
Incremental Development of a High Integrity Compiler:

experience from an industrial development

Susan Stepney

Logica UK Ltd., Betjeman House, 104 Hills Road, Cambridge, UK, CB2 1LQ.

stepneys@logica.com

Abstract

We have developed and successfully applied a tech-

nique to build a high integrity compiler from Pasp, a

Pascal-like language, to Asp, the target language for a

high integrity processor designed for the UK's Atomic

Weapons Establishment at Aldermaston.

We overview the technique itself, including a de-

scription of how it can be extended to separate compila-

tion. We also describe some of our experiences whilst

implementing this compiler, how successful the whole

process has been, and the lessons we have learned.

We have cost-eectively developed a compiler to high

integrity by using mathematical specication and proof

techniques.

1. Introduction

When developing high integrity, or safety critical,
applications, no stage of the development process can
be a weak link. There are many techniques for devel-
oping correct applications in high level language, using
mathematical techniques for specication and rene-
ment. Similarly, there are techniques for designing high
integrity processors that execute correctly.

This paper addresses one high integrity method for
bridging the gap: producing a high integrity compiler
that correctly translates source code into object code.
We have developed and successfully applied this tech-
nique to build a high integrity compiler from Pasp, a
Pascal-like language, to Asp, the target language for a
high integrity processor designed for the UK's Atomic
Weapons Establishment at Aldermaston.

With this technique we use the mathematical speci-
cation language Z [3] to capture the formal semantics
of the compiler, and use a process to correctly recast
the Z specication of the compiler into Prolog, thereby
providing an executable compiler. We also capture the

formal semantics of both the source and target lan-
guages, and use these to prove that the compiler per-
forms the translation task correctly, thus proving its in-
tegrity. The technique itself is overviewed in section 3.

In later sections we describe some of our experi-
ences whilst implementing this compiler, how success-
ful the whole process has been, and the lessons we have
learned.

2. Historical background

In 1990 our Formal Methods Team performed a
study for RSRE (now DERA Malvern) into how to de-
velop a compiler for high integrity applications that
is itself of high integrity. In that study, the source
language was Spark, a subset of Ada designed for
safety critical applications, and the target was Viper, a
high integrity processor. We developed a mathematical
technique for specifying a compiler and proving it cor-
rect, and developed a small proof of concept prototype.
The study is described in [5], and the small case study
is worked up in full, including all the proofs, in [4].

Engineers at AWE read about the study and realised
the technique could be used to implement a compiler
for their own high integrity processor, called the ASP
(Arming System Processor). They contacted us, and
since then we have been using these techniques, along
with incremental development, to deliver a high in-
tegrity compiler, integrated in a development and test
environment, for a progressively larger subset of Pas-
cal. The current status of that compiler is described
here.

3. Overview of compiler development

In this section we give a brief overview of our tech-
nique of using Z specication and Prolog implemen-
tation to implement a high integrity compiler. More
detail can be found in [4].

1



Pasp
dynamic

denotational
semantics

implement
-

Pasp
interpreter

compiler
template
semantics

-
Pasp-to-Asp
compiler

Asp
dynamic

denotational
semantics

-
Asp

interpreter

Pasp
static

denotational
semantics

-

Pasp
static
checker

Figure 1. The various mathematical Z specications
and what their Prolog implementations provide

3.1. Implementing the correct compiler

The development of a high integrity compiler by
this method has the following components (see also g-
ure 1):

1. Compiler specication: The operational se-
mantics of the source language in the form of a
set of target language templates is specied in Z.
(In the commercial implementation described be-
low the source language is Pasp and the target
language is Asp.)

2. Compiler implementation: The Z specication
of the compiler is translated into Prolog, where it
is executable. Executing this semantics gives a
compiler.

3. Language specications: The denotational se-
mantics of both the high level source language and
the low level target assembly language are speci-
ed in Z.

4. Proof: The compiler's operational semantics
are demonstrated to be equivalent to the source
language's denotational semantics: the compiler

transformation is meaning preserving, and hence
the compiler is correct.

5. Interpreter implementation: The Z specica-
tion of the source language and target language de-
notational semantics are each translated into Pro-
log, where they is executable. Executing a lan-
guage's semantics gives an interpreter for that lan-
guage.

For example, the meaning of a source language expres-
sion is the value it denotes in the current state. In Z
this can be written as1

State == Name  Value

State is a function from Names to the Values they de-
note.

Me : Expr  State Value

Mevar(x) = x

Meadd(e1; e2) = Mee1 + Mee2

: : :

The meaning function for expressions maps a syntac-
tic Expr to a function from State to the Value of the
expression in that state. The meaning of a variable
reference expression is the value of that name in the
current state. The meaning of an addition expression
is the values of the two sub-expressions in the current
state, added together. (Remember that `add ' is a syn-
tactic programming language construct, whereas `+' is
a mathematical operator. More sophisticated deni-
tions would include a treatment of overow.)

Similarly, the meaning of a command is a state
change.

Mc : Cmd  State  State

Mcassign(x; e) =   fx 7! Meeg

: : :

The meaning function for commands maps a syntactic
Cmd to a function from State to the State that holds
after the command has been executed. The meaning
of the assignment command is a state change that up-
dates the current value of x to the value denoted by
the expression e.

Translating this Z specication into Prolog gives
(part of) an executable interpreter for the source lan-
guage. The assignment meaning specication can be
translated as:

1Here : : : are used as conventional denotational seman-
tics meaning brackets, used to distinguish syntax (program frag-
ments) from semantics (mathematical constructs). They are not
Z's bag brackets.

2



meaning(assign(Name,Expr),Pre,Post):-

meaning(Expr,Pre,Value),

update(Name,Value,Pre,Post).

Similarly, the meaning of the target language's store
instruction (store the contents of the accumulator at
the location l) updates its state. (The semantics of the
low level target language is more complicated than the
source language's, and needs to use `continuation' argu-
ments, because the assembly language allows arbitrary
jumps. See [4] for more explanation.) In Z:

AState == Locn Value

Cont == AState AState

AEnv == Label Cont

A : seq Instr AEnv  Cont

 AState  AState

Ahstore li   = (  fl 7!  ag)

: : :

The meaning function for instructions maps a syntac-
tic sequence of Instr in the current environment and
continuation, to a state change. The meaning of the
sequence comprising a single load instruction is the be-
fore state overridden at l , with the value at l now given
by the value in the a register in the before state, with
the resulting state applied to the current continuation.

The operational semantics denes the sequence
of target language instructions corresponding to the
translation of each source language instruction. In Z:

OEnv == Name  Locn

The translation environment maps variable names to
the locations where they are stored.

Oe : Expr  OEnv  seq Instr

Oc : Cmd  OEnv  seq Instr

Ocassign(x; e) = Oe e   hstore( x)i

: : :

The translation function for expressions and commands
maps a syntactic Expr or Cmd in the current trans-
lation environment to the corresponding sequence of
instructions. The assignment command is translated
into a sequence of instructions to evaluate the expres-
sion (and leave its value in the a register), followed by
an instruction to store that value at the appropriate
location.

Translating this Z specication into Prolog gives
(part of) an executable compiler from the source lan-
guage to the target language. The assignment compi-
lation specication can be translated as:

Pasp
program

?

M

Pasp
meaning

-

compile

O

Asp
program

?

A

Asp
meaning

-

equality proof

Figure 2. The compiler correctness proof obligation

compile(assign(Name,Expr),Env,

[InstrList,store(Name,Env)]):-

compile(Expr,Env,InstrList).

To show that the compiler is correct, we need to show
that the translation into the target language preserves
the semantics of the source language instruction. We
can do so by proving that the target language meaning
of each translation template is the same as the source
language meaning of the original instruction (see g-
ure 2). For the assignment example we need to prove
that (omitting states and environments here for clarity)

` Mcassign(x; e) = AOcassign(x; e)

The proof obligations for separately compiled modules
are a little dierent; see section 5 for more explanation.

As we can see from the above descriptions, the spec-
ications serve (at least) three potentially conicting
purposes:

 Language denition: the denotational seman-
tics act as the language denition, and so the
specication style should be as clear and abstract
as possible [1, Chapter 14] to make the denition
comprehensible to human readers.

 Implementation: the various semantics are
translated into an executable language, and so
should be written in a concrete, algorithmic, style
that facilitates this translation. The declarative
Prolog, rather than some imperative language, was
chosen as the target language in order to minimise
this implementation step.

3



 Proof: the various semantics need to be manipu-
lated mathematically, in order to perform the cor-
rectness proofs, and so should be written as ab-
stractly as possible.

It is important to balance these conicts to obtain the
best benet from the specications. For example, us-
ing Prolog itself as a specication language would elim-
inate the implementation problem, but would make the
language specication less clear, and would greatly in-
crease the proof burden. Proof is probably the hardest
part of the development, so our specication style leans
towards easing this.

We ended up writing our specications in a slightly
more algorithmic style than is usual for Z specica-
tions, and kept to a single style throughout, to aid
translation. However, we did keep quite a high level
of abstraction in the specication, in order to ease the
proof burden.

3.2. Static semantics

The particular denotational semantics described
above is known as the dynamic semantics; it captures
the behaviour of a program as it executes. Other static

semantics can be specied for a language as well. (They
are so called because they dene a meaning for a pro-
gram that can be evaluated statically, without execut-
ing it.) For example, an expression could be considered
to denote a type, rather than a value. Such meanings
dene when programs are type correct.

TState == Name  Type

Te : Expr  TState Type

Tc : Cmd TState TCheck

Tcassign(x; e) =
if  x = Tee then okay else wrong

: : :

The type-meaning function for expressions maps a syn-
tactic Expr to a function fromTState to the Type of the
expression in that type-state. The type-meaning func-
tion for commands maps a syntactic Cmd to a function
from TState to the check status TCheck of the com-
mand. The type-meaning of an assignment command
is okay if the types of the variable x and the expression
e in the current type-state are the same, otherwise it
is wrong .

Translating this Z specication into Prolog gives
(part of) an executable type checker for the source lan-
guage. Other static semantics can be dened as de-
sired, and implemented as static code checkers.

4. The real Pasp compiler

The example sketched above, and worked in full de-
tail in [4], is for a very small language. Over the past
several years we have been developing a full compiler
for a real language, incrementally adding source lan-
guage constructs, using these techniques.

4.1. The target language, Asp

The ASP chip is an 8 bit processor with memory
mapped input/output, specically designed for high
integrity embedded applications. Emphasis has been
placed on correct design and built-in-test capabilities;
consequently the instruction set is not over-burdened
with complicated functionality. For example, there are
few registers, few addressing modes, and no support
for oating point numbers.

The meaning function of Asp is not particularly
complicated, because of the processor's relatively sim-
ple structure. Most of the bulk of the specication is
due to capturing every instruction's behaviour at quite
a low level of detail.

Our specication of the Asp assembly language (ab-
stract syntax and dynamic semantics) runs to approx-
imately 50 pages of Z, which includes both the mathe-
matics and the natural language commentary.

4.2. The source language, Pasp

The high level language, Pasp, is a Pascal-like lan-
guage, designed to support high integrity applications
running on the ASP chip. The language currently in-
cludes:

 data types of 16-bit unsigned numbers, bytes,
booleans, and enumerated types, and multi-
dimensional arrays of these types

 various unary and binary arithmetic and logical
operations for each of the data types, and opera-
tions for explicit casting between types

 blocks, while loop, if-then-else choice, and case
choice

 procedures and functions, with call by value and
call by reference

 input/output, by way of special pragmas to sup-
port the memory mapped i/o of the ASP chip

 modules, with import, export, separate compila-
tion and linking (see section 5)

4



 four separate static semantics, to ensure: declara-
tion before use, type correctness, initialisation be-
fore use, and use after declaration (failure of this
latter check results in a warning only)

Several features have been deliberately omitted from
Pasp, because of its intended use in high integrity ap-
plications. For example, it has no recursion, no point-
ers, and no oating point numbers.

The complexity and size of the real language Pasp,
compared to the typical small case study languages
such as that in [4], results in quite an involved specica-
tion. The presence of block structuring, and procedures
and functions, makes the various meaning functions
more complicated than those in the example above, as
they have to accommodate scope and side eects. The
meaning of an expression is no longer simply the value
it denotes; if that expression includes a function call,
the state can change as well.

Our specication of the current Pasp language (ab-
stract syntax, concrete syntax, four static semantics
and the dynamic semantics) runs to approximately 150
pages of Z.

4.3. The compiler and linker specications

The complexity in the source language and the sim-
plicity of the target language has resulted in a large
compiler specication. In particular, the need to spec-
ify 16-bit arithmetic operations using 8-bit instructions
results in some quite large arithmetic operation tem-
plates. Also, the requirement for separate compilation,
with a separate link stage, increases the size substan-
tially.

Our specication of the compiler templates (transla-
tion of Pasp dynamic semantics into Asp instructions)
runs to approximately 100 pages of Z. The linker spec-
ication is a further 20 pages of Z.

4.4. The implementation

Currently, the full compilation suite supports the
following:

 implementation of the dynamic semantics of Pasp,
providing a Pasp interpreter

 implementation of the dynamic semantics of Asp,
providing an Asp interpreter

 implementation of the operational semantics of
Pasp to Asp templates, providing a compiler

 implementation of a linker, to support separate
compilation

 implementation of the four separate static seman-
tics, providing four Pasp code checkers

 support for Pasp assertions and invariants

 automatic test generation harness

In the cases of Prolog implementation from Z speci-
cations, the listing of the Prolog source code is approx-
imately the same size as the Z specication, as would
be expected from the roughly one-to-one transcription
relationship.

5. Separate compilation

One of the more recent incremental extensions we
have supplied to the Pasp language and its compiler is
the provision of a simple separate compilation facility.
Pasp now has modules; procedures and functions from
within a module may be exported, and imported into
other modules.

The techniques described in section 3 need to be
extended to cope with modules. A module in iso-
lation cannot be ascribed a simple meaning, because
its behaviour is parameterised by the meaning of any
imported procedures or functions. So we specify the
meaning in stages.

First, we specify how modules are attened to pro-
duce an unmodularised Pasp program, which itself does
have a well-dened meaning.

atten : Module  Program

: : :

We also specify the compiler templates for a single
module in terms of an extended Asp assembly lan-
guage, XAsp, which has extra instructions to capture
the links between exported and imported items.

Om : Module  seqXAsp

: : :

We cannot specify the meaning of these extra instruc-
tions in isolation, because they are parameterised by
the meanings of other compiled modules. Instead, we
specify the meaning of these extra instructions indi-
rectly, by dening how compiled modules are linked

to form a plain Asp program. In the linking process
all the extra instructions get converted to plain Asp
instructions.

link : (seqXAsp) seqAsp

: : :

5



Pasp
modules

?

atten

Pasp
program

?

M

Pasp
meaning

-

compile

O

XAsp
modules

?

link

Asp
program

?

A

Asp
meaning

-

equality proof

Figure 3. The compiler/linker correctness proof obli-
gation for modules

Then the proof obligation becomes the need to show
that the meaning of a bunch of modules when attened
into a Pasp program is the same as the Asp meaning of
those modules each compiled, then linked (see gure 3):

` Mattenfm1; : : : ; mng =
AlinkfOm1; : : : ;Omn g

During development, we decided what the module
proof obligation should be, and used that to help us
to dene how the modules would work, and to design
the appropriate syntaxes for them.

6. Lessons learned

6.1. The development team

The development team has two parts: two formal
specication members, writing the Z specications and
doing the proofs, and two implementors, writing the
Prolog from the specications and adding the non-
formal parts of the environment. By historical acci-

dent, the two parts of the team are in dierent oces,
separated by 100 miles.

One might expect this separation to have an adverse
eect on the development. After all, the implementor
has to ensure that the Prolog they write conforms to
the specication. Surely there are going to be ambi-
guities and diculties that are hard to resolve? In
practice, no. The Z specication is suciently precise
that the implementor and specier have rarely needed
to discuss it together.

6.2. Bugs found

The main aim of developing any software formally
is to improve its integrity { its correct operation; in
other words, to eliminate bugs. How successful is our
implementation?

Transcription errors

Minor transcription error from the Z to the Prolog were
the major source of problems. These were caught by in-
house testing, because this kind of error usually makes
the Prolog fail.

We are currently investigating ways of performing
this transcription automatically.

Specication errors caught by proof

While casting the specic form of the proof obligation
for the function construct, the specier realised that
the way the stack had been specied would not work
if the function call was embedded in an arithmetic ex-
pression.

Doubtless this error would have been caught by test-
ing, but it is interesting to note that the error was
caught just by thinking about the proof obligation, not
actually discharging it! Indeed, we have never found a
bug whilst performing a proof (but see the story about
division, later); it seems that just realising that proof
will be performed puts the specier in a critical frame
of mind that helps eliminate bugs.

NPL's torture tests

AWE decided to give our compiler some rigorous test-
ing, by getting the UK's National Physical Laboratory
(http://www.npl.co.uk) to perform its infamous `torture
testing' on it. NPL are justly reknowned for developing
test suites that routinely break Ada compilers. They
developed a special variant of their tests for Pasp, and
aimed them at our compiler.

We were understandably nervous about this process.
After all, other supposedly high integrity compilers had

6



been brought to their knees by these tests. However,
much to our relief, and joy, only two issues were found.

A dierent minint

The rst of these is not actually an error at all.
Our compiler failed to handle Pascal's minint prop-
erly. However, in order to make our specication and
proof task signicantly easier, we had specied Pasp's
minint dierently from Pascal's:

minintPasp = 1 + minintPascal

We were able to point to the relevant line in the Z spec-
ication, to show that the compiler was in fact being
tested on a Pasp program with explicitly undened be-
haviour, and hence that the observed behaviour was a
valid implementation.

Division algorithm error

NPL's testing also revealed a aw in the 16-bit division
implementation, which did not work for some divisors.

Interestingly, this is one of the few areas of the com-
piler that, due to the incremental nature of the project,
we are still waiting to perform the proofs on. This
seems to demonstrate again that proof does provide a
useful increase in integrity.

We xed the problem, which was caused by miss-
ing a minor case in Knuth's unsigned long division
algorithm [2, section 4.3.1]. Rather than prove the
new version, we instead exhaustively tested it for all
216  216 cases. (This does not, of course, constitute a
mathematical proof. It does demonstrate that our im-
plementation of 16-bit division using 8-bit division is
consistent with the implementation of 8-bit and 16-bit
division on our test machine.)

Testing conclusions

So, only one bug, the division error, was discovered in
the delivered compiler. This is remarkably small for
a serious compiler development. NPL's tests routinely
break even established compilers; many compilers can-
not even parse some of the more deeply-nested con-
structs. NPL did express surprise at how few issues
they found2.

Testing did not discover any bugs in the parts we
had proved. Mathematical specication and proof do
seem to have provided higher integrity in this case.

2Dave Thomas, AWE, private communication, 1997.

6.3. The role of proof

The more eort put in to formalising a specication,
the higher integrity the result.

Specication only: this provides clarity of
thought, and a clean design, which in itself produces
a better implementation. For example, we discovered
that specifying the memory mapped i/o provided bet-
ter language support for these operations.

Stating the proof obligations: if the specica-
tion writers also cast the proof obligations, or at least
study them critically, this process can uncover errors,
as the speciers are forced to think in a new way about
particular consequences of their work. For example,
we discovered an error in our rst attempt to specify
functions this way. Also, deciding on what the module
proof obligation should be helped us to dene how the
modules would work.

Hand proof: can uncover yet more errors. For
example, we are reasonably condent that we would
have uncovered the division bug in the proof attempt.

Machine assisted proof: again, more errors get
discovered. For example, [6] reports on the use of the
PVS proof tool to redo the hand-proofs in [4]. This
exercise uncovered a few hidden assumptions and slight
hand-wavings in the original proofs (but no errors in
the theorems).

Each extra stage in this process adds more assur-
ance, for more cost. A cost-benet analysis can be
used to decide how much proof eort to expend. But
it is important to note that proof is not `all or nothing'.

One aspect to bear in mind is that conventionally-
developed compilers may gain a degree of assurance
simply by being `well-known'. If they have been widely
used, any bugs or other problems get widely reported.
However, this assurance does depend very much on
the mode of use. Automatic code generation exercises
lesser-known parts of the compiler that hand-written
code does not, potentially exposing previously undis-
covered bugs. So having an existing well-understood
compiler might not give you the degree of assurance
that you had thought3. If using a compiler with au-
tomatically generated code, the balance tips further in
favour of a formally developed bespoke compiler.

6.4. Interpreters

Even though this project is mainly focussed on pro-
viding a compiler, the various interpreters made avail-
able have proved to be very useful.

We implemented the Pasp dynamic denotational se-
mantics to provide a Pasp interpreter. This has been

3Ib Srensen, B-Core, private communication, 1998.

7



found useful for two reasons. Firstly, the ASP chip was
still being fabricated at the start of the project, and so
the Pasp interpreter enabled application developers to
get a head start on writing and exercising their code.
Secondly, the interpreter provides the basis for many
of the test harnesses. Pasp programs can be anno-
tated with various assertions and invariants; the com-
piler strips these out, but the interpreter checks that
they hold during program execution. Similarly, Pasp
programs can be annotated with automatic test gen-
eration commands; again, the compiler ignores these,
but the interpreter uses them to generate test data and
coverage statistics. So the same source code can be in-
terpreted with testing on, and compiled with testing
removed.

We implemented the Asp dynamic denotational se-
mantics to provide an Asp assembly language inter-
preter. Because the ASP chip was not immediately
available, this again provided implementors with a
head start in writing and testing programs. Even since
the processor has become available, the Asp interpreter
is still used, because it provides greater visibility to the
internals of an executing program's operation.

6.5. Incremental development

We are developing this compiler incrementally,
adding more constructs to the Pasp language, and
adding more features to the testing environment.

This approach has had its successes and drawbacks.
On the success side, it provides a very exible approach
in a case where requirements can change as the project
develops. The early releases of our compiler got used
by groups for whom it had not originally been designed;
later phases incorporated some new requirements from
these groups. Also, the development of the compiler
fed back into the processor design. Early on, a 16-bit
register was added to simplify array accessing, since the
processor has no support for oset addressing. More re-
cently, our work on implementing procedures and func-
tions was used to help design a suitable set of hardware
stack instructions.

On the other hand, a phased approach can result
in a degree of rework. Each phase has to produce a
functioning deliverable, which requires some nishing
work that has to be undone for the next phase. Also,
some rework can be required to extend denitions.

7. Conclusions

On balance, in this project, an incremental approach
has proved to be both cost eective and exible.

Small, reduced functionality versions of the compiler
and its environment have been available from early on
in the project, allowing the client to progress with their
own work and to inuence the design of later phases
in ways that could not have been apparent before they
had actually used the system for real.

8. Future Work

We are continuing with further phases in this com-
piler development.

In particular, engineers at AWE develop some of
their code formally using the B-tool, which generates
Pasp code from B specications. B has some facilities
for sharing across modules not supported by the cur-
rent version of Pasp. We are adding these facilities in
the next phase.

The templates produced by this method can some-
times be longer than strictly necessary, and are some-
times repetitive. We are investigating formally correct
optimisation of the templates.

Acknowledgements

Logica UK Ltd carried out the original study
work on the compiler method for RSRE (now DERA
Malvern). We are continuing the development of the
Pasp-to-Asp compiler for AWE plc, and would like to
thank Dave Thomas and Wilson Ill of AWE.

Our specication and implementation team includes
Ian Nabney, Tim Wentford, and John Taylor.

References

[1] R. Barden, S. Stepney, and D. Cooper. Z in Practice.
BCS Practitioners Series. Prentice Hall, 1994.

[2] D. E. Knuth. Seminumerical Algorithms, volume 2 of
The Art of Computer Programming. Addison-Wesley,
2nd edition, 1981.

[3] J. M. Spivey. The Z Notation: a Reference Manual.
Prentice Hall, 2nd edition, 1992.

[4] S. Stepney. High Integrity Compilation: A Case Study.
Prentice Hall, 1993.

[5] S. Stepney, D. Whitley, D. Cooper, and C. Grant. A
demonstrably correct compiler. BCS Formal Aspects of

Computing, 3:58{101, 1991.
[6] D. W. Stringer-Calvert, S. Stepney, and I. Wand. Us-

ing PVS to prove a Z renement: A case study. In
J. Fitzgerald, C. B. Jones, and P. Lucas, editors, FME

'97: Formal Methods: Their Industrial Application

and Strengthened Foundations, number 1313 in Lecture
Notes in Computer Science, pages 573{588. Springer
Verlag, Sept. 1997.

8


