
Derivation of Z Refinement Proof Rules

Forwards and backwards rules

incorporating input/output refinement

David Cooper, Susan Stepney, and Jim Woodcock

University of York Technical Report YCS-2002-347

December 2002

Contents

1 Introduction 1
1.1 Structure of the derivations 2

2 The relational view of refinement 3
2.1 What is refinement? 3
2.2 The definition of relational refinement 4
2.3 The rules of relational refinement 4

3 Untotalising (relaxing) 6
3.1 Choice of totalisation 6
3.2 Untotalising forward simulations 7
3.3 Untotalising backward retrieval 7

4 Incorporating the computational model (unwinding) 9
4.1 State space structure 9
4.2 Assumptions 11
4.3 Computational model in forward simulation 12

4.3.1 Computational model in forward initialisation 12
4.3.2 Computational model in forward finalisation 13
4.3.3 Computational model in forward applicability 14
4.3.4 Computational model in forward correctness 17
4.3.5 Summary of forward rules after incorporating computational

model 19
4.4 Computational model in backward simulation 19

4.4.1 Computational model in backward initialisation 19
4.4.2 Computational model in backward finalisation 20
4.4.3 Computational model in backward applicability 21
4.4.4 Computational model in backward correctness 22
4.4.5 Summary of backward rules after incorporating computa-

tional model 25

i

ii Contents

5 Recasting the rules in Z 26
5.1 Recasting Z schemas as relations 26
5.2 Recasting forward simulations 28

5.2.1 Recasting forward initialisation 28
5.2.2 Recasting forward finalisation 29
5.2.3 Recasting forward applicability 30
5.2.4 Recasting forward correctness 31

5.3 Recasting backward retrievals 32
5.3.1 Recasting backward initialisation 32
5.3.2 Recasting backward finalisation 33
5.3.3 Recasting backward applicability 34
5.3.4 Recasting backward correctness 35

A Toolkit 37
A.1 Lifting to sequences 37
A.2 Split and Merge 37
A.3 Parallel composition and Copy 38
A.4 Empty sequencies and identity realtion 39

B Lemmas and their proofs 40
B.1 Commuting split around sequential composition 40
B.2 Commuting merge around sequential composition 41
B.3 ∃ to ∀ conversion 42
B.4 Lifting whole expressions 42
B.5 Pushing restriction into parallel composition 43
B.6 Pushing restriction through an injection 43
B.7 Pushing restriction through sequential composition 44
B.8 Pushing domain through sequential composition 45
B.9 Converting relational inclusion to quantification 45

B.9.1 Converting a composition 46
B.9.2 Handling inverses 47

C Summary of derived proof rules 48
C.1 Forward 48
C.2 Backward 49

D Bibliography 50

Chapter 1

Introduction

The traditional set of data refinement rules for Z are stated in [Spivey 1992, section
5.6]. These are sufficient to prove many data refinements that occur in practice,
but not all. In the late 1990s we performed the specification and full refinement
proof of a large, industrial scale application, that of an Electronic Purse [Stepney et
al. 2000]. In the course of this work we discovered that the traditional rules were
not sufficient to prove our particular refinement. In particular, the traditional
obligations assume the use of a ‘forward’ (or ‘downward’) simulation, which was
inappropriate for our application. We developed a more widely applicable set of Z
data refinement proof obligations, for use on our project. These obligations allow
both ‘forward’ and ‘backward’ simulations [Woodcock & Davies 1996, chapter 16],
and also allow non-trivial initialisation, finalisation, and input/output refinement
[Stepney et al. 1998].

This monograph, originally produced as part of the Electronic Purse development
project, provides the full derivation of these rules for refinement in Z. It covers
both the traditional forwards and the new backwards refinement proof rules, and
the input/output refinement rules.

The purpose of this monograph is threefold:

1. to make explicit the simplifying assumptions that go into deriving these rules

2. to provide enough working that the source of our derivations is clear

3. to provide enough working that other rules can more readily be derived when
making different assumptions

This monograph should be read in conjunction with [Woodcock & Davies 1996,
chapter 16]; wherever the detail of a derivation or an explanation of a step is given
there, it is only referenced here. We present the specific notations used as toolkit
definitions in appendix A.

1

2 Chapter 1. Introduction

1.1 Structure of the derivations

We define our notion of refinement in terms of programs as sequences of operations,
where the operations are defined as relations between states. We then explain in
section 2 that this definition reduces to two sets of sufficient (but not necessary)
proof rules on individual operations, under the constraint that the operations,
initialisations, finalisations and retrieves are total. This is done in the relational
calculus.

In section 3 we derive modifications to these proof rules that allow us to relax
the constraint on totality of operations (although we still need total initialisation,
finalisation and retrieve).

In section 4 we consider special cases of relations where it is possible to identify
‘inputs’ and ‘outputs’, and preserve sequences of inputs yet to be consumed and
outputs already produced as part of the state. When the retrieves respect this
division, we derive further rules that unwind the sequences of inputs and outputs
and refer only to single inputs and outputs.

All this work is in the relational calculus. In section 5 we recast the proof rules in
the more familiar Z form. This yields the proof rules used in the Electronic Purse
case study [Stepney et al. 2000].

We have extracted some key lemmas and their proofs in appendix B. (When
referenced in the text, these appear in bold type.)

Chapter 2

The relational view of refinement

[Woodcock & Davies 1996, chapter 16] go into some detail explaining the origin of
refinement and the definition we use. We summarise here.

2.1 What is refinement?

Refinement is concerned with the circumstances under which one data type, A, can
usefully be replaced by another more concrete data type, C. The data types may
behave differently, but the theory of refinement gives us a tool to identify those
aspects of the behaviour to be regarded as important, and allows us to ascertain
whether two data types are equivalent in respect of these aspects.

The definition we use assumes that we have some ‘global’ world G from which
we can move to either of our data types, then perform manipulations in the data
types, and then return to the global world. We compare the results achieved via
the two routes. We say that one data type is a refinement of another if the results
achievable with it are all allowable results achievable with the other.

We must have the global world and a way to move between it and the data types
so we can compare like with like. The map from global world to the data type is
called initialisation, and from the data type to the global world, finalisation.

We frequently have a series of refinements, towards progressively more concrete
data types. Near the top of a series of refinements, the global world is usually very
similar to the abstract world, and so the initilisation and finalisation operations
appear trivial. But as the refinement proceeds in a series of steps, the ‘abstract’
world of one step is the ‘concrete’ world of the preceding step, and the correspond-
ing initialisation and finalisation may be non-trivial.

3

4 Chapter 2. The relational view of refinement

2.2 The definition of relational refinement

The property of interest is the total global to global relation gg : G ↔ G captured
by the data types. The concrete data type will usually capture a smaller relation,
as it refines away non-determinism.

The global world is G , the abstract world is A, and the concrete is C . ai and ci
are the total abstract and concrete initialisation relations

ai : G ↔ A
ci : G ↔ C

af and cf are the total abstract and concrete finalisation relations

af : A↔ G
cf : C ↔ G

ao and co are the total abstract and concrete operation relations.

ao : A↔ A
co : C ↔ C

So the data type A is the tuple (A, ai , af , ao), and C is (C , ci , cf , co).

A program is a sequence of operations, starting with initialisation, then a finite
number of operations, then a finalisation. The relation gg is that defined by all the
programs.

The concrete data type refines the abstract data type precisely when the corre-
sponding total global to global relation is a subset:

A v C ⇔ ggC ⊆ ggA

2.3 The rules of relational refinement

In order to prove refinement without having to reason over the space of all pro-
grams, [He Jifeng et al. 1986] show that two sets of unwound proof rules are suf-
ficient to prove refinement, the so-called forward and backward rules (sometimes
called downward and upward rules). They express these rules in the relational
calculus, with the constraint that all the relations are total.

2.3 The rules of relational refinement 5

The rules from [He Jifeng et al. 1986] are as follows.

The forward rules use a retrieve relation r from abstract to concrete; r need not
be total. The backward rules use a retrieve relation s from concrete to abstract; s
is required to be total by the finalisation proof rule.

r : A↔ C
s : C ↔ A

[He Jifeng et al. 1986]’s relation refinement proof rules are

Forward

ci ⊆ ai o
9 r

r o
9 cf ⊆ af

r o
9 co ⊆ ao o

9 r

Backward

ci o
9 s ⊆ ai

cf ⊆ s o
9 af

co o
9 s ⊆ s o

9 ao

In the following sections of this monograph we show how these rules can be ap-
plied to partial relations, incorporate structure into the state to model inputs and
outputs, and recast the rules in a Z state and operations style.

Chapter 3

Untotalising (relaxing)

[He Jifeng et al. 1986]’s rules are appropriate for total operations. This section gives
equivalent rules when this constraint is relaxed. Initialisation and finalisation are
still required to be total. A non-total initialisation can be made total by restricting
the global world to the domain of the initialisation. Finalisation needs to be total,
because it is always possible to ‘pull the plug’ on a computation.

The derivation is covered in detail [Woodcock & Davies 1996], so here we just state
the results.

3.1 Choice of totalisation

Various sets, X , are augmented with a distinguished element, ⊥, denoting unde-
finedness, to give sets X⊥. The non-total operations are totalised by defining some
appropriate behaviour on the rest of their augmented domain. The retrieve rela-
tion is lifted to include this distinguished element. The totalised operations and
lifted retrieve relations are substituted into the [He Jifeng et al. 1986] rules, and,
after some algebra, rules appropriate to the non-total operations result.

The totalisation of the operations and lifting of the retrieve relation chosen in
[Woodcock & Davies 1996], and used throughout the rest of this monograph, are

•
ρ = (X⊥ × Y ⊥)⊕ ρ
◦
r = r ∪ (⊥ ×Y ⊥)

So a partial relation is allowed any behaviour outside its domain, and the undefined
element retrieves to all elements. This interpretation of partiality leads to the
‘widening the precondition’, or ‘non-blocking’, refinement rules.

6

3.2 Untotalising forward simulations 7

Although this is the most common interpretation of behaviour outside the precon-
dition, other interpretations are possible. For example, [Bolton 1998] choses

H
ρ = (X⊥ × {⊥})⊕ ρ
O
r = r ∪ (⊥ × ⊥)

Here a partial relation is allowed no behaviour outside its domain, and the un-
defined element retrieves to the undefined element only. This interpretation of
partiality leads to the different ‘firing condition’, or ‘blocking’, refinement rules.
We do not consider this form of refinement further here.

3.2 Untotalising forward simulations

From [Woodcock & Davies 1996, Table 16.1], we have the following rules.

Untotalising forward initialisation: when ai and ci are total, we have

ci ⊆ ai o
9 r

Untotalising forward finalisation: when af and cf are total, we have

r o
9 cf ⊆ af

Untotalising forward correctness: when ao and co are partial, we have

(dom ao)C r o
9 co ⊆ ao o

9 r
∧ ran((dom ao)C r) ⊆ dom co

This is broken at the conjunction and treated in future as two rules, the first being
the correctness condition and the second the applicability rule.

3.3 Untotalising backward retrieval

From [Woodcock & Davies 1996, Table 16.1], we have the following rules.

Untotalising backward initialisation: when ai and ci are total, we have

ci o
9 s ⊆ ai

8 Chapter 3. Untotalising (relaxing)

Untotalising backward finalisation: when af and cf are total, we have

cf ⊆ s o
9 af

Untotalising backward correctness: when ao and co are partial, we have

dom(s −B (dom ao))−C co o
9 s ⊆ s o

9 ao

∧ dom co ⊆ dom(s −B (dom ao))

This is broken at the conjunction and treated in future as two rules, the first being
the correctness condition and the second the applicability rule.

Chapter 4

Incorporating the computational
model (unwinding)

The rules expressed so far involve operations that relate some unstructured before
state to some unstructured after state. In this section we put structure on the
state space in order to model inputs and outputs (following [Woodcock & Davies
1996]). We show how the proof rules can be simplified to refer to the inputs and
outputs explicitly.

Z refinement is traditionally viewed as preserving the sequence of inputs and out-
puts, but not necessarily the individual states passed through. Also, inputs and
outputs are not traditionally refined, which leads to the proof rules expressed in
[Spivey 1992]. By going back to a more abstract definition we have the freedom to
allow more refinements than traditionally, but we are forced to make an explicit
choice of what is preserved and what is not.

We choose here to continue with the traditional approach of preserving the full
sequence of inputs and outputs. In addition we choose to preserve some properties
about the final state. Where we diverge from the treatment in [Woodcock & Davies
1996] is that we also allow inputs and outputs to be refined, which requires us to
specify the relation between the abstract and concrete versions.

4.1 State space structure

Our global, abstract and concrete state spaces must therefore be rich enough to
hold state, input sequences and output sequences. To avoid confusion over the
word ‘state’, we use state to refer to the traditional Z state, and world to refer
to the state space upon which the relations are defined. So, to preserve inputs
and outputs, we must embed the sequence of yet-to-be-consumed inputs and the

9

10 Chapter 4. Incorporating the computational model (unwinding)

already-produced outputs into the worlds, along with the actual Z state. Our
global world therefore consists of a global state of type GS , a sequence of global
inputs each of type GI , and a sequence of global outputs each of type GO . We
represent this as

G == GS × (seq GI × seq GO)

The abstract and concrete worlds have a similar structure:

A == AS × (seq AI × seq AO)

C == CS × (seq CI × seq CO)

We build up the full initialisation, finalisation, operation and retrieve relations from
relations defined on the separate parts of the worlds. Starting with the retrieve
relations, for the forward rules these are

ρ : AS ↔ CS
ι : AI ↔ CI
o : AO ↔ CO

For the backward rules these are (note the redefinition of ι and o to be relations
the other way around)

σ : CS ↔ AS
ιb : CI ↔ AI
ob : CO ↔ AO

We also have relations that map between our global and abstract/concrete worlds:

gcs : GS ↔ CS
gas : GS ↔ AS
gci : GI ↔ CI
gai : GI ↔ AI
gco : GO ↔ CO
gao : GO ↔ AO

The abstract and concrete operations are built up from relations from state-and-
input to state-and-output (and hence are more Z-like)

α : AS × AI ↔ AS × AO
γ : CS × CI ↔ CS × CO

4.2 Assumptions 11

We choose to model state initialisation with a relation that ignores its arguments,
thus in effect just defining a set of allowed abstract and concrete initial states.

cis == GS × { cs : CS | constraint on cs }
ais == GS × { as : AS | constraint on as }

We could allow cis and ais to pay attention to their arguments, and this is certainly
expressible in Z, but there seems little use in normal Z specifications, so we use
the above simplification here.

With these pieces, we can now write our definitions of the relations used in the
rules to date. The retrievals are different for the forward and backward rules. For
the forward rules the retrieval relation is

r == ρ ‖ (ι̂ ‖ ô)

(see appendix A for definitions of these operators) and for the backward rules is

s == σ ‖ (ι̂b ‖ ôb)

For both rules the remaining relations are

ci == cis ‖ (ĝci ‖ empty [GO ,CO])

ai == ais ‖ (ĝai ‖ empty [GO ,AO])

cf == gcs∼ ‖ (empty [CI ,GI] ‖ ĝco∼)

af == gas∼ ‖ (empty [AI ,GI] ‖ ĝao∼)

co == split o
9 (γ ‖ id) o

9 merge

ao == split o
9 (α ‖ id) o

9 merge

We now incorporate these definitions into the proof rules from chapter 3, and
simplify the rules to refer to the sub-pieces only.

4.2 Assumptions

It is worth noting the nature of the assumptions implicit in all these definitions.

12 Chapter 4. Incorporating the computational model (unwinding)

1. Retrieval can be split into three independent parts: state, input and output.
This is why we describe the retrieve relation as the parallel composition of
three parts. This means that there must be sufficient information in each part
to do its own retrieval — outputs cannot be retrieved differently depending
upon state, for example.

2. Retrieval, initialisation and finalisation of inputs and outputs are point-wise
on the sequences. That is, despite the presence of a sequence of inputs or
outputs, each element is handled separately. This is the meaning of our use
of lifted relations.

3. Although future inputs and past outputs exist in the world, the operations
are defined only on the current state and current input, and lead to the new
state and new output only. This is captured by the use of the split and merge
in the definitions of the operations, and by the fact that the unused parts of
the input and output sequences are passed forward with an identity relation.

4. Initialisation ignores its state argument, so all ‘programs’ are non-determin-
istically started into one of a set of allowed states. Only the inputs to be
consumed are fixed. This is described by the form of cis and ais and by the
choice of empty in the definition of ci and ai to start the output sequences
off empty.

5. Finalisation preserves the whole sequence of outputs, but only the last state.
This is described by the use of empty in the definition of cf and af to discard
the input sequence, but the use of gcs and gas to preserve the state and ĝco
and ĝao to preserve the output sequences.

4.3 Computational model in forward simulation

4.3.1 Computational model in forward initialisation

The proof rule after untotalising for initialisation is

ci ⊆ ai o
9 r

We expand the definitions of the relations from section 4.

cis ‖ (ĝci ‖ empty [GO ,CO]) ⊆ (ais ‖ (ĝai ‖ empty [GO ,AO])) o
9 (ρ ‖ (ι̂ ‖ ô))

4.3 Computational model in forward simulation 13

Parallel and sequential composition abide [Woodcock & Davies 1996], so we can
reorder

cis ‖ (ĝci ‖ empty [GO ,CO]) ⊆ (ais o
9 ρ) ‖ ((ĝai ‖ empty [GO ,AO]) o

9 (ι̂ ‖ ô))

and again

cis ‖ (ĝci ‖ empty [GO ,CO]) ⊆ (ais o
9 ρ) ‖ ((ĝai o

9 ι̂) ‖ (empty [GO ,AO] o
9 ô))

The three parallel strands can be extracted as individual predicates (from the
definition of ‖)

cis ⊆ ais o
9 ρ

ĝci ⊆ ĝai o
9 ι̂

empty [GO ,CO] ⊆ empty [GO ,AO] o
9 ô

The last of these is always true, because ô takes the empty sequence to the empty
sequence (by the definition of lifting), and the range of empty is only the empty
sequence (in fact, this shows that equality holds), and so can be discarded. By
lemma lift we can un-lift the second, yielding two proof rules, one for state and
one for input:

cis ⊆ ais o
9 ρ

gci ⊆ gai o
9 ι

4.3.2 Computational model in forward finalisation

After untotalising, the finalisation proof rule is

r o
9 cf ⊆ af

We expand using the definitions from section 4.1.

(ρ ‖ (ι̂ ‖ ô)) o
9 (gcs∼ ‖ (empty [CI ,GI] ‖ ĝco∼))

⊆ gas∼ ‖ (empty [AI ,GI] ‖ ĝao∼)

Parallel and sequential composition abide so we can reorder

(ρ o
9 gcs∼) ‖ ((ι̂ ‖ ô) o

9 (empty [CI ,GI] ‖ ĝco∼))

⊆ gas∼ ‖ (empty [AI ,GI] ‖ ĝao∼)

14 Chapter 4. Incorporating the computational model (unwinding)

and again

(ρ o
9 gcs∼) ‖ ((ι̂ o

9 empty [CI ,GI]) ‖ (ô o
9 ĝco∼))

⊆ gas∼ ‖ (empty [AI ,GI] ‖ ĝao∼)

The three parallel strands can be separated as three predicates

ρ o
9 gcs∼ ⊆ gas∼

ι̂ o
9 empty [CI ,GI] ⊆ empty [AI ,GI]

ô o
9 ĝco∼ ⊆ ĝao∼

The second of these is always true, because, as empty maps all arguments to the
empty sequence, the sequential composition with ι̂ on the left hand side can only
reduce the domain of empty . This predicate can therefore be discarded. By lemma
lift the third can be un-lifted, yielding two proof rules, one for state and one for
output.

ρ o
9 gcs∼ ⊆ gas∼

o o
9 gco∼ ⊆ gao∼

4.3.3 Computational model in forward applicability

When untotalising the correctness condition, an additional proof rule is generated,
which we call the applicability rule.

ran((dom ao)C r) ⊆ dom co

We start by writing these as set comprehensions. The left hand side can be written

ran((dom ao)C r) =
ran{ sa : AS ; ia : seq AI ; oa : seq AO ; sc : CS ; ic : seq CI ; oc : seq CO |

(sa, (ia, oa)) 7→ (sc, (ic, oc)) ∈ r
∧ (sa, (ia, oa)) ∈ dom ao •

(sa, (ia, oa)) 7→ (sc, (ic, oc)) }

We can expand dom ao based on the definition of ao, making use of lemma
sequential-dom to push the domain through the sequential composition.

dom ao
= dom(split o

9 (α ‖ id) o
9 merge)

= split∼(| dom((α ‖ id) o
9 merge) |)

4.3 Computational model in forward simulation 15

merge is total, so it can be dropped

= split∼(| dom(α ‖ id) |)

Expand as a set

= { sa : AS ; ia : seq AI ; oa : seq AO |
(sa, (ia, oa)) ∈ dom split
∧ split(sa, (ia, oa)) ∈ dom(α ‖ id) •

(sa, (ia, oa)) }

Expand the definition of split

= { sa : AS ; ia : seq AI ; oa : seq AO |
ia 6= 〈 〉
∧ ((sa, head ia), (tail ia, oa)) ∈ dom(α ‖ id) •

(sa, (ia, oa)) }

Drop the parallel branch, which adds no constraints

= { sa : AS ; ia : seq AI ; oa : seq AO | ia 6= 〈 〉 ∧ (sa, head ia) ∈ domα •
(sa, (ia, oa)) }

Plugging this expression for dom ao into the expansion of the left hand side of the
original inequality, we get

ran((dom ao)C r) =
ran{ sa : AS ; ia : seq AI ; oa : seq AO ; sc : CS ; ic : seq CI ; oc : seq CO |

(sa, (ia, oa)) 7→ (sc, (ic, oc)) ∈ r
∧ ia 6= 〈 〉 ∧ (sa, head ia) ∈ domα •

(sa, (ia, oa)) 7→ (sc, (ic, oc)) }

Taking the range just alters the form of the constructing term

ran((dom ao)C r) =
{ sa : AS ; ia : seq AI ; oa : seq AO ; sc : CS ; ic : seq CI ; oc : seq CO |

(sa, (ia, oa)) 7→ (sc, (ic, oc)) ∈ r
∧ ia 6= 〈 〉 ∧ (sa, head ia) ∈ domα •
(sc, (ic, oc)) }

We do a similar thing with the right hand side, giving us

dom co =
{ sc : CS ; ic : seq CI ; oc : seq CO |

ic 6= 〈 〉 ∧ (sc, head ic) ∈ dom γ •
(sc, (ic, oc)) }

16 Chapter 4. Incorporating the computational model (unwinding)

We now write the fact that the left hand side is a subset of the right hand side by
quantifying over the elements of the left hand side, and showing that membership
of the left hand side set implies membership of the right hand side set.

∀ sa : AS ; ia : seq AI ; oa : seq AO ; sc : CS ; ic : seq CI ; oc : seq CO |
(sa, (ia, oa)) 7→ (sc, (ic, oc)) ∈ r
∧ ia 6= 〈 〉 ∧ (sa, head ia) ∈ domα •

ic 6= 〈 〉 ∧ (sc, head ic) ∈ dom γ

We expand out the definition of r .

∀ sa : AS ; ia : seq AI ; oa : seq AO ; sc : CS ; ic : seq CI ; oc : seq CO |
sa 7→ sc ∈ ρ ∧ ia 7→ ic ∈ ι̂ ∧ oa 7→ oc ∈ ô
∧ ia 6= 〈 〉 ∧ (sa, head ia) ∈ domα •

ic 6= 〈 〉 ∧ (sc, head ic) ∈ dom γ

Because lifted relations always map empty sequences to empty sequences, the im-
plication concerning the non-emptiness of the input sequences is discharged auto-
matically.

∀ sa : AS ; ia : seq AI ; oa : seq AO ; sc : CS ; ic : seq CI ; oc : seq CO |
sa 7→ sc ∈ ρ ∧ ia 7→ ic ∈ ι̂ ∧ oa 7→ oc ∈ ô
∧ (sa, head ia) ∈ domα •

(sc, head ic) ∈ dom γ

We discard the elements that are not referred to in the implication (oa and oc) and
add single elements of input to draw out the head of the input sequences explicitly

∀ sa : AS ; ia : seq AI ; sc : CS ; ic : seq CI ; a? : AI ; c? : CI |
a? = head ia ∧ c? = head ic
∧ sa 7→ sc ∈ ρ ∧ ia 7→ ic ∈ ι̂
∧ (sa, head ia) ∈ domα •

(sc, head ic) ∈ dom γ

We push the property that input sequences are related by ι̂ down to a property on
the individual elements (unlifting ι̂ in the process), and discard the input sequences
themselves.

∀ sa : AS ; sc : CS ; a? : AI ; c? : CI |
sa 7→ sc ∈ ρ ∧ a? 7→ c? ∈ ι
∧ (sa, a?) ∈ domα •

(sc, c?) ∈ dom γ

We now write this back in the relational form

ran(domαC (ρ ‖ ι)) ⊆ dom γ

4.3 Computational model in forward simulation 17

4.3.4 Computational model in forward correctness

Untotalising the correctness proof rule yielded two parts, one of which is handled
above as the applicability rule, and the other is handled here as correctness.

(dom ao)C r o
9 co ⊆ ao o

9 r

from section 4.3.3, we write dom ao as a set comprehension

dom ao =
{ sa : AS ; ia : seq AI ; oa : seq AO |

ia 6= 〈 〉 ∧ (sa, head ia) ∈ domα •
(sa, (ia, oa)) }

We expand all the terms using the definitions from section 4.1, and for dom ao
above.

{ sa : AS ; ia : seq AI ; oa : seq AO | ia 6= 〈 〉 ∧ (sa, head ia) ∈ domα •
(sa, (ia, oa)) }

C (ρ ‖ (ι̂ ‖ ô)) o
9 (split o

9 (γ ‖ id) o
9 merge)

⊆
(split o

9 (α ‖ id) o
9 merge) o

9 (ρ ‖ (ι̂ ‖ ô))

We use the lemmas split-comm-io and merge-comm-io to shift the splits to the
left and the merges to the right.

{ sa : AS ; ia : seq AI ; oa : seq AO | ia 6= 〈 〉 ∧ (sa, head ia) ∈ domα •
(sa, (ia, oa)) }

C split o
9 ((ρ ‖ ι) ‖ (ι̂ ‖ ô)) o

9 (γ ‖ id) o
9 merge

⊆
split o

9 (α ‖ id) o
9 ((ρ ‖ o) ‖ (ι̂ ‖ ô)) o

9 merge

The domain restriction can act on the first part only, leaving the merge at the ends
to be canceled (because merge is an injection).

{ sa : AS ; ia : seq AI ; oa : seq AO | ia 6= 〈 〉 ∧ (sa, head ia) ∈ domα •
(sa, (ia, oa)) }

C split o
9 ((ρ ‖ ι) ‖ (ι̂ ‖ ô)) o

9 (γ ‖ id)
⊆

split o
9 (α ‖ id) o

9 ((ρ ‖ o) ‖ (ι̂ ‖ ô))

18 Chapter 4. Incorporating the computational model (unwinding)

We push the domain restriction through the split using lemma restrict-injection,
and the resulting image past the first composition using lemma sequential-restrict.
We can then cancel the splits.

So, the image of the set under split is

split(| { sa : AS ; ia : seq AI ; oa : seq AO | ia 6= 〈 〉 ∧ (sa, head ia) ∈ domα •
(sa, (ia, oa)) } |)

= { sa : AS ; ia : seq AI ; oa : seq AO | ia 6= 〈 〉 ∧ (sa, head ia) ∈ domα •
((sa, head ia), (tail ia, oa)) }

= { sa : AS ; ia : seq AI ; oa : seq AO ; a? : AI | (sa, a?) ∈ domα •
((sa, a?), (ia, oa)) }

= { sa : AS ; a? : AI | (sa, a?) ∈ domα • (sa, a?) } × (seq AI × seq AO)

= domα× (seq AI × seq AO)

Using this, and canceling split , gives us

(domα× (seq AI × seq AO))C ((ρ ‖ ι) ‖ (ι̂ ‖ ô)) o
9 (γ ‖ id)

⊆ (α ‖ id) o
9 ((ρ ‖ o) ‖ (ι̂ ‖ ô))

Using lemma parallel-restrict, we can push the restriction inside the first parallel
composition.

((domαC (ρ ‖ ι)) ‖ ((seq AI × seq AO)C (ι̂ ‖ ô))) o
9 (γ ‖ id)

⊆ (α ‖ id) o
9 ((ρ ‖ o) ‖ (ι̂ ‖ ô))

Parallel and sequential compositions abide, so

(domαC (ρ ‖ ι) o
9 γ) ‖ ((seq AI × seq AO)C (ι̂ ‖ ô) o

9 id)
⊆ (α o

9 (ρ ‖ o)) ‖ (id o
9 (ι̂ ‖ ô))

We split the parallel strands into two independent predicates.

domαC (ρ ‖ ι) o
9 γ ⊆ α o

9 (ρ ‖ o)

(seq AI × seq AO)C (ι̂ ‖ ô) o
9 id ⊆ id o

9 (ι̂ ‖ ô)

The second of these is always true, leaving just

domαC (ρ ‖ ι) o
9 γ ⊆ α o

9 (ρ ‖ o)

This is the derived form of the correctness proof rule.

4.4 Computational model in backward simulation 19

4.3.5 Summary of forward rules after incorporating computational model

Forward initialisation (state) cis ⊆ ais o
9 ρ

Forward initialisation (input) gci ⊆ gai o
9 ι

Forward finalisation (state) ρ o
9 gcs∼ ⊆ gas∼

Forward finalisation (output) o o
9 gco∼ ⊆ gao∼

Forward applicability ran(domαC (ρ ‖ ι)) ⊆ dom γ

Forward correctness domαC (ρ ‖ ι) o
9 γ ⊆ α o

9 (ρ ‖ o)

4.4 Computational model in backward simulation

4.4.1 Computational model in backward initialisation

The proof rule after untotalising for initialisation is

ci o
9 s ⊆ ai

We start by expanding the definitions from section 4.1.

(cis ‖ (ĝci ‖ empty [GO ,CO])) o
9 (σ ‖ (ι̂b ‖ ôb))

⊆ ais ‖ (ĝai ‖ empty [GO ,AO])

Parallel composition and sequential composition abide, so we can reorder this:

(cis o
9 σ) ‖ ((ĝci ‖ empty [GO ,CO]) o

9 (ι̂b ‖ ôb))

⊆ ais ‖ (ĝai ‖ empty [GO ,AO])

and again

(cis o
9 σ) ‖ ((ĝci o

9 ι̂b) ‖ (empty [GO ,CO] o
9 ôb))

⊆ ais ‖ (ĝai ‖ empty [GO ,AO])

These three parallel strands can be separated as three independent predicates

cis o
9 σ ⊆ ais

ĝci o
9 ι̂b ⊆ ĝai

empty [GO ,CO] o
9 ôb ⊆ empty [GO ,AO]

20 Chapter 4. Incorporating the computational model (unwinding)

The last of these is always true, as all lifted relations map sequences to sequences
of the same length, and hence map the empty sequence to the empty sequence.
So it can be discarded. The second can be unlifted (see lemma lift), yielding two
proof rules, one for state and one for input.

cis o
9 σ ⊆ ais

gci o
9 ιb ⊆ gai

4.4.2 Computational model in backward finalisation

The proof rule for finalisation is

cf ⊆ s o
9 af

Expanding the definitions given in section 4.1 we get

gcs∼ ‖ (empty [CI ,GI] ‖ ĝco∼)

⊆ (σ ‖ (ι̂b ‖ ôb)) o
9 (gas∼ ‖ (empty [AI ,GI] ‖ ĝao∼))

Parallel and sequential composition abide, so we can reorder

gcs∼ ‖ (empty [CI ,GI] ‖ ĝco∼)

⊆ (σ o
9 gas∼) ‖ ((ι̂b ‖ ôb) o

9 (empty [AI ,GI] ‖ ĝao∼))

and again

gcs∼ ‖ (empty [CI ,GI] ‖ ĝco∼)

⊆ (σ o
9 gas∼) ‖ ((ι̂b o

9 empty [AI ,GI]) ‖ (ôb
o
9 ĝao∼))

The three parallel compositions can be separated into three independent predicates

gcs∼ ⊆ σ o
9 gas∼

empty [CI ,GI] ⊆ ι̂b o
9 empty [AI ,GI]

ĝco∼ ⊆ ôb
o
9 ĝao∼

The second of these is always true as all lifted relations map the empty sequence
to the empty sequence. So it can be discarded. The third can be unlifted, yielding

gcs∼ ⊆ σ o
9 gas∼

gco∼ ⊆ ob
o
9 gao∼

We can split this into two proof rules; one for state and one for outputs.

4.4 Computational model in backward simulation 21

4.4.3 Computational model in backward applicability

When untotalising the correctness condition, an additional proof rule is generated,
which we call the applicability rule.

dom co ⊆ dom(s −B (dom ao))

We follow a similar approach to that adopted for the forward rule in section 4.3.3,
but omit most of the detail. We can expand out the definition of co and ao in
terms of split , merge, α and γ. From these we can see that the left hand side can
be written

dom co = { sc : CS ; ic : seq CI ; oc : seq CO | ic = 〈 〉 ∨ (sc, head ic) /∈ dom γ •
(sc, (ic, oc)) }

and the right hand side

dom(s −B (dom ao)) =
{ sc : CS ; ic : seq CI ; oc : seq CO ; sa : AS ; ia : seq AI ; oa : seq AO |

(sc, (ic, oc)) 7→ (sa, (ia, oa)) ∈ s
∧ (ia = 〈 〉 ∨ (sa, head ia) /∈ domα) •

(sc, (ic, oc)) }

Writing the proof rule with quantifiers gives us

∀ sc : CS ; ic : seq CI ; oc : seq CO | ic = 〈 〉 ∨ (sc, head ic) /∈ dom γ •
∃ sa : AS ; ia : seq AI ; oa : seq AO •

(sc, (ic, oc)) 7→ (sa, (ia, oa)) ∈ s
∧ (ia = 〈 〉 ∨ (sa, head ia) /∈ domα)

We can split apart the definition of s

∀ sc : CS ; ic : seq CI ; oc : seq CO | ic = 〈 〉 ∨ (sc, head ic) /∈ dom γ •
∃ sa : AS ; ia : seq AI ; oa : seq AO •

sc 7→ sa ∈ σ ∧ ic 7→ ia ∈ ι̂b ∧ oc 7→ oa ∈ ôb

∧ (ia = 〈 〉 ∨ (sa, head ia) /∈ domα)

Taking the independent parts of the implication, the quantification over oc and oa
can be discarded because ob , as part of s , is total.

∀ sc : CS ; ic : seq CI | ic = 〈 〉 ∨ (sc, head ic) /∈ dom γ •
∃ sa : AS ; ia : seq AI •

sc 7→ sa ∈ σ ∧ ic 7→ ia ∈ ι̂b
∧ (ia = 〈 〉 ∨ (sa, head ia) /∈ domα)

22 Chapter 4. Incorporating the computational model (unwinding)

We split the disjunction in the antecedent into two parts

(∀ sc : CS ; ic : seq CI | ic = 〈 〉 •
∃ sa : AS ; ia : seq AI •

sc 7→ sa ∈ σ ∧ ic 7→ ia ∈ ι̂b
∧ (ia = 〈 〉 ∨ (sa, head ia) /∈ domα))

∧ (∀ sc : CS ; ic : seq CI | (sc, head ic) /∈ dom γ •
∃ sa : AS ; ia : seq AI •

sc 7→ sa ∈ σ ∧ ic 7→ ia ∈ ι̂b
∧ (ia = 〈 〉 ∨ (sa, head ia) /∈ domα))

The first conjunct is true, because σ is total, and so can be discarded. In the
second conjunct we introduce new variables into the quantifications as we did at
the end of section 4.3.3, unlifting the ι̂ relation.

∀ sc : CS ; c? : CI | (sc, c?) /∈ dom γ •
∃ sa : AS ; a? : AI •

sc 7→ sa ∈ σ ∧ c? 7→ a? ∈ ιb
∧ (sa, a?) /∈ domα

We can now write this in its relational form

dom γ ⊆ dom((σ ‖ ιb)−B domα)

4.4.4 Computational model in backward correctness

The proof rule derived for correctness is

dom(s −B (dom ao))−C co o
9 s ⊆ s o

9 ao

We expand the definitions of co, ao and s .

dom(s −B (dom ao))−C split o
9 (γ ‖ id) o

9 merge o
9 (σ ‖ (ι̂b ‖ ôb))

⊆ (σ ‖ (ι̂b ‖ ôb)) o
9 split o

9 (α ‖ id) o
9 merge

From section 4.4.3 the restricting set can be rewritten

dom(s −B (dom ao)) =
{ sc : CS ; ic : seq CI ; oc : seq CO ; sa : AS ; ia : seq AI ; oa : seq AO |

(sc, (ic, oc)) 7→ (sa, (ia, oa)) ∈ s
∧ (ia = 〈 〉 ∨ (sa, head ia) /∈ domα) •

(sc, (ic, oc)) }

4.4 Computational model in backward simulation 23

which we can write as the union of two sets (because of the disjunction):

dom(s −B (dom ao)) =

{ sc : CS ; ic : seq CI ; oc : seq CO ; sa : AS ; ia : seq AI ; oa : seq AO |
(sc, (ic, oc)) 7→ (sa, (ia, oa)) ∈ s
∧ ia = 〈 〉 •

(sc, (ic, oc)) }
∪
{ sc : CS ; ic : seq CI ; oc : seq CO ; sa : AS ; ia : seq AI ; oa : seq AO |

(sc, (ic, oc)) 7→ (sa, (ia, oa)) ∈ s
∧ (sa, head ia) /∈ domα •

(sc, (ic, oc)) }

The first of these is not in the domain of co (because co starts with split , which
needs an element in the input list to extract as the head) and so can be discarded
as it does nothing by being domain subtracted. We now have

{ sc : CS ; ic : seq CI ; oc : seq CO ; sa : AS ; ia : seq AI ; oa : seq AO |
(sc, (ic, oc)) 7→ (sa, (ia, oa)) ∈ s
∧ (sa, head ia) /∈ domα •

(sc, (ic, oc)) }
−C split o

9 (γ ‖ id) o
9 merge o

9 (σ ‖ (ι̂b ‖ ôb))
⊆
(σ ‖ (ι̂b ‖ ôb)) o

9 split o
9 (α ‖ id) o

9 merge

We use the lemmas split-comm-io and merge-comm-io to move the splits to
the left and the merges to the right.

{ sc : CS ; ic : seq CI ; oc : seq CO ; sa : AS ; ia : seq AI ; oa : seq AO |
(sc, (ic, oc)) 7→ (sa, (ia, oa)) ∈ s
∧ (sa, head ia) /∈ domα •

(sc, (ic, oc)) }
−C split o

9 (γ ‖ id) o
9 ((σ ‖ ob) ‖ (ι̂b ‖ ôb)) o

9 merge
⊆ split o

9 ((σ ‖ ιb) ‖ (ι̂b ‖ ôb)) o
9 (α ‖ id) o

9 merge

We can cancel the merge from both sides (as merge is an injection).

{ sc : CS ; ic : seq CI ; oc : seq CO ; sa : AS ; ia : seq AI ; oa : seq AO |
(sc, (ic, oc)) 7→ (sa, (ia, oa)) ∈ s
∧ (sa, head ia) /∈ domα •

(sc, (ic, oc)) }
−C split o

9 (γ ‖ id) o
9 ((σ ‖ ob) ‖ (ι̂b ‖ ôb))

⊆ split o
9 ((σ ‖ ιb) ‖ (ι̂b ‖ ôb)) o

9 (α ‖ id)

24 Chapter 4. Incorporating the computational model (unwinding)

We push the domain anti-restriction through the split using lemma restrict-
injection, and the resulting image past the first composition using lemma sequential-
restrict. We can then cancel the splits.

So, the image of the domain restricting set under split is

split(| { sc : CS ; ic : seq CI ; oc : seq CO ; sa : AS ; ia : seq AI ; oa : seq AO |
(sc, (ic, oc)) 7→ (sa, (ia, oa)) ∈ s
∧ (sa, head ia) /∈ domα •

(sc, (ic, oc)) } |)

= { sc : CS ; ic : seq CI ; oc : seq CO ; sa : AS ; ia : seq AI ; oa : seq AO |
(sc, (ic, oc)) 7→ (sa, (ia, oa)) ∈ s
∧ (sa, head ia) /∈ domα •

((sc, head ic), (tail ic, oc)) }

= { sc : CS ; ic : seq CI ; c? : CI ; oc : seq CO ;
sa : AS ; ia : seq AI ; a? : AI ; oa : seq AO |

sc 7→ sa ∈ σ ∧ ic 7→ ia ∈ ι̂b ∧ c? 7→ a? ∈ ιb ∧ oc 7→ oa ∈ ôb

∧ (sa, a?) /∈ domα •
((sc, c?), (ic, oc)) }

= { sc : CS ; c? : CI ; sa : AS ; a? : AI |
sc 7→ sa ∈ σ ∧ c? 7→ a? ∈ ιb ∧ (sa, a?) /∈ domα •

(sc, c?) }
× (dom ι̂b × dom ôb)

= dom((σ ‖ ιb)−B domα)× (dom ι̂b × dom ôb)

So pushing this through and canceling the splits gives us

(dom((σ ‖ ιb)−B domα)× (dom ι̂b × dom ôb))−C (γ ‖ id) o
9 ((σ ‖ ob) ‖ (ι̂b ‖ ôb))

⊆ ((σ ‖ ιb) ‖ (ι̂b ‖ ôb)) o
9 (α ‖ id)

Sequential and parallel composition abide, so distribute o
9 through ‖ on both sides

(dom((σ ‖ ιb)−B domα)× (dom ι̂b × dom ôb))−C ((γ o
9 (σ ‖ ob)) ‖ (id o

9 (ι̂b ‖ ôb)))
⊆ ((σ ‖ ιb) o

9 α) ‖ ((ι̂b ‖ ôb) o
9 id)

We can split the restriction into two parts (see lemma parallel-restrict), and then
separate out the parallel compositions

dom((σ ‖ ιb)−B domα)−C γ o
9 (σ ‖ ob) ⊆ (σ ‖ ιb) o

9 α

(dom ι̂b × dom ôb)−C id o
9 (ι̂b ‖ ôb) ⊆ (ι̂b ‖ ôb) o

9 id

4.4 Computational model in backward simulation 25

The second part is obviously true (because the sequential compositions with iden-
tity can be canceled, and we are left with just a domain restriction of a relation
being a subset of the relation itself), leaving just

dom((σ ‖ ιb)−B domα)−C γ o
9 (σ ‖ ob) ⊆ (σ ‖ ιb) o

9 α

4.4.5 Summary of backward rules after incorporating computational
model

Backward initialisation (state) cis o
9 σ ⊆ ais

Backward initialisation (input) gci o
9 ιb ⊆ gai

Backward finalisation (state) gcs∼ ⊆ σ o
9 gas∼

Backward finalisation (output) gco∼ ⊆ ob
o
9 gao∼

Backward applicability dom γ ⊆ dom((σ ‖ ιb)−B domα)

Backward correctness dom((σ ‖ ιb)−B domα)−C γ o
9 (σ ‖ ob) ⊆ (σ ‖ ιb) o

9 α

Chapter 5

Recasting the rules in Z

In this chapter we derive the familiar Z formulation of the proof rules.

5.1 Recasting Z schemas as relations

To do this, we first explain what a Z schema is in term of the relational calculus.
This is normally easy, as a schema that relates two sets of variables can be written
as a relation by using set comprehension. For example, a Z operation Op with no
inputs or outputs, which explains how before and after states are related (S and
S ′), can be written as a relation between states thus

{Op • θS 7→ θS ′ }

We now give Z forms of the relations used so far, using common Z schema names
for the state retrieve, initialisation, etc.

G , g? : GI , g ! : GO [global state, input and output]

C , c? : CI , c! : CO [concrete state, input and output]

A, a? : AI , a! : AO [abstract state, input and output]

The state, input, and output retrieves:

R =̂ [A; C | constraint]

RIn =̂ [a? : AI ; c? : CI | constraint]

ROut =̂ [a! : AO ; c! : CO | constraint]

The concrete and abstract operations:

COp =̂ [C ; C ′; c? : CI ; c! : CO | constraint]

26

5.1 Recasting Z schemas as relations 27

AOp =̂ [A; A′; a? : AI ; a! : AO | constraint]

The concrete and abstract state and input initialisations:

CInitState =̂ [C ′ | constraint]

AInitState =̂ [A′ | constraint]

CInitIn =̂ [c? : CI ; g? : GI | constraint]

AInitIn =̂ [a? : AI ; g? : GI | constraint]

The concrete and abstract state and output finalisations:

CFinState =̂ [C ; G | constraint]

AFinState =̂ [A; G | constraint]

CFinOut =̂ [c! : CO ; g ! : GO | constraint]

AFinOut =̂ [a! : AO ; g ! : GO | constraint]

For forward retrieval we have

ρ == {R • θA 7→ θC }
ι == {RIn • a? 7→ c? }
o == {ROut • a! 7→ c! }

and for backward retrieval

σ == {R • θC 7→ θA }
ιb == {RIn • c? 7→ a? }
ob == {ROut • c! 7→ a! }

For both retrievals, we have

gcs == {CFinState • θG 7→ θC }
gas == {AFinState • θG 7→ θA }
gci == {CInitIn • g? 7→ c? }
gai == {AInitIn • g? 7→ a? }
gco == {CFinOut • g ! 7→ c! }
gao == {AFinOut • g ! 7→ a! }

γ == {COp • (θC , c?) 7→ (θC ′, c!) }
α == {AOp • (θA, a?) 7→ (θA′, a!) }

In section 4.1 we discussed how initialisation is typically expressed in Z. Note
that here we define the set comprehension with the dashed variables, because

28 Chapter 5. Recasting the rules in Z

traditionally the Z initialisation is regarded as an ‘operation’ that delivers the
initial state from nothing, and hence is a predicate on the after-state.

cis == G × {CInitState • θC ′ }
ais == G × {AInitState • θA′ }

5.2 Recasting forward simulations

5.2.1 Recasting forward initialisation

From section 4.3.1 we have the following two proof rules

cis ⊆ ais o
9 ρ

gci ⊆ gai o
9 ι

The first rule is the state initialisation, and the second is the input initialisation.

5.2.1.1 State initialisation

cis ⊆ ais o
9 ρ

We substitute in the definitions in Z of these relations and obtain the following.
(We have chosen to use dashed variables in the set comprehension for R to make
the equations simpler later. The choice of names does not change the meaning.)

G × {CInitState • θC ′ }
⊆ (G × {AInitState • θA′ }) o

9 {R′ • θA′ 7→ θC ′ }

As explained in the appendix in B.9 we can write this using quantifiers:

∀G ; C ′ | CInitState •
∃A′ • (θG , θA′) ∈ (G × {AInitState • θA′ }) ∧ R′

⇔
∀G ; C ′ | CInitState • ∃A′ • AInitState ∧ R′

⇔
∀C ′ | CInitState • ∃A′ • AInitState ∧ R′

This can be written as a theorem

CInitState ` ∃A′ • AInitState ∧ R′

5.2 Recasting forward simulations 29

5.2.1.2 Input initialisation

gci ⊆ gai o
9 ι

We substitute in the definitions of these relations in Z.

{CInitIn • g? 7→ c? } ⊆ {AInitIn • g? 7→ a? } o
9 {RIn • a? 7→ c? }

Write as quantifiers

∀ g? : GI ; c? : CI | CInitIn • ∃ a? : AI • AInitIn ∧ RIn

Write this as a theorem

CInitIn ` ∃ a? : AI • AInitIn ∧ RIn

5.2.2 Recasting forward finalisation

From section 4.3.2 we have two parts of the proof rule

ρ o
9 gcs∼ ⊆ gas∼

o o
9 gco∼ ⊆ gao∼

The first rule is the state finalisation, and the second is the output finalisation.

5.2.2.1 State finalisation

ρ o
9 gcs∼ ⊆ gas∼

Expand the definitions of these relations in Z

{R • θA 7→ θC } o
9 {CFinState • θG 7→ θC }∼

⊆ {AFinState • θG 7→ θA }∼

As described in the appendix in B.9, we can write these as quantifiers. The fact
that the relations are written as inverses does not affect the translation.

∀A; C ; G | R ∧ CFinState • AFinState

We can then write this as a theorem

R; CFinState ` AFinState

30 Chapter 5. Recasting the rules in Z

5.2.2.2 Ouput finalisation

o o
9 gco∼ ⊆ gao∼

Expand these relations using their definitions in Z

{ROut • a! 7→ c! } o
9 {CFinOut • g ! 7→ c! }∼

⊆ {AFinOut • g ! 7→ a! }∼

As explained in the appendix in B.9 we can write this in quantifiers

∀ a! : AO ; c! : CO ; g ! : GO | ROut ∧ CFinOut • AFinOut

As a theorem this is

ROut ; CFinOut ` AFinOut

5.2.3 Recasting forward applicability

From section 4.3.3 we have the proof rule

ran(domαC (ρ ‖ ι)) ⊆ dom γ

The parallel composition of the relations ρ and ι can be represented as a set com-
prehension in which the two part are combined in a tuple.

ran(domαC {R; RIn • (θA, a?) 7→ (θC , c?) }) ⊆ dom γ

Domain restricting this is equivalent to adding a constraint into the set comprehen-
sion. The constraint is that the tuple is in the domain of the abstract operation,
which in Z is represented by pre AOp.

ran{R; RIn | pre AOp • (θA, a?) 7→ (θC , c?) } ⊆ dom γ

Taking the range of this set only alters the form of the constructing term.

{R; RIn | pre AOp • (θC , c?) } ⊆ dom γ

We now convert to quantifiers as described in B.9. The domain of γ is exactly the
set of all those pairs (θC , c?) that allow the concrete operation to proceed. This
is captured in the Z predicate pre COp.

∀A; C ; a? : AI ; c? : CI | R ∧ RIn ∧ pre AOp
• (θC , c?) ∈ {C ; c? : CI | pre COp • (θC , c?) }

⇔
∀A; C ; a? : AI ; c? : CI | R ∧ RIn ∧ pre AOp • pre COp

5.2 Recasting forward simulations 31

We write this as a theorem

R; RIn | pre AOp ` pre COp

5.2.4 Recasting forward correctness

From section 4.3.4 we have the proof rule

domαC (ρ ‖ ι) o
9 γ ⊆ α o

9 (ρ ‖ o)

We write this as set comprehensions, making use of the ideas used in the derivation
above, 5.2.3.

domαC {R; RIn • (θA, a?) 7→ (θC , c?) } o
9 {COp • (θC , c?) 7→ (θC ′, c!) }

⊆ {AOp • (θA, a?) 7→ (θA′, a!) } o
9 {R′; ROut • (θA′, a!) 7→ (θC ′, c!) }

We can replace the domain expression with a set comprehension, too

{AOp | pre AOp • (θA, a?) }
C{R; RIn • (θA, a?) 7→ (θC , c?) } o

9 {COp • (θC , c?) 7→ (θC ′, c!) }
⊆ {AOp • (θA, a?) 7→ (θA′, a!) } o

9 {R′; ROut • (θA′, a!) 7→ (θC ′, c!) }

We can push the domain restriction into the definition of the first relation in the
composition as a predicate

{R; RIn | pre AOp • (θA, a?) 7→ (θC , c?) } o
9 {COp • (θC , c?) 7→ (θC ′, c!) }

⊆ {AOp • (θA, a?) 7→ (θA′, a!) } o
9 {R′; ROut • (θA′, a!) 7→ (θC ′, c!) }

Write this using quantifiers

∀A; a? : AI ; C ; c? : CI ; C ′; c! : CO | R ∧ RIn ∧ pre AOp ∧ COp •
∃A′; a! : AO • AOp ∧ R′ ∧ ROut

which can in turn be written as a theorem

R; RIn; COp | pre AOp ` ∃A′; a! : AO • AOp ∧ R′ ∧ ROut

32 Chapter 5. Recasting the rules in Z

5.3 Recasting backward retrievals

5.3.1 Recasting backward initialisation

From section 4.4.1 we have two parts of the proof rule

cis o
9 σ ⊆ ais

gci o
9 ιb ⊆ gai

The first rule is the state initialisation, and the second is the input initialisation.

5.3.1.1 State initialisation

cis o
9 σ ⊆ ais

We substitute in the definitions in Z of these relations and obtain the following.
(We have chosen to use dashed variables in the set comprehension for R, to make
the equations simpler later. The choice of names does not change the meaning.)

(G × {CInitState • θC ′ }) o
9 {R′ • θC ′ 7→ θA′ } ⊆

(G × {AInitState • θA′ })

As explained in the appendix in B.9 we can write this using quantifiers.

∀G ; C ′; A′ | CInitState ∧ R′ •
(θG , θA′) ∈ (G × {AInitState • θA′ })

⇔

∀G ; C ′; A′ | CInitState ∧ R′ • AInitState

⇔

∀C ′; A′ | CInitState ∧ R′ • AInitState

This can be written as a theorem

CInitState; R′ ` AInitState

5.3 Recasting backward retrievals 33

5.3.1.2 Input initialisation

gci o
9 ιb ⊆ gai

Substitute in the definitions for these relations.

{CInitIn • g? 7→ c? } o
9 {RIn • c? 7→ a? } ⊆ {AInitIn • g? 7→ a? }

With quantifiers this is

∀ g? : GI ; c? : CI ; a? : AI | CInitIn ∧ RIn • AInitIn

which can be written as a theorem as

CInitIn; RIn ` AInitIn

5.3.2 Recasting backward finalisation

From section 4.4.2 we have two parts of the proof rule

gcs∼ ⊆ σ o
9 gas∼

gco∼ ⊆ ob
o
9 gao∼

The first rule is the state finalisation, and the second is the output finalisation.

5.3.2.1 State finalisation

gcs∼ ⊆ σ o
9 gas∼

Expanding with the definitions of these relations

{CFinState • θG 7→ θC }∼
⊆ {R • θC 7→ θA } o

9 {AFinState • θG 7→ θA }∼

As explained in the appendix in B.9, as the sequential composition is on the right
hand side, it doesn’t go away, and instead becomes an existential quantification.
The fact that these are the inverses of relations gets lost when they are converted
to quantifiers —it is only important in deciding which variable is quantified over
on the right hand side.

∀G ; C | CFinState • ∃A • R ∧ AFinState

which is written

CFinState ` ∃A • R ∧ AFinState

34 Chapter 5. Recasting the rules in Z

5.3.2.2 Output finalisation

gco∼ ⊆ ob
o
9 gao∼

Expanding the definitions of the these relations

{CFinOut • g ! 7→ c! }∼ ⊆ {ROut • c! 7→ a! } o
9 {AFinOut • g ! 7→ a! }∼

Writing as quantifiers

∀ g ! : GO ; c! : CO | CFinOut • ∃ a! : AO • ROut ∧ AFinOut

and then as a theorem

CFinOut ` ∃ a! : AO • ROut ∧ AFinOut

5.3.3 Recasting backward applicability

From section 4.4.3 we have the proof rule

dom γ ⊆ dom((σ ‖ ιb)−B domα)

The parallel composition of the relations σ and ιb can be represented as a set
comprehension in which the two parts are combined in a tuple

dom γ ⊆ dom({R; RIn • (θC , c?) 7→ (θA, a?) } −B domα)

Range restricting this is equivalent to adding a constraining predicate to the set
comprehension. In this case, the constraint is that the elements are not in the
precondition of the abstract operation, which is captured in the predicate pre AOp.

dom γ ⊆ dom({R; RIn | ¬ pre AOp • (θC , c?) 7→ (θA, a?) })

Taking the domain alters only the form of the constructing term in the set com-
prehension.

dom γ ⊆ {R; RIn | ¬ pre AOp • (θC , c?) }

We now convert the relational inclusion to a universal quantification (as described
in B.9), and the complement of the domain of the γ relation to a constraint on the
universal

∀C ; c? : CI | ¬ pre COp • ∃A; a? : AI • R ∧ RIn ∧ (¬ pre AOp)

5.3 Recasting backward retrievals 35

We now shuffle these quantifiers around to get it into the traditional form

∀C ; c? : CI • ¬ pre COp ⇒ (∃A; a? : AI • R ∧ RIn ∧ (¬ pre AOp))

⇔
∀C ; c? : CI • ¬ (∃A; a? : AI • R ∧ RIn ∧ (¬ pre AOp))⇒ pre COp

⇔
∀C ; c? : CI • (∀A; a? : AI • ¬ (R ∧ RIn) ∨ pre AOp)⇒ pre COp

⇔
∀C ; c? : CI • (∀A; a? : AI • (R ∧ RIn)⇒ pre AOp)⇒ pre COp

⇔
∀C ; c? : CI • (∀A; a? : AI | (R ∧ RIn) • pre AOp)⇒ pre COp

⇔
∀C ; c? : CI | (∀A; a? : AI | (R ∧ RIn) • pre AOp) • pre COp

We write this as a theorem

C ; c? : CI | (∀A; a? : AI | (R ∧ RIn) • pre AOp) ` pre COp

5.3.4 Recasting backward correctness

From section 4.4.4 we have the proof rule

dom((σ ‖ ιb)−B domα)−C (γ o
9 (σ ‖ ob)) ⊆ (σ ‖ ιb) o

9 α

From the derivation above (section 5.3.3) we can replace the set used for domain
subtraction to yield

{R; RIn | ¬ pre AOp • (θC , c?) } −C (γ o
9 (σ ‖ ob)) ⊆ (σ ‖ ιb) o

9 α

As we did in section 5.3.3, we construct set comprehensions from the parallel
composition of relations, and expand the definitions of all the relations. We choose
to use R′ for the second relation on the left hand side, as this makes the equations
easier.

{R; RIn | ¬ pre AOp • (θC , c?) }
−C ({COp • (θC , c?) 7→ (θC ′, c!) } o

9 {R′; ROut • (θC ′, c!) 7→ (θA′, a!) })
⊆ {R; RIn • (θC , c?) 7→ (θA, a?) } o

9 {AOp • (θA, a?) 7→ (θA′, a!) }

36 Chapter 5. Recasting the rules in Z

We can slide the domain subtraction inside the definition of the first relation in
the composition, expressing the subtraction as a negative predicate

{COp | ¬ (∃A; a? : AI • R ∧ RIn ∧ ¬ pre AOp) • (θC , c?) 7→ (θC ′, c!) }
o
9 {R′; ROut • (θC ′, c!) 7→ (θA′, a!) }

⊆ {R; RIn • (θC , c?) 7→ (θA, a?) } o
9 {AOp • (θA, a?) 7→ (θA′, a!) }

We now expand this out using quantifiers as described in section B.9

∀C ; C ′; c? : CI ; c! : CO ; A′; a! : AO |
COp ∧ ¬ (∃A; a? : AI • R ∧ RIn ∧ ¬ pre AOp) ∧ R′ ∧ ROut •

∃A; a? : AI • R ∧ RIn ∧ AOp

We take the negation inside the existential quantifier, converting this to a univer-
sal. We then convert the predicates that are disjoined within the universal to an
implication, and hence to a constrained universal. This yields

∀C ; C ′; c? : CI ; c! : CO ; A′; a! : AO |
COp ∧ (∀A; a? : AI | R ∧ RIn • pre AOp) ∧ R′ ∧ ROut •

∃A; a? : AI • R ∧ RIn ∧ AOp

We can now shuffle this to the traditional form by putting this constraining uni-
versal as early as possible

∀C ; c? : CI | (∀A; a? : AI | R ∧ RIn • pre AOp) •
∀C ′; c! : CO ; A′; a! : AO | COp ∧ R′ ∧ ROut •
∃A; a? : AI • R ∧ RIn ∧ AOp

This cannot be simplified by being written as a theorem, so the theorem form just
has the turnstile (`) before it.

Appendix A

Toolkit

A.1 Lifting to sequences

We ‘lift’ relations on sets to relations on sequences of sets as follows

[X ,Y]̂ : (X ↔ Y)→ (seq X ↔ seq Y)

∀ r : X ↔ Y •
r̂ = { s : seq(X × Y) | ran s ⊆ r • s o

9 first 7→ s o
9 second }

The result of lifting r is a relation between pairs of sequences of equal length. For
every pair of sequences in r̂ , every pair of corresponding elements belong to r .

[X ,Y]r : X ↔ Y ; s : seq X ; t : seq Y | s 7→ t ∈ r̂
`
#s = #t
∧ (∀ n : dom s • s n 7→ t n ∈ r)

Consider r̂ restricted to singleton sequences. It is clear that

[X ,Y]r : X ↔ Y ` { x : X ; y : Y | x 7→ y ∈ r • 〈x 〉 7→ 〈y〉 } ⊆ r̂

A.2 Split and Merge

We adapt the definitions of split and merge from [Woodcock & Davies 1996, section
16.5], which manipulate the worlds to extract individual inputs and outputs.

split extracts the first input from the sequence of inputs and the state, packaging
them up for delivery to the Z-like operations α and γ introduced in section 4.1.

37

38 Chapter A. Toolkit

[S , I ,O]
split : S × (seq1 I × seq O)� (S × I)× (seq I × seq O)

∀ s : S ; i : seq1 I ; o : seq O •
split(s , (i , o)) = ((s , head i), (tail i , o))

merge does the opposite, taking an output and concatenating it to the end of the
sequence of outputs.

[S , I ,O]
merge : (S ×O)× (seq I × seq O)� S × (seq I × seq O)

∀ s : S ; o : O ; i : seq I ; os : seq O •
merge((s , o), (i , os)) = (s , (i , os a 〈o〉))

A.3 Parallel composition and Copy

We also use the definition of ‘parallel composition’ and ‘copy’ from [Woodcock &
Davies 1996, section 16.5].

Parallel composition ‖ converts a pair of relations into a relation between pairs.

[W ,X ,Y ,Z]
‖ : (W ↔ Y)× (X ↔ Z)→W × X ↔ Y × Z

∀ r : W ↔ Y ; s : X ↔ Z ; w : W ; x : X ; y : Y ; z : Z •
(w , x) 7→ (y , z) ∈ r ‖ s ⇔ w 7→ y ∈ r ∧ x 7→ z ∈ s

cp copies its argument

[X]
cp : X � X × X

∀ x : X • cp x = (x , x)

A.4 Empty sequencies and identity realtion 39

A.4 Empty sequencies and identity realtion

We have use for an implict generic set that comprises a pair of empty sequences:

empty [X ,Y] == seq∅[X]× seq∅[Y]

We have use for an implict generic identity relation:

id [X] == { x : X • x 7→ x }

Where the type can be deduced from context it is permissible to omit the generic
argument. For clarity’s sake, however, we sometimes choose to include the argu-
ment explicitly in these cases.

Appendix B

Lemmas and their proofs

B.1 Commuting split around sequential composition

Lemma 1 (split-comm-io) Even in the presence of input/output refinement,
split can ‘commute’ around sequential composition.

` (ρ ‖ (ι̂ ‖ ô)) o
9 split = split o

9 ((ρ ‖ ι) ‖ (ι̂ ‖ ô))

Proof: This proof follows the one given in [Woodcock & Davies 1996], which used
a simpler form in which some of the relations were the identity. We make use of
the definition of split given in [Woodcock & Davies 1996] using cp.

(ρ ‖ (ι̂ ‖ ô)) o
9 split

= (ρ ‖ (ι̂ ‖ ô)) o
9

cp o
9

id ‖ (first o
9 head)

‖
second o

9 (tail ‖ id)

 [def]

= cp o
9

 ρ ‖ (ι̂ ‖ ô)
‖
ρ ‖ (ι̂ ‖ ô)

 o
9

 id ‖ (first o
9 head)

‖
second o

9 (tail ‖ id)

 [prop of cp]

= cp o
9

 (ρ ‖ (ι̂ ‖ ô)) o
9 (id ‖ (first o

9 head))
‖
(ρ ‖ (ι̂ ‖ ô)) o

9 (second o
9 (tail ‖ id))

 [abide]

= cp o
9

 (ρ o
9 id) ‖ ((ι̂ ‖ ô) o

9 first o
9 head)

‖
(ρ ‖ (ι̂ ‖ ô)) o

9 (second o
9 (tail ‖ id))

 [abide]

= cp o
9

 (id o
9 ρ) ‖ ((ι̂ ‖ ô) o

9 first o
9 head)

‖
(ρ ‖ (ι̂ ‖ ô)) o

9 (second o
9 (tail ‖ id))

 [id commutes]

40

B.2 Commuting merge around sequential composition 41

= cp o
9

 (id o
9 ρ) ‖ ((ι̂ ‖ ô) o

9 first o
9 head)

‖
second o

9 (ι̂ ‖ ô) o
9 (tail ‖ id)

 [(R ‖ S) o
9 second = second ‖ S]

= cp o
9

 (id o
9 ρ) ‖ first o

9 ι̂ o
9 head)

‖
second o

9 (ι̂ ‖ ô) o
9 (tail ‖ id)

 [(R ‖ S) o
9 first = first ‖ R]

= cp o
9

 (id o
9 ρ) ‖ first o

9 head o
9 ι)

‖
second o

9 (ι̂ ‖ ô) o
9 (tail ‖ id)

 [unlift to commute with head]

= cp o
9

 (id ‖ (first o
9 head)) o

9 (ρ ‖ ι)
‖
second o

9 (ι̂ ‖ ô) o
9 (tail ‖ id)

 [abide]

= cp o
9

 (id ‖ (first o
9 head)) o

9 (ρ ‖ ι)
‖
second o

9 (tail ‖ id) o
9 (ι̂ ‖ ô)

 [tail ‖ id commutes]

= cp o
9

 (id ‖ (first o
9 head))

‖
second o

9 (tail ‖ id)

 o
9

 ρ ‖ ι
‖
ι̂ ‖ ô

 [abide]

= split o
9 ((ρ ‖ ι) ‖ (ι̂ ‖ ô)) [def]

� B.1

B.2 Commuting merge around sequential composition

Lemma 2 (merge-comm-io) Even in the presence of input/output refinement,
merge can ‘commute’ around sequential composition.

` merge o
9 (ρ ‖ (ι̂ ‖ ô)) = ((ρ ‖ o) ‖ (ι̂ ‖ ô)) o

9 merge

Proof: Very similar to the proof of split-comm-io.

42 Chapter B. Lemmas and their proofs

B.3 ∃ to ∀ conversion

Lemma 3 (∃-∀-convert) An existential quantifier as part of the declaration in a
universal quantifier can be brought out into the universal.

∀ x : X | (∃ y : Y • Q(x , y)) • P(x) ` ∀ x : X ; y : Y | Q(x , y) • P(x)

Proof:

∀ x : X | (∃ y : Y • Q(x , y)) • P(x) [hyp]

∀ x : X • (∃ y : Y • Q(x , y))⇒ P(x) [decl = ⇒]

∀ x : X • ¬ (∃ y : Y • Q(x , y)) ∨ P(x) [def of ⇒]

∀ x : X • (∀ y : Y • ¬ Q(x , y)) ∨ P(x) [def of ¬ ∃]

∀ x : X • ∀ y : Y • ¬ Q(x , y) ∨ P(x) [move brackets]

∀ x : X ; y : Y • ¬ Q(x , y) ∨ P(x) [combine ∀]

∀ x : X ; y : Y • Q(x , y)⇒ P(x) [def of ⇒]

∀ x : X ; y : Y | Q(x , y) • P(x) [decl = ⇒]

� B.3

B.4 Lifting whole expressions

Lemma 4 (lift) Sequential composition and set inclusion can be lifted.

` ρ̂ o
9 σ = ρ̂ o

9 σ̂

` ρ̂ ⊆ σ̂ ⇔ ρ ⊆ σ

Proof: Directly from the definition of lifting.

B.5 Pushing restriction into parallel composition 43

B.5 Pushing restriction into parallel composition

Lemma 5 (parallel-restrict) Domain restriction or subtraction with a cross prod-
uct of a parallel composition can be broken into its parts.

[W ,X ,Y ,Z]
a : W ; b : X ; r : W ↔ Y ; s : X ↔ Z
`
(a × b)C (r ‖ s) = (a C r) ‖ (b C s)
∧ (a × b)−C (r ‖ s) = (a −C r) ‖ (b −C s)

Proof:

(a × b)C (r ‖ s)

= (a × b)C {w : W ; x : X ; y : Y ; z : Z | w 7→ y ∈ r ∧ x 7→ z ∈ s •
(w , x) 7→ (y , z) } [def of ‖]

= {w : W ; x : X ; y : Y ; z : Z | w 7→ y ∈ r ∧ x 7→ z ∈ s ∧ (w , x) ∈ a × b •
(w , x) 7→ (y , z) } [def of C]

= {w : W ; x : X ; y : Y ; z : Z | w 7→ y ∈ r ∧ x 7→ z ∈ s ∧ w ∈ a ∧ x ∈ b •
(w , x) 7→ (y , z) } [def of ×]

= (a C r) ‖ (b C s) [def of ‖ and C]

We argue similarly for −C.

� B.5

B.6 Pushing restriction through an injection

Lemma 6 (restrict-injection) Domain restriction of an injection is the same as
range restriction by the relational image.

[X ,Y]
r : X 7� Y ; a : X
`
a C r = r B r(| a |)
∧ a −C r = r −B r(| a |)

44 Chapter B. Lemmas and their proofs

Proof:

r B r(| a |)

= { x : X ; y : Y | x 7→ y ∈ r ∧ y ∈ r(| a |) } [defn B]

= { x : X ; y : Y | x 7→ y ∈ r

∧ y ∈ { x1 : X ; y1 : Y | x1 7→ y1 ∈ r ∧ x1 ∈ a • y1 } } [defn (| |)]

= { x , x1 : X ; y , y1 : Y | x 7→ y ∈ r ∧ x1 7→ y1 ∈ r ∧ x1 ∈ a ∧ y = y1

• x 7→ y } [simplify]

= { x : X ; y : Y | x 7→ y ∈ r ∧ x ∈ a } [hyp r ∈ X 7� Y]

= a C r [defn C]

We argue similarly for −C.

� B.6

B.7 Pushing restriction through sequential composition

Lemma 7 (sequential-restrict) Restriction (pseudo-)distributes through sequen-
tial composition.

[X ,Y ,Z]
r : X ↔ Y ; s : Y ↔ Z ; a : Y
`
r B a o

9 s = r o
9 a C s

∧ r −B a o
9 s = r o

9 a −C s

Proof:

r B a o
9 s

= (r o
9 id a) o

9 s [[Spivey 1992, p98]]

= r o
9 (id a o

9 s) [[Spivey 1992, p97]]

= r o
9 a C s [[Spivey 1992, p98]]

We argue similarly for −C.

� B.7

B.8 Pushing domain through sequential composition 45

B.8 Pushing domain through sequential composition

Lemma 8 (sequential-dom) Domain of a sequential composition can be pushed
past the first relation in the composition using inverse relational image.

[X ,Y ,Z]
r : X ↔ Y ; s : Y ↔ Z
`
dom(r o

9 s) = r∼(| dom s |)

Proof: This is a law stated in [Spivey 1992, page 101], but we prove it here for
completeness.

dom(r o
9 s)

= dom{ x : X ; y : Y ; z : Z | x 7→ y ∈ r ∧ y 7→ z ∈ s • x 7→ z }
[def of o

9]

= { x : X ; y : Y ; z : Z | x 7→ y ∈ r ∧ y 7→ z ∈ s • x } [def of dom]

= { x : X ; y : Y | x 7→ y ∈ r ∧ y ∈ dom s • x } [def of dom]

= r∼(| dom s |) [def of image]

� B.8

B.9 Converting relational inclusion to quantification

While recasting proof rules written in the relational calculus into the equivalent
form in Z, we frequently encounter sequential composition and relational inclusion.
In this section we show how to recast these in general.

Consider four relations on three sets, defined using some general schema predi-
cates.

r == { x : X ; y : Y | R }
s == { y : Y ; z : Z | S }
t == { x : X ; y : Y | T }
u == { y : Y ; z : Z | U }

46 Chapter B. Lemmas and their proofs

B.9.1 Converting a composition

Consider the case where the following general combination holds

r o
9 s ⊆ t o

9 u

We recast this in quantified form.

First, the definition of subset is that all elements on the left hand side are also
elements on the right hand side. The elements are the result of the sequential
composition of relations, so are pairs drawn from the set (X × Z).

r o
9 s ⊆ t o

9 u
⇔
∀ x : X ; z : Z | x 7→ z ∈ r o

9 s • x 7→ z ∈ t o
9 u

The sequential composition in the bar part is, by definition, the existence of an
intermediate value in Y that acts as a stepping stone for the two relations.

⇔
∀ x : X ; z : Z | (∃ y : Y • x 7→ y ∈ r ∧ y 7→ z ∈ s) •

x 7→ z ∈ t o
9 u

As we have schema predicates that capture the property of a pair being in a relation,
we can replace the set membership with these predicates.

⇔
∀ x : X ; z : Z | (∃ y : Y • R ∧ S) • x 7→ z ∈ t o

9 u

We do an analogous thing with the composition in the dot part.

⇔
∀ x : X ; z : Z | (∃ y : Y • R ∧ S) • (∃ y : Y • T ∧ U)

Using lemma ∃-∀-convert this becomes

⇔
∀ x : X ; y : Y ; z : Z | R ∧ S • (∃ y : Y • T ∧ U)

Note that the y in the existential (and referred to in T and U) is different from
the y in the universal.

B.9 Converting relational inclusion to quantification 47

B.9.2 Handling inverses

If any of the predicates are inverses, these disappear when converted to set com-
prehensions or quantifiers. For example, consider

s∼ o
9 r∼ ⊆ u∼ o

9 t∼

written using quantifiers. We still use the predicates S , R, U and T , which define
the forward relations. The first step looks the same, but with the universal over
pairs the other way around.

s∼ o
9 r∼ ⊆ u∼ o

9 t∼

⇔
∀ x : X ; z : Z | z 7→ x ∈ (s∼ o

9 r∼) • z 7→ x ∈ (u∼ o
9 t∼)

We continue as before

⇔
∀ x : X ; z : Z | (∃ y : Y • z 7→ y ∈ s∼ ∧ y 7→ x ∈ r∼) •

z 7→ x ∈ u∼ o
9 t∼

Given the definition of the inverse of a relation, we can swap the variables in the
pairs

⇔
∀ x : X ; z : Z | (∃ y : Y • y 7→ z ∈ s ∧ x 7→ y ∈ r) •

z 7→ x ∈ u∼ o
9 t∼

and continue as before, giving

⇔
∀ x : X ; z : Z | (∃ y : Y • S ∧ R) • (∃ y : Y • U ∧ T)

and hence

⇔
∀ x : X ; y : Y ; z : Z | R ∧ S • (∃ y : Y • T ∧ U)

exactly as before.

Appendix C

Summary of derived proof rules

The Z proof rules derived in this monograph are as follows.

C.1 Forward

Forward initialisation (state)

CInitState ` ∃A′ • AInitState ∧ R′

Forward initialisation (input)

CInitIn ` ∃ a? : AI • AInitIn ∧ RIn

Forward finalisation (state)

R; CFinState ` AFinState

Forward finalisation (output)

ROut ; CFinOut ` AFinOut

Forward applicability

R; RIn | pre AOp ` pre COp

Forward correctness

R; RIn; COp | pre AOp ` ∃A′; a! : AO • AOp ∧ R′ ∧ ROut

48

C.2 Backward 49

C.2 Backward

Backward initialisation (state)

CInitState; R′ ` AInitState

Backward initialisation (input)

CInitIn; RIn ` AInitIn

Backward finalisation (state)

CFinState ` ∃A • R ∧ AFinState

Backward finalisation (output)

CFinOut ` ∃ a! : AO • ROut ∧ AFinOut

Backward applicability

C ; c? : CI | (∀A; a? : AI | (R ∧ RIn) • pre AOp) ` pre COp

Backward correctness

` ∀C ; c? : CI | (∀A; a? : AI | R ∧ RIn • pre AOp) •
∀C ′; c! : CO ; A′; a! : AO | COp ∧ R′ ∧ ROut •
∃A; a? : AI • R ∧ RIn ∧ AOp

Appendix D

Bibliography

[Bolton 1998]
Christie Bolton. Objects, Processes and States. MSc thesis, Programming
Research Group, Oxford University Computing Laboratory, 1998.

[He Jifeng et al. 1986]
He Jifeng, C. A. R. Hoare, and Jeff W. Sanders. Data refinement refined
(resumé). In ESOP’86, number 213 in Lecture Notes in Computer Science,
pages 187–196. Springer Verlag, 1986.

[Spivey 1992]
J. Michael Spivey. The Z Notation: a Reference Manual. Prentice Hall,
2nd edition, 1992.

[Stepney et al. 1998]
Susan Stepney, David Cooper, and Jim Woodcock. More Powerful Z Data
Refinement: pushing the state of the art in industrial refinement. In
Jonathan P. Bowen, Andreas Fett, and Michael G. Hinchey, editors, ZUM
’98: The Z Formal Specification Notation, 11th International Conference
of Z Users, Berlin, September 1998, volume 1493 of Lecture Notes in Com-
puter Science, pages 284–307. Springer-Verlag, 1998.

[Stepney et al. 2000]
Susan Stepney, David Cooper, and Jim Woodcock. An Electronic Purse:
specification, refinement and proof. Technical Monograph PRG-126, Pro-
gramming Research Group, Oxford University Computing Laboratory,
2000.

[Woodcock & Davies 1996]
Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and
Proof. Prentice Hall, 1996.

50

