the
protocol, including in particular, for each purse, the information directly pertaining to its counterpart. This puts

R. Banach et al.

both purses in a position to check the extent to which (to the best of the available local knowledge) the playout of a
running protocol instance conforms to what is expected at that point. This reconciling of actual against expected
is what gives the Mondex protocol its recoverability properties in the face of protocol failure and interruption.

Once the CStart events take place, the protocol proper commences. As part of CStartTo, the To purse issues
a (cryptographically protected) req (request) message to the From purse and enters the epv (expecting payment
value) state. On receipt of the req message, the From purse, which has been in the epr (expecting payment request)
state since its CStartFrom, executes the CReq (Request) event, decrements its balance appropriately, and sends
the amount requested in a (cryptographically protected) val (value) message to the To purse, itself going into the
epa (expecting payment acknowledgement) state. On arrival of the val message, the To purse, executes the CVal
(Value) event, increments its balance appropriately, becomes idle again, and sends a (cryptographically protected)
ack (acknowledgement) message back to the From purse. When this finally arrives, the From purse, executes the
CAck (Acknowledgement) event, and the protocol completes with both purses becoming idle once more. In
addition to this just described ideal protocol run outline, are numerous cases corresponding to failed protocol
runs. In reality, any of the messages we mentioned may get lost in transit, and any of the events that produce
and/or consume them may fail to take place. Tieing off the loose ends in the protocol generated thereby, is the
CAbort event, which unconditionally cleans up any partially completed protocol run, logging any information
needed for recovery, and resets the relevant purse to the idle state. (CAbort is called in each purse at the start of
every protocol run, as a precaution in case the purse is still waiting for some previous transfer to complete.) The
recoverability properties of Mondex are in fact attributable to the rather subtle properties of the CAbort event.

Above we described an unproblematic run of the protocol. Of course much can go wrong in practice. The
protocol may get interrupted by accident or by design, and a purse may be subjected to deliberate attack in
order to attempt to subvert its integrity (and in the ideal case, to increase the balance it contains beyond what is
legitimate). The protocol must be robust against all this. Part of the protection built into the protocol is the fact
that any time a purse feels like it, it has the option of doing nothing or of aborting the current transaction: this
means that a purse will always respond to any request to perform any of its actions, but the response will be null
or aborting if the purse does not consider the request to be appropriate in the context of its current state. This
creates a large number of additional playouts of the protocol which are not illustrated in Fig. 3. The non-trivial
ones end in CAborts by the participating purses. We do not define the CAbort event in this paper, primarily
because it does not impact on the atomicity issues of interest to us in this section, but also because it is the most
complex element of the Mondex protocol, and taking the time and space to describe it properly would entail
a considerable detour from our intended aims. Nevertheless it can be shown that all the possible playouts do
indeed do the right thing, because the concrete protocol can be proved to be a refinement of the abstract A model,
both for successful runs (which refine AbTransferOkay) and for aborting runs (which refine AbTransferLost).
See [SCW00] for the original account, and also [BJPS07], which discusses the properties of the protocol in detail
in a manner compatible with the present discussion.

How does the preceding fit the Atomicity Pattern? Well, we have an A model and a C model, and C refines A.
Since A is atomic and C is not, any operation that reads and outputs the state values will exhibit a discrepancy if
abstract and concrete versions are invoked at an inopportune moment. A balance enquiry operation is just such
an operation, and one we would not unreasonably expect to find among the operations that are offered to the
user in a banking application.13

A balance enquiry operation can cause various kinds of trouble, depending on the synchronisation embodied
in the refinement used, and how this interacts with other technical details in the relationship between abstract
and concrete models. In [SCW00] the abstract transfer is synchronised with the concrete CReq operation, so the
discrepancy shows up in a To purse enquiry if invoked while the value is in transit, i.e. between the departure and
subsequent arrival of the val message in Fig. 3. In [BJPS07], a different refinement is given which synchronises
the abstract transfer with the concrete CVal operation, which puts the discrepancy on the From purse side. (The
pros and cons of dealing with balance enquiries in various different ways are studied in depth in [BJPS07].) Either
way, there is scope for an AA model, introducing asynchrony at the most abstract level possible.

In the original development, [SCW00], in between the A and C models there is a B model. Its purpose is to
capture axiomatically various properties of the state of the C model that are useful in discharging the (backwards)
refinement proof between the A and B models—these properties being subsequently proved to be inductive invari-
ants of all C model runs during the (forwards) refinement proof between the B and C models. In any event, the
B model turns out to be technically very close to the C model, so it could not play the role that we have in mind

13 The fact that accounting for outputs which are incompatible for atomicity reasons cannot be convincingly done using refinement alone,
led, along with a whole host of other technical issues, to the complete omission of balance enquiry operations from [SCW00].

Atomicity failure and the retrenchment atomicity pattern

for the AA model here. However it is very easy to construct a suitable AA model from scratch. For simplicity, we
encode a transaction in progress via AAval > 0 in the AA model below.

AAbworld
AAfrombal : N

AAfromlost : N

AAtobal : N

AAtolost : N

AAval : N

AAbTransferStart
�AAbworld
AAvalue? : N

AAval � 0
0 < AAvalue? ≤ AAfrombal
AAval ′ � AAvalue?
AAfrombal ′ � AAfrombal − AAvalue?
RestSame......

AAbTransferOkay
�AAbworld

AAval > 0
AAval ′ � 0
AAtobal ′ � AAtobal + AAval
RestSame......

AAbTransferLost
�AAbworld

AAval > 0
AAval ′ � 0
AAfromlost ′ � AAfromlost + AAval
RestSame......

Note that the above model just separates out the beginning and end of a transaction, by introducing the
AAbTransferStart event; the beginning and end were combined in the A model. The relationship between the A
and AA models is evidently an RE-Ref, but, assuming we choose to synchronise the A model transaction late
(i.e. the A model operation is synchronised with AAbTransferOkay or AAbTransferLost), the RE-Ref needs to
relate discrepancies in inputs to the states via within relations, since late synchronisation implies that the AA
model input occurs earlier than the A model input. In this scenario, we can use the simple retrieve relation RA,AA

(where RestEqual...... has the obvious meaning), and within relationsWA,AA,TransferOkay and WA,AA,TransferLost

(whose bodies are identical). Note that doing it this way makes essential use of the ability of retrenchment within
relations to combine not only input information but also state information into a single relationship, just as the
corresponding ability of retrenchment output relations to combine not only output information but also state
information into a single relationship was exploited earlier in the relation OAH ,AA,ShowWs .

WA,AA,TransferOkay/Lost

Abworld
AAbworld
Avalue?

Avalue? � AAval

RA,AA

Abworld
AAbworld

AAval � Afrombal − AAfrombal
RestEqual......

(N. B. If we synchronised early rather than late, though the inputs would coincide, we would need a more complex,
nondeterministic, retrieve relation to intercede in what would need to be a backward simulation refinement as in
the original development [SCW00]. See [BS08b, BS08a] for a general treatment.)

Further down the modelling hierarchy, one can relatively straightforwardly synchronise AAbTransferStart
with the CReq operation, AAbTransferOkay can be synchronised with CVal , and with a little further manipu-
lation of the concrete state, AAbTransferLost can be synchronised with a suitable CAbort . (N. B. This general
approach, of dealing with (non-)atomicity issues right away, and then pursuing a relatively conventional refine-
ment approach towards the lowest level models, is broadly similar to the strategy followed in the RAISE approach
to the mechanisation of the Mondex proofs. See [HGS06], and [GH08] in [JW08]—except that RAISE cannot
deal directly with the change of operation signatures implicit in a splitting of an atomic action into a protocol,
and so the splitting step must be performed informally at the outset of the development.)

One can delve further into the refinement possibilities permitted by the approach in [BS08b, BS08a]. For
example, with a more complex retrieve relation, one could synchronise AAbTransferStart with the first concrete
CStart,AAbTransferOkay with CAck , and AAbTransferLost with a suitable CAbort . In the end, there are many
choices, discussed at length in [BS08a]. In a nutshell, the Mondex development is, in the authors’ view, a superb
example of the Atomicity Pattern at work. Moreover, it is a pre-existing example, not one invented specially to
put the pattern in a good light, and for that it is the more convincing.

R. Banach et al.

7. The mondex purse, as compensated transaction

In the previous section we viewed Mondex as an ACID transaction problem, and discussed various refinements
and RE-Refs in that light—we note that Mondex is squarely in the financial world, where the merest whiff of
‘alkalinity’ in financial transactions is utterly intolerable. In fact, the Mondex protocol maintains a sufficiently
copious (electronic) papertrail, that aborted transactions, even though they do not achieve their original objec-
tive, can be traced, and the whereabouts of the funds they involve can ultimately be reconciled with the original
intentions of the participants. In this manner, in the financial world, protocol failure is recategorised as a different
kind of success, and ACIDity emerges as a matter of careful definition.

Of course, there is nothing to stop us using the non-ACID potential of the Atomicity Pattern to quantify some
aspects of interest of the protocol, such as the proportion of transactions that might abort under some given set
of assumptions or other, but this is a case of using the possibilities of retrenchment (perfectly reasonably), as a
technical convenience, rather than a pronouncement about a lack of integrity of the protocol. Further possibilities
could entail examining the performance of the protocol under the assumption that one or more of the security
hypotheses it rests on is weakened by some specified amount, etc.

However, there exists another approach to the question of possible alternative matches of the Atomicity
Pattern to the Mondex protocol, via a redefinition of success and failure, and we look at this now. It permits the
exercise of the horizontal aspects of Fig. 2, which describe possible lack of ACIDity of the asynchronous protocol.

When a Mondex protocol run fails (by being a refinement of AbTransferLost, as described above), the fol-
lowing facts hold, and the sequence of events to be described takes place.

Firstly, a protocol run refines AbTransferLost if and only if both purses involved in the transaction have the
(authenticated) transaction payment details ‘pdauth’, logged in their local (i.e. on-purse) exception log CXexlog
(where X ∈ {from, to}), these details having been put there by suitable CAbort events, which executed on each of
the From and To purses.14 If this is the case, then both purses need to get in contact with the bank underwriting
the Mondex system in order that both log contents can be uploaded to the bank’s central Mondex exception
archive, whereupon the presence of a matching pair of records from the From and To purses of the transaction
confirms the loss of the val message in transit. Since it is only when the val message is in flight that the From
and To purse balances do not add up to the original amount, it follows that only when the val message is lost in
transit, is there any nontrivial action to be taken to recover lost funds. In this situation the bank can restore the
missing funds to the From or To purse according to the purse owners’ wishes.15

According to our original ACID picture, the preceding can be viewed as another kind of transaction present
within the overall Mondex system, and guaranteed to ‘succeed’ in the same way that the core protocol is guaran-
teed to succeed, i.e. by definition. Alternatively, we can choose to view the AbTransferLost outcomes of the core
protocol as failures of the transaction, followed in time by compensating actions engaged in at the bank, which
serve to remedy the preceding protocol failures.

In such a view, the overall process is still guaranteed to be successful, as one would demand of a financial
application, but its ingredients can consist of an initial failure (implying temporary loss of ACID properties)
followed by an ACIDity-restoring compensation.

Compensation mechanisms for transactions have been studied with interest in recent years [BFH+02, BFN05,
BHF04, BBF+05] as a structured way of avoiding having to abandon the whole of a long-lived transaction (with
all the attendant impact on performance) when some particular part of it fails—especially if that part comes just
before the end, when a bona fide abort would entail the loss of a huge amount of useful work, and especially if also,
side effects have been performed in the environment which cannot be undone (such as the sending of irrevocable
communications that may already have been received by their addressees). A compensation undertakes such
measures as are needed to recover ‘ACIDity in the real world sense’ in these situations (insofar as such recovery
is indeed possible).

Conventionally, transactions [BHG87, GR93, BN97, WV02] connect with their environment (specifically the
transaction manager residing in the operating system) via stylised interfaces. For the most simply structured
transactions these amount to TransStart,TransCommit,TransAbort . The transaction starts with TransStart

14 As hinted above, all of the subtlety of the Mondex protocol resides in the somewhat complicated properties of the CAbort events. We do
not need to plunge into these in detail to make our point in this paper; see [BJPS07] and other cited references for a full discussion. However,
we point up the fact that both purses need to contain matching entries in their logs for there to be a protocol failure—it turns out that a single
entry in one of the two purses does not constitute a protocol failure by itself.
15 We eschew discussion of situations in which one or other of the parties to the transaction neglects, or is uncooperative regarding, the
stated interaction with the bank. Obviously, in reality, pragmatic measures must be in place to deal with such eventualities.

Atomicity failure and the retrenchment atomicity pattern

which informs the transaction manager that the transaction has started and its activities are to be policed via
the transaction mechanism. After that, the transaction acquires resources and does its work (ideally, entirely
in private, so that it can easily be rolled back without visible trace if necessary). The work either succeeds or
fails. If it succeeds, the transaction manager is asked to run the corresponding TransCommit operation, which
commits the changes effected by the transaction, making them visible to the wider environment. If it fails, the
transaction manager is asked to run the TransAbort operation, which undoes the work provisionally attempted
by the transaction, and restores all the resources accessed by the transaction to their previous state. The use of
the TransStart,TransCommit,TransAbort interfaces (and their more complex analogues in more sophisticated
transaction models) is what enables the transaction manager to ensure that the four ACID attributes are main-
tained across the community of executing transactions, and is also what enables individual transactions to be
written in isolation from one another.

Compensated transactions elaborate the fixed range of rollback mechanisms implicit in a transaction-man-
ager-controlled TransAbort operation, and place the responsibility for rolling back more complex transactions in
the lap of the transaction writer. This is especially useful when rollback, in the strict system state sense, is impossible
for reasons such as were already noted above. The previously cited references [BFH+02, BFN05, BHF04, BBF+05]
illustrate well the wide range of issues that one has to take design decisions about when the structuring and schedul-
ing of compensations interacts with a whole host of familiar semantic issues in an integrated linguistic framework
for compensated transactions.

For the purpose of illustrating the fit between compensated transactions (CTs) and the Atomicity Pattern,
we introduce a tiny CT language. Although some of its combinators resemble those of Z schema calculus, and
despite the fact we actually use Z schemas to define the transactions at the lowest level, the semantics of complex
expressions is closer to the operational nature of process algebras, as we sketch below, and as is the case for the
majority of compensated transaction languages. The productions of our tiny CT language are:

CT :� ε | (CT1 ; CT2) | (CT1 ∨CT2) | (CT1 || CT2) | (CT1
�� CT2) | ✓ | ✗

In the preceding, ε is the null (compensated) transaction, and (CT1 ; CT2), (CT1 ∨CT2), (CT1 || CT2) are
respectively the sequential composition, nondeterministic choice, and parallel composition of compensated trans-
actions. (CT1

�� CT2) is the basic compensated transaction pair, with CT1 being the transaction’s primary task
and CT2 being its compensation. We can abbreviate (CT1

�� ε) to just CT1. When (CT1
�� CT2) is executed, the

primary task CT1 is actually performed, and the compensation CT2 (in effect a kind of continuation) is pushed
onto the compensation stack. The normal execution of transactions is manipulated by encountering ✓ and ✗
in the control flow. The symbol ✓ acts as a kind of commit, forcing the emptying of the compensation stack,
while ✗ interrupts the execution, and passes control to the compensations stacked on the compensation stack,
which are executed in last-in first-out order. Obviously, a proper semantics would clarify the many questions left
unanswered by this outline description, but what we have said will do for this paper.

Let us now return to the Mondex atomic level. We introduce the Ideal Transaction Abstract model (prefix
ITAb), defined as:

ITAbTansfer � (ITAbIgnore ∨ ITAbTransferOkay)

where ITAbIgnore “=” AbIgnore and ITAbTransferOkay “=” AbTransferOkay . This is a model which does not
include any notion of transaction failure in the sense discussed earlier, i.e. there is no vestige of AbTransferLost,
and it is derived from the Mondex abstract model of the preceding section by simply omitting the AbTransferLost
possibility.

To cope with the transaction failure implicit in AbTransferLost, we build another model, the Compensated
Transaction Abstract model (prefix CTAb), defined as:

CTAbTansfer � (CTAbIgnore ∨CTAbTransferOkay ∨ ((CTAbTransferLost �� CTAbRestoreLost) ; ✗)) ; ✓

where CTAbIgnore “=” AbIgnore,CTAbTransferOkay “=” AbTransferOkay,CTAbTransferLost “=”
AbTransferLost, and CTAbRestoreLost is given by the schema:

CTAbRestoreLost
CTAbRestoreLost2To ∨CTAbRestoreLost2From

R. Banach et al.

where:

CTAbRestoreLost2To
�CTAbworld
CTAval? : N

CTAtobal ′ � CTAtobal + CTAval?
RestSame......

CTAbRestoreLost2From
�CTAbworld
CTAval? : N

CTAfrombal ′ � CTAfrombal + CTAval?
RestSame......

Clearly, the CTAbTansfer model allows for transaction failure, and includes a suitable compensation for it in
the operation CTAbRestoreLost . If we now define CTAbTansferT to be (CTAbIgnore ∨CTAbTransferOkay ∨
CTAbTransferLost), i.e. it is the portion of CTAbTansfer that will actually be done as a single atomic action,
then we will have a retrenchment from ITAbTansfer to CTAbTansferT . Most of this is predictably trivial, the
only part of interest being the concession:

CITAbTansfer ,CTAbTansferT

�ITAbworld
�CTAbworld
CTAval? : N

ITAfrombal ′ + ITAtobal ′ � ITAfrombal + ITAtobal � CTAfrombal + CTAtobal
� CTAfrombal ′ + CTAtobal ′ + CTAval?

This now expresses the possibility that the CTAbTansferT transaction may lose funds whereas the ITAbTansfer
transaction cannot. Putting ITAbTansfer in the place of model A in Fig. 2 and putting CTAbTansferT in the
place of model U, we see that the atomic actions of our compensated transaction model fit the Atomicity Pattern
very well. Evidently, the models in this top row of the pattern could now be refined to lower level non-atomic
Mondex models in the way that we have already seen.

Taking a more coarse grained view, we could look at the relationship between ITAbTansfer and the
complete CTAbTansfer model, allowing the latter to do two steps (CTAbTransferLost and its compensation
CTAbRestoreLost) before we insisted on reconciling its behaviour with that of ITAbTansfer . In such a case
we would find nothing amiss, since CTAbRestoreLost is able to compensate completely for the inappropriate
consequences of CTAbTransferLost, and thus CTAbTansfer would be a refinement of ITAbTansfer . In such a
case the top row of the Atomicity Pattern in effect collapses to a single model, the A model of Fig. 2, since the
retrenchment from model A to model U reduces to a refinement, and this can be composed with the refinement
from model U to model D, sidestepping model U completely if desired.

In more messy scenarios, such as we have hinted at above, the relevant compensations would not necessarily
be able to completely reverse the effects of their ACIDity-losing primary tasks. In such situations, the top row of
the Atomicity Pattern would be genuinely required, in that it would not be possible to elide model U regardless
of the granularity of the viewpoint taken. Our next case study features precisely this kind of behaviour.

8. Transactional memory

Compared with the previous section, in this section we go the opposite extreme as regards the size of the basic
atomic actions that we deal with, since now, these often reside at the level of individual machine instructions.
These however, are perfectly capable of achieving the messiness alluded to in the previous paragraph.

The contemporary CPU chip scene is dominated by the twin facts that while miniaturisation continues apace
for the time being, allowing many processors to be placed on a single chip, the increase in speed of an individual
processor, so notable from generation to generation in the past, has more or less slowed to a standstill. Tomorrow’s
processors are likely to be no faster than today’s, though we will have many more of them at our disposal. This
has spawned a desire to make greater and more convenient use of the potential power of multi-core CPUs, all in
the face of many years’ experience of the difficulty in making concurrency a true ‘mass’ programming paradigm.

One potentially promising approach to achieving greater usability for concurrent computation is via transac-
tional memory (TM) [LR06]. The idea is that rather than providing programmers with explicit low level devices
(such as locks etc.) for controlling concurrency, with the well known consequence that most programs mak-
ing non-trivial use of these will be replete with bugs of rather exquisite obscurity (and will thus, in effect, be

Atomicity failure and the retrenchment atomicity pattern

almost useless),16 programmers would instead be provided with an encapsulation mechanism, a transaction-like
atomic action syntactic primitive (whose optimum semantics were to be determined by future research), and the
implementation would have the responsibility of ensuring its correct operation.

TM comes in broadly two flavours, hardware and software. Predictably, the hardware flavour supports the
atomicity primitive via the hardware memory management system [HM93, RG02, HWC+04, YBM+07, RRP+07,
KHR+08], while the software flavour looks to do the same thing via a software layer sitting just above the memory
management system [HF03, HMPJH05, SMAT+07, IB07, ABHI08, MBS+08, DS09]. Recently a hybrid scheme
has been considered, exploiting off-the-shelf memory management hardware in a novel way to implement TM
[AHM09]. In this section, we will, without striving to be in any way comprehensive, consider three typical exam-
ples (paraphrased from [ABHI08]) that arise in this fertile and intensively studied area, and how they relate to
the Atomicity Pattern.

Given the amount of research into transaction notions that has been done in recent decades (amply dem-
onstrated in the references cited in the previous paragraph), TM would not be such an intriguing issue were it
not for the fact that ‘properly transacted’ code is expected to run alongside, and to co-operate sensibly with,
‘non-transacted’ legacy code. Combining the potential pitfalls of this with the kinds of tricks perpetrated by
optimising compilers, such as code movement and speculative computation, gives rise to copious bug-spawning
phenomena that are easy enough to imagine, and that constitute exactly the kind of scenarios that the Atomicity
Pattern was designed to capture. In contrast to the applications of the pattern in preceding sections, which could
all plausibly be carried out in a top-down manner, in TM, the action is all at the instruction set level, and the
challenge is to not only to keep the low level behaviour under reasonable control, but to find abstractions that
are useful to describe it at a higher level.

Values out of thin air. We examine our first example, zombie transactions that produce ‘values out of thin air’.
Below, we see a model A, specified in Z, (and intended to occupy the A position in Fig. 2). It consists of three
natural-valued variables, such that initially, two of them are equal and away from zero, the other being zero.
Three operations are given, AAtomic1,AAtomic2 and AUnprotected1. The first two have transaction semantics,
in that either a non-trivial effect, or no visible change takes place—and furthermore, this is all accomplished
atomically (on the understanding that Z operations specify instantaneous changes of state). In addition, we make
use of outputs to model the writing of information to machine registers. The last, AUnprotected1, is not given
a roll-back option—it represents legacy non-transaction code, and consists of the value assignment to a single
variable, which may be seen as corresponding to a single machine instruction running alongside the others. The
fact that it corresponds to just one instruction, means that there is no conflict between the implicit atomicity of
Z and the normal execution of machine instructions.

Aworld
Au,Av ,Ax : N

AAtomic1
�Aworld

((Au �� Av ∧ Ax ′ � 42
∨ Au �Av ∧ Ax ′ �Ax)
RestSame......

) ∨�Aworld

AAtomic2
�Aworld

(Au ′ � Au + 1
Av ′ � Av + 1
RestSame......

) ∨�Aworld

AUnprotected1
�Aworld
Ar1! : N

Ar1! � Ax
RestSame......

AInitially
Aworld

Au � Av �� 0
Ax � 0

Following [ABHI08], we can ask whether, when all three operations are executed, Ar1! can ever acquire the
value 42. Clearly, with the semantics we have described, the answer is no. Provided AAtomic1 and AAtomic2 are
atomic, the values of Au and Av , as seen by AAtomic1, can never differ, so the assignment of Ax to 42 can never
take place, and AUnprotected1 always sees 0 as the value of Ax , regardless of when it runs. Now, provided that
we have a reliable implementation of bona fide transactions to use for refining AAtomic1 and AAtomic2, the A
model can be refined towards an implementation, represented by eg. model C in the Atomicity Pattern.

16 Typical sources on concurrent programming, eg. [BA82, Ray88, LMWF94, Lyn96] stress the fact that the transient aspects of concurrent
program execution, namely the details of the low level instruction schedule, being irreproducible under normal circumstances, make the
identification of errors in faulty concurrent code extraordinarily hard compared with the situation for sequential code.

R. Banach et al.

Next, we see a description of the same scenario in terms more appropriate to a Software Transactional Mem-
ory (STM) system such as Bartok-STM [HPST06]. As regards the Atomicity Pattern, it is intended for the U
position of Fig. 2.

Initially: u == v != 0 , r1 == 0 , r2 == 0 , x == 0

Thread 1 Thread 2 Thread 3

1 // Atomic1 // Atomic2 // Unprotected1
2 atomic{ atomic{ // non-atomic
3 r1 = u; u++;
4 r2 = v; v++; r1 = x;
5 if (r1 != r2) } �� {
6 {x = 42;} u = ‘u;
7 } �� { v = ‘v;
8 x = ‘x; }
9 }

Three threads execute instruction level versions of the operations above. The essentials of the semantics are as fol-
lows. Individual instructions (such asr1 = u) execute atomically. Sequential composition ‘;’, is porous in the sense
that it allows the interleaving of the activities of other threads. The atomic construct is less reliable than a fully
ACID transaction, in that work is done in-place, allowing it to be seen by other threads, and the usual R/W conflicts
between different atomic blocks are detected lazily (i.e. perhaps after another thread has seen some effect of the
block), and are rolled back asynchronously. We indicate the latter by using our compensation mechanism from the
previous section, since that too is not intended to execute atomically with the primary task. The compensations fea-
ture pre-primed variables to remember variables’ values at the beginning of the transaction for roll-back purposes.

If we now ask, in this new situation, whether r1 can ever acquire the value 42, the answer becomes yes. A
possible scenario is as follows (cf. [ABHI08]). Thread 2 runs and its atomic block starts. In between the u++ and
the v++ of Thread 2, Thread 1 starts and runs to completion. Since u and v are different at this point, x acquires
the value 42. Of course, Thread 1 is in conflict with Thread2, and since it started later, it is the thread whose atomic
action must be aborted. However, before Thread 1 actions the compensation for its atomic block, Thread 3 runs,
picking up the 42 from x and depositing it in r1. Once the conflicting transaction in Thread 1 has been rolled back,
no trace of it remains, and r1 has acquired the value 42 out of thin air. The possibility of ‘values out of thin air’,
created by zombie transactions that de facto access more data than would be permitted in any serial execution,
is one of the classic ills that STM systems offering less than ACID semantics for their atomic blocks are heir to.

It is clear now why the instruction level model has to go in the U position of the Atomicity Pattern rather
than in a C-like position. While ideally, an implementation remains faithful to the abstraction it is supposed to
incarnate, this one obviously doesn’t. And rather than a refinement relationship from abstraction to code, as we
would prefer, we must be content with a retrenchment. Of course, the model we presented is still an abstraction,
but it is an abstraction of a different kind of behaviour than in the A model. Refining the U model, for instance
to make the details of the STM implementation more explicit, would take us in the direction of the D model of
the Atomicity Pattern.

We turn to the retrenchment from A to U. Disregarding, for simplicity, the fact that Z naturals are unbounded
whereas machine level ones are bounded (something that can be routinely incorporated into the retrenchment
without upsetting our story, so is omitted for simplicity), we will just concentrate on the functional discrepancy
between the A and U models, which amounts to focusing on the errant behaviour of r1 under Unprotected1. The
only item in the retrenchment data that is relevant to this is the concession CAUnprotected1,Unprotected1, a relatively
minimal choice for which could be as follows, which clearly captures what transpires in our simple scenario:

CAUnprotected1,Unprotected1

�Aworld
�Uworld
Ar1! : N

r1! : N

r1! − Ar1! � 42
RestSame......

A wider question that arises, is of course the extent to which one can reasonably expect to capture more far-
reaching consequences of such lapses in atomicity as we have seen here, but purely on the basis of knowing that
the implementation of atomic actions in an STM system is imperfectly ACIDic.

Atomicity failure and the retrenchment atomicity pattern

Unfortunately, it is not hard to see that in general, one could say almost nothing at all beyond the trivial true,
since as is well known, a single unexpected value could have the most far-reaching consequences in a discrete
transition system such as those we are dealing with, since the occurrence of such a single unexpected value could
be coupled to any behaviour whatsoever. Without reasonably incisive knowledge of what threads the system
supported, the interdependencies between them, and the higher level invariants that the system was expected to
uphold, we could predict almost nothing.

The privatisation problem. We examine our second example, the ‘privatisation problem’ in which a piece of data
is accessed, sometimes from within atomic blocks, sometimes directly. Below we see another A model, this time
working on a natural and a boolean. The disposition of the Z schemas is intended to indicate that AUnprotected1
must always be executed after AAtomic1. Besides this, there are no constraints at this level of abstraction, so that
AAtomic2 is free to be interleaved arbitrarily with respect to the other two operations. Again we ask whether Ax
can ever be left with the value 42. As previously, the answer is no. If AAtomic2 runs first, then Ax becomes 42,
but it is then guaranteed that Ax will be incremented by AUnprotected1. On the other hand, if AAtomic2 does
not run first (and AAtomic1 only ever executes the �Aworld option if it conflicts with an earlier transaction,
i.e. not ever in this case since there is no earlier transaction to potentially conflict with), then AAtomic2 will see
Ax shared as false and so will not attempt to assign Ax to 42, and there will be no possible race between that
assignment and the increment in AUnprotected1.

Aworld
Ax shared : B

Ax : N

AAtomic1
�Aworld

(Ax shared ′ � false
RestSame......

) ∨�Aworld

AUnprotected1
�Aworld

Ax ′ � Ax + 1
RestSame......

AAtomic2
�Aworld

((Ax shared ∧ Ax ′ � 42
∨ ¬Ax shared ∧ Ax ′ � Ax)
RestSame......

) ∨�Aworld

AInitially
Aworld

Ax shared � true
Ax � 0

Following [ABHI08] once more, we now look at a code level description of the situation, in the context of Bartok-
STM. Below, we see two threads, the first of which executes Atomic1 followed by Unprotected1, and the other
of which executes Atomic2.

Initially: x shared == true , x == 0

Thread 1 Thread 2

1 // Atomic1 // Atomic2
2 atomic{ atomic{
3 x shared = if (x shared)
4 false; {x = 42;}
5 } �� { } �� {
6 x shared = x = ‘x;
7 ‘x shared; }
8 } ;
9 // Unprotected1

10 // non-atomic
11 x++;

As before, we can ask whether in this lower level world x can ever acquire the value 42. Again the answer is now
yes, and the scenario that shows this runs as follows. Atomic2 starts and runs. In between Atomic2’s read from
x shared and its write to x, Atomic1 runs in its entirety. Of course, it will be detected that Atomic1 is in conflict
with the earlier Atomic2, so it will have to be rolled back, after which Unprotected1 can run. Unprotected1 now

R. Banach et al.

has the opportunity to complete its increment on x before Atomic2 gets round to its write of 42 to x. (N. B. As
[ABHI08] point out, the preceding is not the only possible scenario. If writes are buffered, then the write of 42 could
get delayed, causing a similar outcome, even without conflicting transactions.) All of this constitutes our U model.

As before, both the A and the U model can be refined, each using a faithful implementation of their own
notion of atomicity, but the two models can only be related to each other using a weaker notion than refinement,
such as retrenchment. In the current context, although we know that the incompatible behaviour becomes vis-
ible in the Ax /x variables, it is harder to know ‘who to blame’ for this, since both AAtomic2/Atomic2 and
AUnprotected1/Unprotected1 access them. For the sake of having a simple retrenchment, we will ‘blame’
AUnprotected1/Unprotected1 in this paper, though a better treatment would utilise a more coarse-grained
approach to retrenchment [Ban09] to allow all the different possibilities to be represented more fairly.17 With this
proviso, we can again restrict to just giving a simple concession for the relevant operation.

CAUnprotected1,Unprotected1

�Aworld
�Uworld

Ax �� x � 42
RestSame......

The publication problem. We move on to our third example, again taken from [ABHI08], the ‘publication prob-
lem’ in which a piece of data is initially private to a thread, and then becomes shared. From a serialisability
perspective, this is the most innocuous looking of all our examples. A piece of data is manipulated privately.
When the private manipulation is finished, the owning thread atomically sets a public flag to signal the public
availability of the data, after which, other transactions access it in a disciplined way.

Again, the ideal A model is given in Z below. Once more, the disposition of the AUnprotected1 and AAtomic1
schemas indicates that the latter is to be executed after the former. The other atomic block, AAtomic2, runs inter-
leaved with these two. We see that from the vantage point of atomic semantics, nothing can go wrong. Either
the atomic block AAtomic2 is executed after AAtomic1, whereupon it sees the updated Ax shared variable, and
knows that it is permitted to access Ax and thence to update Ar1! accordingly. Or AAtomic2 is executed before
AAtomic1, whereupon it does not see the new value of Ax shared , and must relinquish its desire to read Ax .
Either way, Ar1! ends up as −1 or as 42.

Aworld
Ax shared : B

Ax : N

AUnprotected1
�Aworld

Ax ′ � 42
RestSame......

AAtomic1
�Aworld

(Ax shared ′ � true
RestSame......

) ∨�Aworld

AAtomic2
�Aworld
Ar1! : Z

((Ax shared ∧ Ar1! � Ax
∨ ¬Ax shared ∧ Ar1! � −1)
RestSame......

) ∨�Aworld

AInitially
Aworld

Ax shared � false
Ax � 0

Next, we see the code level description, in the context of Bartok-STM, constituting our U model. We again see
two threads, the first of which executes Unprotected1 followed by Atomic1, and the other of which executes
Atomic2. Note that the second of these, Atomic2, has an empty compensation in view of the fact that it only
writes to a register, which is regarded as an output variable, and thus there are no memory writes to roll back.

17 This also illustrates well a universal truth about retrenchment, namely that what one wishes to achieve in a retrenchment has a crucial
effect on what one puts into the retrenchment.

Atomicity failure and the retrenchment atomicity pattern

Initially: x shared == false , x == 0

Thread 1 Thread 2

1 // Unprotected1 // Atomic2
2 // non-atomic atomic{
3 x = 42; r1 = -1;
4 // Atomic1 if (x shared)
5 atomic{ {r1 = x;}
6 x shared = } �� { }
7 true;
8 } �� {
9 x shared =

10 false;
11 }

Even given the problems we have seen earlier, there appears to be no problem with this example. The only possible
source of conflict between Atomic1 and Atomic2 is the shared variable x shared, and since each atomic block
only accesses it during one instruction, either execution order (for these instructions) defines an acceptable seri-
alisation. As [ABHI08] point out though, the problem goes deeper. There is no inkling, from the perspective of
Thread 2, that the order of reading x and x shared is significant. An optimising compiler may therefore schedule
the read of x early, before Unprotected1 has done its update to x. As a result, the value 0 may be the one used
by Atomic2, if the subsequent execution schedules Atomic2 after Atomic1.

Again, the only way of reconciling the ideal behaviour of the A model with the errant behaviour of the U
model is via a retrenchment. In this case, it is clear who we have to ‘blame’. It is the AAtomic2/Atomic2 pair.
Here is the straightforward concession which results.

CAAtomic2,Atomic2

�Aworld
�Uworld
Ar1! : N

r1! : N

Ar1! ∈ {−1, 42}
r1 � 0
RestSame......

9. Conclusions

In the preceding sections, we took a particularly simple example, based on an ATC application [Hal96], and via a
series of simple models and small model evolution steps (reminiscent of the Event-B approach [Abr03, ACM], and
of many practical ASM refinements [BS03, Bör03]), teased out how issues arising from non-atomicity of the real
system interacted with the remainder of the development. The step from an atomic to a non-atomic model meant
that inevitably, if one examined the states of the abstract and concrete models at an inopportune moment, some
discrepancy would be observed, which went beyond what traditional substitutivity-based notions of refinement
could cope with. Quite where the discrepancy might be observed, depended on how one chose to synchronise the
atomic abstract action with one of the constituent non-atomic concrete actions which implemented it. (The very
non-atomicity of the concrete model guarantees that there will be more than one such choice.) We showed that
the greater flexibility of retrenchment could account for what was going on in a rather straightforward manner,
one moreover, that readily lends itself to generalisation as a retrenchment Atomicity Pattern.

We then tested the pattern against a different, and if anything more challenging example, based on the Mon-
dex Purse [SCW00, BJPS07], and found that it could cope extremely well with all the various possibilities when
we viewed the fundamental Mondex transaction model as an atomic action according to our way of looking at it.

One particularly useful aspect of the Atomicity Pattern was its potential for coping with situations that fell
short of perfect ACIDity in the concrete protocol. We showed this in the relatively simple context of the timing
aspects of the ATC application. Admittedly this is an extremely simple scenario, but it showed something of the
power of the Atomicity Pattern to generalise across a wide variety of phenomena.

R. Banach et al.

We explored the potential of the Atomicity Pattern to capture non-ACID aspects of transactions further, by
reinterpreting the recovery aspects of Mondex transactions as long-lived compensated transactions. We saw that
here too, the Atomicity Pattern was flexible enough and generic enough to encompass the requisite behaviour.

All of this makes us confident that the pattern will be applicable in much larger application domains where loss
of ACIDity is an issue. Why? Well, all models of the kind we are considering are defined by using a collection of
events or operations—a large complicated model merely has more of them, they may be more complex, and they
may be organised into more layers. Provided though, that the model is sufficiently comprehensive, and captures
enough of the environment if the environment is implicated in ACIDity losing behaviour, loss of ACIDity will
arise through specific events. Provided we model these events appropriately, the changing properties of interest
can be captured in suitable retrenchment data (i.e. the within, output, and concedes relations) attached to relevant
event or operation descriptions, as we pass from an idealised model to a more realistic and imperfect one.

In this manner we anticipate that ACIDity losing phenomena in other long-lived workflows and their com-
pensated transactions, and highly concurrent and highly distributed environments, can also be subsumed by the
pattern. Let us briefly sketch how such an example might go. Consider a long-lived workflow containing online
purchasing transactions. In an ideal world, items are only sold if they are in stock. However, in the real world,
it may occasionally happen that the system could sell an item that did not exist due to poor stocktaking. Thus
the real world could be described using two stock variables: the ‘nominal stock level’ used by the system, and
the ‘true stock level’, accurate, but unknown to the system. While the latter remained positive all would be well.
But as soon as the system (unknowingly) made a sale that pushed it below zero, the ACID properties would be
compromised, since the sale would commit before it became known that it was invalid. In due course, further
events would ensue, that (say) resulted in the purchaser being refunded. Although the system would not know
it had transacted a rogue sale at the moment it happened, there is nothing to stop a model of the system having
such knowledge, and thus being able to identify loss of ACIDity through appropriate retrenchment data.

Finally, we leapt to the opposite extreme as regards the size of the basic atomic action in our system model,
viewing various unruly phenomena in the code-level implementations of imperfectly ACIDic software trans-
actional memory systems, as yet other manifestations of the general phenomena captured in the retrenchment
Atomicity Pattern. Here again we saw that the pattern was able to express the dissonances between the ideal
ACIDic view of what the code was supposed to do and the unpleasant reality of a realistic implementation.
Putting it all together, we regard the evidence accumulated in this paper as a solid vindication of the utility of the
retrenchment Atomicity Pattern.

References

[ABHI08] Abadi M, Birrell A, Harris T, Isard M (2008) Semantics of transactional memory and automatic mutual exclusion. In:
Proceedings of POPL 2008

[Abr03] Abrial J-R (2003) Event based sequential program development: application to constructing a pointer program. In: Araki
et al. [AGM03], pp 51–74

[ACM] Abrial J-R, Cansell D, Méry D (2005) Refinement and reachability in event-B. In: Proceedings of ZB 2005. LNCS, vol 3455,
pp 222–241

[AGM03] Araki K, Gnesi S, Mandrioli D (2003) International symposium of formal methods Europe. LNCS, vol. 2805, Pisa, Italy.
Springer, Berlin

[AHM09] Abadi M, Harris T, Mehrara M (2009) Transactional memory with strong atomicity using off-the-shelf memory protection
hardware. In: Proceedings of PPoPP 2009

[BA82] Ben-Ari M (1982) Principles of concurrent programming. Prentice Hall, Englewood Cliffs
[Ban09] Banach R (2009) Coarse grained retrenchment and the mondex denial of service attacks. In: Proceedings of IEEE TASE-09,

York. IEEE Computer Society Press, Los Angeles
[BBF+05] Bruni R, Butler M, Ferreira C, Hoare T, Melgratti H, Montanari U (2005) Comparing two approaches to compensable flow

composition. In: Proceedings of CONCUR 2005
[BFH+02] Butler M, Ferreira C, Henderson P, Chessell M, Griffin C, Vines D (2002) Extending the concept of transaction compensation.

IBM Syst J 47:743–758
[BFN05] Butler M, Ferreira C, Ng M (2005) Precise modelling of compensating business transactions and its application to BPEL. J

UCS 11:712–743
[BHF04] Butler M, Hoare T, Ferreira C (2004) A trace semantics for long-running transactions. In: 25 years of CSP, July 2004
[BHG87] Bernstein P, Hadzilacos V, Goodman N (1987) Concurrency control and recovery in database systems. Addison-Wesley,

Reading
[BJ09] Banach R, Jeske C (2009) Retrenchment and refinement interworking: the tower theorems. Available at [RET]
[BJP08] Banach R, Jeske C, Poppleton M (2008) Composition mechanisms for retrenchment. J Log Algor Prog 75:209–229
[BJPS07] Banach R, Jeske C, Poppleton M, Stepney S (2007) Retrenching the purse: the balance enquiry quandary, and generalised and

(1,1) forward refinements. Fund Inf 77:29–69

Atomicity failure and the retrenchment atomicity pattern

[BKS83] Back RJR, Kurki-Suonio R (1983) Decentralisation of process nets with centralised control. In: 2nd ACM SIGACT-SIGOPS
symposium on principles of distributed computing, pp 131–142

[BN97] Bernstein PA, Newcomer E (1997) Transaction processing. Morgan Kaufmann, Menlo Park
[Bör03] Börger E (2003) The ASM refinement method. Formal Aspects Comput 15:237–275
[BP00] Banach R, Poppleton M (2000) Fragmented retrenchment, concurrency and fairness. In: Proceedings of IEEE ICFEM2000,

York. IEEE Computer Society Press, Los Angeles, pp 143–151
[BP03] Banach R, Poppleton M (2003) Retrenching partial requirements into system definitions: a simple feature interaction case

study. Requir Eng J 8:266–288
[BPJS] Banach R, Poppleton M, Jeske C, Stepney S. Retrenching the purse: finite sequence numbers and the tower pattern. In: FM

2005. LNCS, vol 3582. Springer, Berlin, pp 382–398
[BPJS06a] Banach R, Poppleton M, Jeske C, Stepney S (2006) Retrenching the purse: finite exception logs, and validating the small. In:

IEEE/NASA Software Engineering Workshop 30, 2006. IEEE Computer Society Press, Los Angeles, pp 234–245
[BPJS06b] Banach R, Poppleton M, Jeske C, Stepney S (2006) Retrenching the purse: hashing injective CLEAR codes, and security

properties. In: 2nd IEEE international symposium on leveraging applications of formal methods, verification and validation,
2006. IEEE Computer Society Press, Los Angeles, pp 82–90

[BPJS07] Banach R, Poppleton M, Jeske C, Stepney S (2007) Engineering and theoretical underpinnings of retrenchment. Sci Comput
Program 67:301–329

[BS03] Börger E, Stärk RF (2003) Abstract state machines. In: A method for high level system design and analysis. Springer, Berlin
[BS08a] Banach R, Schellhorn G (2010) Atomic actions and their refinement to isolated protocols. Form Asp Comp 22:33–61
[BS08b] Banach R, Schellhorn G (2008) On the refinement of atomic actions. ENTCS 201:3–30 (also in: University of Kent Computing

Laboratory Technical Report 4-07, 168–191)
[CB04] Connolly T, Begg C (2004) Database systems: a practical approach to design, implementation and management. Addison

Wesley, Reading
[CDK05] Coulouris G, Dollimore J, Kindberg T (2005) Distributed systems: concepts and design. Addison Wesley, Reading
[CSW02] Cooper D, Stepney S, Woodcock J (2002) Derivation of Z refinement proof rules. Technical report YCS-2002-347, University

of York
[DB01] Derrick J, Boiten E (2001) Refinement in Z and Object-Z. FACIT. Springer, Berlin
[Dep91] Department of Trade and Industry (1991) Information technology security evaluation criteria. http://www.cesg.gov.uk/site/

iacs/itsec/media/formal-docs/Itsec.pdf
[DS09] Dalessandro L, Scott M (2009) Strong isolation is a weak idea. In: Proceedings of Transaction 2009
[EL97] Eder J, Liebhart W (1997) Workflow transactions. In: Workflow Handbook. Wiley, New York, pp 157–163
[EN03] Elmasri R, Navathe S (2003) Fundamentals of database systems. Addison Wesley, Reading
[FF90] Francez N, Forman I (1990) Superimposition for interactive processes. In: Proceedings of CONCUR 1990. LNCS, vol 458.

Springer, Berlin, pp 230–245
[GG] Gore M, Ghosh R (1999) Recovery in distributed extended long-lived transaction models. In: Proceedings of sixth international

conference on database systems for advanced applications. IEEE Computer Society, Los Angeles, pp 313–320
[GH08] George C, Haxthausen A (2008) Specification, proof, and model checking of the mondex electronic purse using RAISE. Form

Asp Comp 20:101–116
[GMUW03] Garcia-Molina H, Ullman J, Widom J (2003) Database systems: the complete book. Prentice Hall, Englewood Cliffs
[GR93] Gray J, Reuter A (1993) Transaction processing. Morgan Kaufmann, Menlo Park
[Hal96] Hall A (1996) Using formal methods to develop an ATC information system. IEEE Softw 13:66–76
[HB03] Harris T, Bacon J (2003) Operating systems: concurrent and distributed software design. Addison Wesley, Reading
[HF03] Harris T, Fraser K (2003) Language support for lightweight transactions. In: Proceedings of OOPSLA 2003
[HGS06] Haxthausen AE, George C, Schütz M (2006) Specification and proof of the Mondex electronic purse. In: Proceedings of 1st

asian working conference on verified software, AWCVS’06, UNU-IIST reports 348, Macau
[HM93] Herlihy M, Moss E (1993) Transactional memory: architectural support for lock-free data structures. In: Proceedings of 20th

ISCA, pp 289–300
[HMPJH05] Harris T, Marlow S, Peyton-Jones S, Herlihy M (2005) Composable memory transactions. In: Proceedings of PPoPP 2005
[HPST06] Harris T, Plesko M, Shinnar A, Tarditi D (2006) Optimizing memory transactions. In: Proceedings of PLDI 2006, pp 14–25
[HWC+04] Hammond L, Wong V, Chen M, Carlstrom B, Davis J, Hertzberg B, Prabhu Ma, Wijaya H, Kozyrakis C, Olukotun K (2004)

Transactional memory coherence and consistency. In: Proceedings of 31st ISCA
[IB07] Isard M, Birrell A (2007) Automatic mutual exclusion. In: Proceedings of workshop on hot topics in operating systems 2007
[ISO02] ISO/IEC 13568 (2002) Information Technology—Z Formal specification notation—Syntax, type system and semantics: inter-

national standard. http://www.iso.org/iso/en/ittf/PubliclyAvailableStandards/c021573_ISO_IEC_13568_2002(E).zip
[Jes05] Jeske C (2005) Algebraic integration of retrenchment and refinement. PhD thesis, University of Manchester
[JK97] Jajodia S, Kerschberg L (1997) Advanced transaction models and architectures. Kluwer, Dordrecht
[JOW06] Jones CB, O’Hearne P, Woodcock J (2006) Verified software: a grand challenge. IEEE Comput 39(4):93–95
[JW08] Jones C, Woodcock J (eds) (2008) Special issue on the Mondex verification. Form Asp Comp 20(1):1–139
[Kat93] Katz S (1993) A superimposition control construct for distributed systems. ACM TPLAN 15(2):337–356
[KHR+08] Khan B, Horsnell M, Rogers I, Luján M, Dinn A, Watson I (2008) An object-aware hardware transactional memory. In:

Proceedings of ICHPCC, pp 51–58
[LMWF94] Lynch N, Merritt M, Weihl W, Fekete A (1994) Atomic transactions. Morgan Kaufmann, Menlo Park
[Lon04] Loney K (2004) Oracle database 10g: the complete reference. McGraw-Hill, New York
[LR06] Larus J, Rajwar R (2006) Transactional memory. Morgan and Claypool
[Lyn96] Lynch N (1996) Distributed algorithms. Morgan Kaufmann, Menlo Park
[MBS+08] Menon V, Balensiefer S, Shpeisman T, Adl-Tabatabai A-R, Hudson R, Saha B, Welc A (2008) Practical weak-atomicity

semantics for Java STM. In: Proceedings of SPAA 2008

http://www.cesg.gov.uk/site/iacs/itsec/media/formal-docs/Itsec.pdf
http://www.cesg.gov.uk/site/iacs/itsec/media/formal-docs/Itsec.pdf
http://www.iso.org/iso/en/ittf/PubliclyAvailableStandards/c021573_ISO_IEC_13568_2002(E).zip

R. Banach et al.

[Pap07] Papazoglou M (2007) Web services: principles and technology. Prentice Hall, Englewood Cliffs
[PB03] Poppleton M, Banach R (2003) Structuring retrenchments in B by Decomposition. In: Araki et al. [AGM03], pp 814–833
[Ray88] Raynal M (1988) Distributed algorithms and protocols. Wiley, New York
[RET] Retrenchment Homepage. http://www.cs.man.ac.uk/retrenchment
[RG02] Rajwar R, Goodman J (2002) Transactional lock-free execution of lock-based programs. In: Proceedings of 10th SASPLO,

pp 5–17
[RRP+07] Ramadan H, Rossbach C, Porter D, Hofmann Ow, Bhandari A, Witchel E (2007) MetaTM/TxLinux: transactional memory

for an operating system. In: Proceedings of 34th ISCA, pp 92–103
[SBG05] Silberschatz A, Baer P, Gagne G (2005) Operating system concepts. Wiley, New York
[Sch01] Schellhorn G (2001) Verification of ASM refinements using generalized forward simulation. JUCS 7:952–979
[Sch05] Schellhorn G (2005) ASM refinement and generalisations of forward simulation in data refinement: a comparison. Theor

Comput Sci 336:403–435
[SCW00] Stepney S, Cooper D, Woodcock J (2000) An electronic purse: specification, refinement and proof. Technical report PRG-126,

Oxford University Computing Laboratory
[SGH+07] Schellhorn G, Grandy H, Haneberg D, Moebius N, Reif W (2007) A systematic verification approach for Mondex electronic

purses using ASMs. In: Proceedings of Dagstuhl workshop on rigorous methods for software construction and analysis 2007.
LNCS. Springer, Berlin

[SGHR06] Schellhorn G, Grandy H, Haneberg D, Reif W (2006) The Mondex challenge: machine checked proofs for an electronic purse.
In: Proceedings of FM 2006, LNCS, vol 4085. Springer, Berlin, pp 16–31

[SGMA89] Salem K, Garcia-Molina H, Alonso R (1989) Altruistic locking: a strategy for coping with long lived transactions. In: Pro-
ceedings of second international workshop on high performance transaction systems. LNCS, vol 359. Springer, Berlin, pp
175–199

[SMAT+07] Shpeisman T, Menon V, Adl-Tabatabai A-R, Balensiefer S, Grossman D, Hudson R, Moore K, Saha B (2007) Enforcing
isolation and ordering in STM. In: Proceedings of PLDI 2007

[Spi92] Spivey JM (1992) The Z notation: a reference manual, 2nd edn. Prentice-Hall, Englewood Cliffs
[WB07] Woodcock J, Banach R (2007) The verification grand challenge. JUCS 13(5):661–668
[WD96] Woodcock J, Davies J (1996) Using Z: specification, refinement and proof. Prentice-Hall, Englewood Cliffs
[Woo06] Woodcock JCP (2006) First steps in the verified software grand challenge. IEEE Comput 39(10):57–64
[WS] Web Services Org. http://www.webservices.org/
[WSC+08] Woodcock J, Stepney S, Cooper D, Clark J, Jacob J (2008) The certification of the Mondex electronic purse to ITSEC level

E6. Form Asp Comp 20:5–19
[WV02] Weikum G, Vossen G (2002) Transaction processing. Morgan Kaufmann, Menlo Park
[YBM+07] Yen L, Bobba J, Marty M, Moore K, Volos H, Hill M, Swift M, Wood D (2007) LogTM-SE: decoupling hardware transactional

memory from caches. In: Proceedings of 13th ISHPCA
[ZBM03] Zikopoulos P, Baklarz G, Melnyk R (2003) Official guide to DB2 Version 8. Prentice Hall, Englewood Cliffs

Received 2 April 2010
Revised 20 February 2011
Accepted 24 October 2011 by Jonathan Bowen and Michael Butler

http://www.cs.man.ac.uk/retrenchment
http://www.webservices.org/

	Atomicity failure and the retrenchment atomicity pattern
	Abstract
	1 Introduction
	2 Refinements and retrenchments
	3 The abstract pidgin ATC system
	4 Towards an implementation of the pidgin ATC system
	5 The retrenchment atomicity pattern
	6 The mondex purse, as atomic action
	7 The mondex purse, as compensated transaction
	8 Transactional memory
	9 Conclusions
	References

