
Segregation with Communication

David Cooper1  and Susan Stepney1

Logica UK Ltd, Betjeman House, 104 Hills Road, Cambridge, CB2 1LQ, UK
cooperd@logica.com stepneys@logica.com

Abstract. We have developed a general denition of segregation in the
context of Z system specications. This denition is general enough to
allow multi-way communications between otherwise segregated parties
along dened channels. We have an abstract denition of segregation in
terms of the traces allowed by systems, a concrete style of specication to
ensure segregation (a generalisation of promotion called multi-promotion)
and a proof that unconstrained multi-promotion is a sucient condition
to ensure segregation.

1 Introduction

We have been working with the National Westminster Development Team (now
platform seven), proving the correctness of Smartcard applications for electronic
commerce. Two of these products have now achieved ITSEC security certi-
cation [ITSEC 1996] at the E6 level (the highest level dened). At the time of
writing these are the only two products to have achieved this level of certication.

One of the most important security requirements for a smart card operating
system is the segregation of applications | ensuring that co-resident applications
are kept from interfering with each other (except along clearly dened commu-
nication channels). This paper discusses the general mathematical model of
segregation we used, and a number of the issues arising from the task of proving
that a Z state-and-operations model of a system possesses the required segrega-
tion property.

2 Motivating the problem

Although segregation, non-interference, information ow and access control have
all been the subject of investigation for a long time, our needs were specic:

{ applications must be kept segregated in general, but must be able to com-
municate with each other along certain dened channels

{ communication channels must support communication between multiple (more
than two) applications

 current address: Praxis Critical Systems Ltd, 20 Manvers Street, Bath, BA1 1PX
cooperd@praxis-cs.co.uk

2

{ the model of the system under consideration [Stepney & Cooper 2000] would
be written in a conventional state-and-operations style in Z

{ any segregation property would have to be shown to be possessed by the Z
model through formal proof

Although much has been published in this area (see, for example, [Bell & Padula
1976], [Rushby 1981], [Goguen & Meseguer 1984], [Bell 1988], [Jacob 1992],
[Roscoe 1995], [Gollman 1998], among many others), nothing existing tted our
needs without modication.

3 Trace denition of segregation

We choose to dene segregation by considering a system to be a set of allowed
traces (sequences of events) [Hoare 1985], [Hoare & He 1998]1.

We bring all of the interesting behaviour of the system out into the visible
events, ignoring any internal state that may be used to control the behaviour.
This is consistent with the semantics imposed on Z by the renement rules
[Stepney et al. 1998], provided the communication events are rich enough to
capture inputs, outputs, initialisation and nalisation.

In our model, a system is completely dened by its allowed TRACE s. So a
system is a (prex closed) set of TRACE s:

SYSTEM == fs :  TRACE j (8 t : s; p : TRACE j p prex t  p 2 s)g

Some systems behave as though they are made up of independent, segregated
applications, communicating with each other through dened channels. Our
task is to dene the set of such systems.

We impose only as much structure on events as necessary. We are dening
the concept of segregation between identied applications, and so we require a
set of application identiers

[A]

We want to have control over the communication between applications, and this
requires a structure on the data in the events; a collection of named values:

[N ; V]

A communication EVENT consists of the set of applications that are engaging
in the event, identifying which of the named values each application can see

EVENT == fn : A # N ; v : N  V j n 6=  ^ dom v = ran ng

At least one application is engaging, and the named values are precisely those
visible to at least one application.

1 We do not need to work with a richer model of a system, which could include
properties such as failures/divergences, or statistical properties of traces.

3

We add a dummy event, , representing the view an application has of events
it cannot see.

 == ([A  N]; [N  V])

EVENT == EVENT [f  g

A sequence of EVENT s constitutes a TRACE .

TRACE == seq EVENT

3.1 A segregated system

An actual system TRACE consists of a sequence of EVENT s. We can view this
sequence of EVENT s from the perspective of each application, seeing only the
EVENT s engaged by this application, and seeing only the parts of the EVENT s
visible to this application.

We can choose how much of an EVENT is visible to an application; one
choice is:

 : EVENT " A " EVENT

8 n : A # N ; v : N  V ; a : A j (n; v) 2 EVENT 
(n; v)a = (n  nfag; nfag  v)

This choice allows applications to see only the named values identied with this
application, and to see any applications engaging that have visibility of at least
one named value also visible to this application. Other choices are possible (see
section 8 for the implications). The remaining discussion of segregation is valid
for any choice.

We lift  up to a projection of whole TRACE s, dropping invisible EVENT s.

 : TRACE " A " TRACE

8 t : TRACE ; a : A   t a = f i : dom t  i 7! (t i)a g  EVENT

and lift again to sets of TRACE s (systems)

 :  TRACE " A # TRACE

8 s :  TRACE   s =
S
f t : s   t g

We now give the formal denition of being segregated: for a system to be seg-
regated, any collection of application traces derived from the system (that can
legally be re-combined) must yield an allowed trace of the system when recom-
bined.

SEG == f s : SYSTEM j
S

((   )fsg) = s g

Intuitively, what does this mean?

4

If a system behaves as though it consists of independent applications that
interact only via explicit shared communication events, then if one of its appli-
cations exhibits a certain behaviour in one context, it should be able to exhibit
the same behaviour in any other consistent context. By \consistent" we mean
supplying the same view of shared communication events.

If this is not true, it means that something must be preventing this applica-
tion from behaving this way, even though all the allowed interfaces are identical.
There must be some interference, some back door communication. That is, the
system is not behaving as independent applications interacting only via explicit
shared communication events.

A communications-segregated system has to be quite large: it must at least
contain all the individual application behaviours as possible traces; it must also
contain the individual behaviours occurring in any order.

4 Using segregation

A denition of segregation in terms of traces is good, but is not immediately
applicable to conventional state-and-operations Z models of systems. In a prac-
tical, industrial development (such as the development of which this is part
[Stepney & Cooper 2000]) one needs specic tools that can be applied to the
system specications being developed. Each small part of the set of tools is
relatively straightforward, but when combined needs care and attention to de-
tail. We summarise here the elements needed to turn the abstract segregation
denition into a practical tool, and then expand each element in the succeeding
sections.

4.1 Multiple models

To make the denition of the segregation property simple we have chosen to work
in the world of traces. To make the modelling of the Smartcard system under
investigation practical, we have chosen a conventional state-and-operations style
of Z specication. These are worlds apart. Although the conceptual step from
one to the other is not particularly large or dicult, the practical step needs to
be taken, and needs to account for all the messy detail that invariably appears in
real systems. Merging these worlds requires a mathematically sound translation.

We developed a number of models, building in progressively more of the
computational framework assumed by Z, dening transition functions at each
step. This allows us to take a conventional Z specication, extract its equivalent
traces model, and impose the requirements of segregation on it.

4.2 Multi-promotion

We developed a Z specication structure that naturally leads to segregated sys-
tems. It is a natural extension of promotion to accommodate the simultaneous
update of multiple local states; we call it multi-promotion. The expectation is

5

that if we can constrain the specication of the system structurally, it should be
easier to prove that a given system is segregated.

4.3 Unwinding theorem

It is useful, in proving a property of systems over sequences of transitions, to
prove an equivalent property over individual transitions. This process is gener-
ally known as unwinding. We state and prove the unwinding theorem for our
denition of segregation. It is, in essence, that

a Z model written as an unconstrained multi-promotion is segregated

This is the justication for all the previous work. Having developed a clear,
abstract denition of segregation, we have now proved that, under a mathemati-
cally sound and justiable transformation, a specically structured specication
will possess the segregation property.

5 Multiple models

We have many ways of specifying a system, each suitable for dierent purposes.
In the various relational formulations, we have a global state  , a model

state , inputs I , outputs O , and events EVENT . (For simplicity we assume
that the global inputs and outputs, and the model inputs and outputs, have the
same type.)

[; ; I ; O ; EVENT]

We use the following models:

event traces: a system is modelled as a set of traces of events: (seq EVENT).
This is the model used to dene segregation.

input{output traces: a system is modelled as a set of traces of input{output
pairs: (seq(I  O))

computational model: a system is modelled as a global state transition
relation:   (seq I  seq O) #   (seq I  seq O)

state transition system: a system is modelled as a state transition relation:
  I #  O , a state initialisation  # , an input initialisation I # I ,
a state nalisation  # , and an output nalisation O # O .

Z model: like the state transition relation model, but using schemas instead
of relations: a state System, an operation SystemBhvr , state initialisation
InitSystem, identity input initialisation, state nalisation FinSystem, and
output nalisation FinOut+, or identity. This is the model used to specify
the behaviour of our system.

We need ways of moving between these dierent descriptions. We develop a
number of translation functions, as summarised in gure 1 below.

6

(seq(I  O))

ggTraces
6

GM # GM

gg
6

(SM # SM)  IF

toProg
6

(  I #   O)  IF

(seq EVENT)

wound

6

(EVENT    )

toEvent
-

simplify
-
















traces

6

ioTraces

Fig. 1. Summary of the various translation functions

5.1 Traces from the computational model

Z has an implicit computational model used to interpret specications. This is
discussed in some detail in [Woodcock & Davies 1996] and [Stepney et al. 1998].

The essential behaviour of a system, and the behaviour we use when decid-
ing whether one system is the renement of another, is captured in a relation

between two global states. These global states are deemed to be `real', in that
the elements in them refer to real-world objects and values that can be detected
and can be used to test a real system. We dene a means of passing back and
forth between the global states and the internal, specication states used in Z.

This section develops a function gg that maps a Z specication to its essential
global-to-global relation. From this, we develop a real-world notion of a system
trace.

[He et al. 1986] is the basis of the theory of Z renement we use. They
make use of general programs written in Dijkstra's guarded command language,
but for our purposes we can be more specic. All actions of our system can be
represented as a simple sequence of operations, one after the other; no recursion,
choice, or non-determinism in operation choice are needed.

5.2 The computational model

As explained in [Woodcock & Davies 1996], we use a system state SM that is
rich enough to store the sequence of inputs not yet consumed and the sequence
of outputs already produced, as well as the actual system state.

SM ==   (seq I  seq O)

We are interested in state transitions sop that respect the computational model
of consuming inputs and producing outputs. Such sops can be written in terms
of some input{output state transition op:

op :   I #   O ` split  (op jj id)  merge 2 SM # SM

7

(See [Woodcock & Davies 1996], for denitions of split , id , jj, and merge.)
We are interested in the transitive closure of such sops (representing an ar-

bitrary sequence of these operations). Omitting some details, we dene the
function toProg , which takes a relational system description in terms of individ-
ual state transitions in the computational model world, and yields the resulting
programs in the SM world, by imposing the computational model to yield single
state transitions in the SM world, then taking the closure of these to yield the
programs.

toProg : (  I #   O) " (SM # SM)

8 op :   I #   O  toProg op = (split  (op jj id)  merge)

toProg can also be written explicitly as a constructed set of traces (using ex-
traction functions in, out , beforeS ,and afterS from the type of op in the obvious
way):

toProg op = f  : seq1 op j 8 k : 1 : : #  1  afterS ( k) = beforeS (tail  k) 
(beforeS ( 1); (  in; h i)) 7! (afterS ( (#)); (h i;   out)) g

[id SM

5.3 Including initialisation and nalisation

We dene the set of `complete' programs by taking the set of programs allProg op

and adding an initialisation step to the front and a nalisation step to the back.
These steps map between the global world and the specication world.

The computational model uses a global structure very similar to the set SM ,
with a state, input sequence and output sequence. Initialisation maps the global
state to the specication state using a state initialisation relation, si ; the input
sequence to the input sequence using an input initialisation relation, ii ; and the
output sequence it ignores, giving an empty output sequence in the specication.
Finalisation is similar, using sf and of , but ignores the input sequence.

GM ==   (seq I  seq O)

Dene

IF == ( # )  (I # I)  ( # )  (O # O)

gg : (SM # SM)  IF " GM # GM

8 sopProg : SM # SM ; si ; sf :  # ; ii : I # I ; of : O # O 
gg(sopProg ; (si ; ii ; sf ; of)) =

(si jj(̂ ii jj(seq O  fhig)))
 sopProg 

(sf  jj((seq I  fhig) jj ôf ))

(the^operator lifts functions on elements to functions on sets of elements.)
gg results in a relation from the initial global state to the nal global state.

8

5.4 Input{Output traces

For segregation we are interested in just the inputs and outputs of a system,
ignoring the initial and nal states. The function ggTraces maps a global-to-
global relation to the corresponding set of input/output traces.

ggTraces : (GM # GM) " (seq(I  O))

8 r : GM # GM 
ggTraces r = f g ; g 0 :  ; is; is0 : seq I ; os; os 0 : seq O j

#is = #os0

^ (g ; (is; os)) 7! (g 0; (is 0; os0)) 2 r 
f i : dom is  i 7! (is i ; os0 i) g g

Notice that any components in the gg relation with diering length input and
output sequences have no corresponding input-output trace.

ioTraces maps a state transition relation to a set of input{output traces

ioTraces : (  I #   O)  IF " (seq(I  O))

ioTraces = toProg  gg  ggTraces

This can be written as explicit sets of traces:

op :   I #   O ; si ; sf :  # ; ii : I # I ; of : O # O

`
ioTraces(op; (si ; ii ; sf ; of)) =

f  : seq1 op; g ; g 0 :  ; is : seq I ; os : seq O j
#is = #os = #

^ beforeS ( 1) 2 sifgg
^ g 0 2 sf fafterS ( (#))g
^ (8 k : dom  

in( k) 2 iifis kg
^ os k 2 of fout( k)g
^ (k < #) afterS ( k) = beforeS (tail  k))) 

f i : dom   i 7! (is i ; os i) g g
[fh ig

5.5 Event traces

The Z computational model is expressed in terms of inputs and outputs, the
segregation model in terms of events. We introduce a bijection asEvent that
relabels inputs and outputs as events, allowing us to move freely between the
two alternative representations.

asEvent : I  O  EVENT

We lift this to the function toEvent , which converts from sets of input{output
traces to sets of event traces.

9

toEvent : (seq(I  O)) " (seq EVENT)

toEvent = ( s : (seq(I  O))  (̂ asEvent)s)

5.6 Mapping from state-and-operations to traces

Finally, we can dene the function that takes a system specication written
conventionally as state-and-operations, and delivers the equivalent traces model.

traces : (  I #   O)  IF " (seq EVENT)

traces = ioTraces  toEvent

This gives us the ability to move formally between our system specication
written in a conventional Z style and our denition of segregation written in the
traces model.

We have built up this translation function from the theory surrounding Z
renement, which means that we have a good understanding of how this trans-
lation is aected by renement. This is important when relating two system
specications (one a renement of the other) to the same denition of segrega-
tion. This we need to do because in general segregation is not preserved under
renement, and so an abstract system proved to be segregated must be re-proved
segregated after renement. Indeed, we have used this understanding in dening
a property of segregation with respect to a model (called segWrt), which cap-
tures the fact that two models are segregated in the same way. This is discussed
in [Stepney & Cooper 2000].

6 Multi-promotion

6.1 A reminder of single promotion

Promotion is a commonly used technique of structuring a Z specication to aid
understanding when the system state consists of a collection of local states, each
of which generally changes in isolation (explained in [Barden et al. 1994, chapter
19]).

Calling the individual local states applications, consider the following simple
example:

[X ; A; C]

Each local application has a state (possibly with some invariant predicate) and
some locally dened operations taking in an input communication of type C and
delivering an output communication of the same type.

ApplState

x : X

: : :

10

LocalOp

ApplState

c?; c! : C

: : :

These are then collected together into a promoted state, where each is labelled
by an application name2:

PromotedState

collection : A " ApplState

Each local application operation can be promoted to an operation on the whole
promoted state using a so-called framing schema

PromotedStateIn

ApplState

PromotedState

a? : A

collection a? = ApplState

collection0 = collection  f a? 7! ApplState0 g

PromotedOpIn b= 9 ApplState  PromotedStateIn ^ LocalOp

We can understand the behaviour of LocalOp in the context of a single applica-
tion state. Having internalised this (and other local operations), all local oper-
ations are promoted to the collection in a similar way (via PromotedStateIn)
| that one application state is updated according to the local operation, and
all other application states don't change.

6.2 Introducing multi-promotion

We extend this structuring to cater for multiple applications changing simulta-
neously.

First, though, we need to look at some of the features of single promotion.
We have identied which application state changes through an input, a?. This
isn't the only choice | it could be an internal choice of the system based on
some system state (such as the \currently selected application"), which we can
model by hiding the a?:

PromotedOpHide b= 9 ApplState; a? : A  PromotedStateIn ^ LocalOp

2 Usually, collection would be a partial function, and applications could be added and
removed by changing its domain. We chose to use a total function and model \ab-
sent" applications explicitly, to ease the connection with the segregation denition.

11

This allows any appropriate application to be the one engaging in the operation
| other system constraints may force only one to be appropriate, or the choice
may be made non-deterministically. The choice is invisible (unless the resulting
state change is visible). Alternatively, the choice can be made an output, a!.
This behaves like the hidden value (it is the system rather than the user that
decides which application state changes), but makes visible which choice was
made.

For technical reasons, this was the choice we took in our development.

PromotedStateOut

ApplState

PromotedState

a! : A

collection a! = ApplState

collection0 = collection  f a! 7! ApplState0 g

PromotedOpOut b= 9 ApplState  PromotedStateOut ^ LocalOp

The inputs and outputs c? and c! pass directly to the (single) application state
that changes.

Consider now an extension to allow multiple application states to change:

MPromotedOpOut

PromotedState

! : 
1

A

c?; c! : C

!  collection0 = !  collection

8 a : ! 
9 ApplState 

collection a = LocalState

^ collection0 a = LocalState0

^ LocalOp

A set of application names are identied to change. The same options exist
in the multiple case as in the single: this can be an input, hidden inside an
existential, or an output.

Notice that all local application states are experiencing the same LocalOp.
This is not a restriction, as it is always possible to harmonise signatures and
disjoin all the operations on an application state into a single LocalOp, and then
use information in the input communication c? or state to select the required
operation.

In the case when ! is a singleton set, this formulation reduces to single
promotion.

12

The form just presented is of unconstrained multi-promotion. There are
no constraints in the PromotedState that aect the ability of individual local
applications responding to inputs as they choose. This is why unconstrained
multi-promotion ts so naturally with segregation: if all system behaviours are
modelled as local operations on local application states, then an unconstrained
multi-promotion species a system of segregated parts.

Where do the communication channels come in? They appear in the amount
of sharing we choose in !, c? and c!.

6.3 Dened communication channels

In the Smartcard system we were developing, we had two requirements on com-
munication. First, applications needed to be able to synchronise with others,
ensuring that they engaged in an EVENT only if specic other applications
did (or sometimes, did not) engage. Second, parts of inputs and outputs were
sometimes shared.

We met these requirements by expanding on the simple MPromotedOpOut

in line with the choice of  made in section 3.1.

We modied !, the collection of interacting applications, to be a relation
between the interacting applications and the named communications variables
they could see.

! : A # N

The inputs and output communications then consists of named values

?; ! : N  V

We allowed each application to see a restricted view of ! (it could see the
applications that shared at least one named communication variable) and to see
those named communication variable identied for this application by !.

This yields

LocalOpWithComms

ApplState

l ! : A # N

l ?; l ! : N  V

: : :

13

MPromotedOpWithComms

PromotedState

! : A # N

?; ! : N  V

! 6= 
hdom ?; dom !i partition ran !
(dom !)  collection0 = (dom !)  collection

8 a : dom ! 
9 ApplState; l ! : A # N ; l ?; l ! : N  V 

l ? = !  !fag
^ l ? = !fag  ?
^ l ! = !fag  !
^ collection a = LocalState

^ collection0 a = LocalState0

^ LocalOp

It is now possible to specify that a local operation will execute only if a specic
other application is also executing, by adding the predicate

a1 2 dom l !

or to ensure that at least one other application is executing

dom l !  2

Two applications can exchange a value during execution as follows. Assume one
of the named communication variables is info. The sending application can set
the value of info

info 2 dom l !
^ l ! info = 27

and the receiving application can respond on the basis of the value

info 2 dom l !
^ l ! info  20) : : :

If the receiving application wants to be sure that the value had been set by a
specic application, a constraint on l ! can be added.

In these examples there are no constraints in the multi-promotion schema
other than those directly related to promotion. In such an unconstrained multi-

promotion !, ? and ! constitute the communication channels between the
applications. There is a clear statement of the information being transmitted |
there can be no back-door communication between applications.

If the local constraints are complex, though, it can be hard to determine
the actual precondition on a promoted operation. The promoted operation can
execute whenever a collection of applications can be found that together have a
consistent set of constraints. In practice, this may not be obvious.

14

7 Unwinding theorem

We have dened a function that extracts from a state-and-operations specica-
tion the set of visible TRACE s.

traces : (  I #   O)  IF " SYSTEM

This function allows us to formalise the property \our specication M describes
a system that is segregated" as the theorem

` traces M 2 SEG

As it stands, this is quite dicult to prove, because the general denition of SEG

is expressed in terms of traces over arbitrary application executions, whereas our
specication M is written as a state-and-operations Z model.

Simplify, based on properties of the model

However, we can make some simplications, to produce a much simpler sucient
condition. All these simplications are driven by the particular properties that
our model M has. These properties are:

{ initialisation is very simple: no renement of inputs is needed, so inputs are
initialised via the identity; state initialisation is chaotic (it ignores the global
state from which initialisation came).

{ nalisation is also simple: no renement of outputs is needed, so outputs are
nalised via the identity; all of the state is of interest, so it is nalised via
the identity.

We therefore work with S, a simpler representation of M, expressed in terms of
(EVENT    ), where the dependence on the particular initialisation and
nalisation IF has disappeared, and the inputs and outputs have been bundled
up into events. The function corresponding to traces, that converts the simplied
state transition system to a traces description, is called wound (see gure 1).

We prove the simplication theorem, that if s is a simplied form of m,
then wound s gives the same set of traces as traces m:

m : dom traces ` traces m = wound(simplify m)

Hence it is sucient to show that the wound form of our simplied system is
segregated.

S == simplify M

` wound S 2 SEG

15

Unwinding

The unwinding step is the heart of our proof; it moves the denition of segrega-
tion from the world of traces into the world of simplied state-transition systems
like S.

We introduce a set of simplied state transition models, UNWOUND , that
is a direct analogy of SEG : any application state transition derived from the
system by projection must also be a state transition allowed by the system. We
prove the unwinding theorem, that if a simplied state transition model is in
UNWOUND , then its traces model has the segregation property:

s : UNWOUND ` wound s 2 SEG

This proof involves expanding the denition of wound to explicitly construct the
set of system traces, and then using the properties given in UNWOUND , and
much tedious algebra, to deduce the properties required by SEG .

Hence it is sucient to show that the simplied state transition model of our
system is in the set UNWOUND .

` S 2 UNWOUND

Labelling

We have moved the segregation proof obligation into the world of general state
transitions. We now move into the world a particular kind of state transition:
we assume the global state of the system  has a structure of labelled local
states (where the labels are the application identiers)

 == A " S

We introduce a new set of labelled application systems, LABELLED . We
prove the labelling theorem, that if a simplied state transition model is
in LABELLED , then it is in UNWOUND .

s : LABELLED ` s 2 UNWOUND

Hence it is sucient to show that the simplied state transition model of our
system is in the set LABELLED .

` S 2 LABELLED

Promotion

One particular form of a labelled system is a multi-promoted system, a partic-
ular way of gluing together labelled local state transitions into a global state
transition system. We prove the promotion theorem, that such a promoted
system is in LABELLED .

s : PROMOTED ` s 2 LABELLED

16

Hence it is sucient to show that the simplied state transition model of our
system is in the set PROMOTED .

` S 2 PROMOTED

The set PROMOTED is still expressed in terms of a state transition relation
between local labelled states, on events. But it sets the stage for moving from the
state transition relation world to the more familiar state-and-operations schemas
world.

It is the rst time the details of  (the way global events are seen by local
applications) appear in the proof. So altering the precise details of the visibility
properties of communication channels requires only a small change to the total
proof.

Recasting to a schema form

We recast the set PROMOTED into schema form, and show that it is a form of
Z unconstrained multi-promotion.

We have reduced the segregation proof obligation to showing that our system
is multipromoted. So we now need to show that our system S can be written as
a multi-promoted system. It is time to express our state transition relation in
the world of Z schemas.

First, we make a direct translation into Z.
A local application transition has a type like:

((A # N)  (N  V))  S  S

We map this to a schema with a type like:

[s; s0 : S ; l ! : A # N ; lc : N  V]

The EVENT -based work we have been doing above makes no distinction between
inputs and outputs, so we make an arbitrary division. The local operation
schemas do not need to conform to the Z convention for operations, and so the
input/output distinction does not need to be made. Here we have mapped the
rst element of the EVENT pair to l ! and the second to lc.

DirectLocalOp b=
[s; s0 : S ; l ! : A # N ; lc : N  V j P((l !; lc); s; s 0)]

Here P is some predicate over the state that captures the local operation.
A global application transition has a type like:

(A # N  N  V)  (A " S)  (A " S)

We map this to a schema with a type like:

[; 0 : A " S ; g ! : A # N ; gc?; gc! : N  V]

17

The global operation, being a normal Z operation, needs to have a before and
after state, and inputs and outputs. We have mapped the rst element of the
EVENT pair to g ! and the second to the two variables gc? and gc!. We
choose these two to not overlap, and between them to cover all of the value
of EVENT 's second element. We build up the global operation by promoting
individual application schemas. The global operation comprises a promotion of
local operations:

Global

; 0 : A " S

g ! : A # N

gc?; gc! : N  V

g ! 6= 
hdom gc?; dom gc!i partition ran g !
(dom g !)   = (dom g !)  0

8 a : dom g ! 
9 s; s0 : S ; l ! : A # N ; lc : N  V 

s =  a

^ s0 = 0 a

^ l ! = g !  g !fag
^ lc = g !fag  gc? [gc!
^ DirectLocalOp

Hence it is sucient to show that our system state and operations model can be
written can be written as a Global schema.

In fact, we made some further simplications to Global , by instantiating it
with the particularly simple value of N in our model. Instead of writing our
model in the form of Global , we chose a more natural form to express it, and
proved that it is equivalent to a global-style model [Stepney & Cooper 2000].

Hence we proved our model segregated.

8 Strength of segregation

In the denition of segregation we chose the denition of the projection function
 (section 3.1).

At various stages over the course of the development of the model and proof,
we found it necessary to change the denition of . We noticed that changing
 had only a small eect on the proof of segregation: it directly aected the
structure of a multi-promoted state transition system and the corresponding op-
eration schema in Z, but it left the rest of the proof unchanged. It transpires
that, in the context of segregation,  determines how much of an event is visible
to an operation. Choosing an  that makes more of each event visible means
that more systems are classed as segregated, since we have allowed more com-
munication. Had we dened  so that undesirable systems were classed as being
segregated, it may not have shown up in the proof.

18

To address this, we have developed a theory of `strength of segregation' of
, but do not have the space to go into detail here. In summary, though, we
can rank choices of  in a partial order, from the nest (which allows a local
application to see no part of any EVENT) to the coarsest (which allows a local
application to see all of all the EVENT s).

The nest segregator is most conservative, in that it permits the minimum
number of systems to be classed as segregated. The coarsest segregator permits
many systems to be segregated.

We have endeavoured to choose a form of  that is as ne as possible, while
still being representative of the actual system being modelled. Thus our choice
allows parts of the inputs and outputs to be selectively shared between applica-
tions, without forcing all parts to be visible to all applications. If we had chosen
a coarser segregator, which revealed all inputs and outputs equally to all appli-
cations, we would have been forced to open up wider communication channels
between applications than we wanted.

Care must be exercised in choosing . Too ne, and you will be unable to
prove your system segregated. Too coarse, and although you will be able to
prove your system is segregated, the form of segregation will be too weak to be
useful.

9 Property not preserved by renement

It is worth noting that segregation as we have dened it is a kind of property not
necessarily preserved by renement. It is possible to specify a system abstractly,
prove that such a system is segregated, prove that a more concrete specication
is a renement of the rst, but then show that the more concrete specication
is not segregated.

The reason for this is that renement allows non-determinism in the abstract
specication to be resolved in any way the implementor chooses in the concrete.
One such way may involve using supposedly secret information inside one appli-
cation to inuence the behaviour of another application. This sometimes raises
the query of what we mean when we say that the abstract specication was
shown to be segregated? If we can exhibit a system that is an implementation
of this specication (is a renement of it) and yet is not itself segregated, how
can we say that the abstract specication is segregated?

The denition of segregation is derived from the totality of the system traces
allowed by the specication. Being segregated is a property of all these traces,
and is therefore only necessarily a property of systems that actually exhibit all
these traces. Systems that do not exhibit all these traces may be argued to
be correct versions of renements of the specication, but they are not correct
versions of the specication itself. We thus take a very constrained view of a
specication: it species systems that behave in exactly this way; no more, no
less.

It is also important to realise the limitations of this. Consider a specication
of two applications that output independent values, with no communication

19

between them. This can be proved to be a segregated system. Consider an
actual system that genuinely exhibits all of the specied traces. Such a system
would be segregated, by our denition. But this is true even if the system
actually chooses its traces from some non-segregated subset of all the traces
99% of the time, and only 1% of the time adds in the full segregated behaviour.

For example, the system could keep the outputs from the two applications
in synchrony 99% of the time, and only 1% of the time allow them to non-
deterministically diverge. With this information we could reliably (with 99%
condence) predict the output of one application knowing the output of the
other. Segregation is a slippery subject, and not to be entered lightly!

10 Conclusions

As part of an industrial project, we have dened a form of segregation with com-

munication, in which a set of applications are shown to be kept separated except
for dened channels of communications. These channels allow for an arbitrary
number of applications to simultaneously engage in sharing information.

We have given this denition in terms of system traces, and have also rig-
orously developed a set of translation functions from conventional Z state-and-
operation specications to system traces.

We have dened a generalisation of promoting a single local state to pro-
moting multiple local states, called multi-promotion, and proved an unwinding
theorem that

a Z model written as an unconstrained multi-promotion is segregated

Acknowledgements

The work described in the paper took place as part of a development funded by
the NatWest Development Team.

Parts of the work were carried out by Eoin Mc Donnell, Barry Hearn and
Andy Newton (all of Logica). We would like to thank Jeremy Jacob and John
Clark for their helpful comments and careful review of this work.

References

[Barden et al. 1994]
Rosalind Barden, Susan Stepney, and David Cooper. Z in Practice. BCS Practi-
tioners Series. Prentice Hall, 1994.

[Bell & Padula 1976]
David E. Bell and Len J. La Padula. Secure computer system: unied exposition
and MULTICS. Report ESD-TR-75-306, The MITRE Corporation, March 1976.

[Bell 1988]
D. E. Bell. Concerning \modelling" of computer security. In Proceedings 1988

IEEE Symposium on Security and Privacy, pages 8{13. IEEE Computer Society
Press, April 1988.

20

[Goguen & Meseguer 1984]
J. A. Goguen and J. Meseguer. Unwinding and inference control. In Proceedings

1984 IEEE Symposium on Security and Privacy, pages 75{86. IEEE Computer
Society, 1984.

[Gollman 1998]
Dieter Gollman. Computer Security. John Wiley, 1998.

[He et al. 1986]
He Jifeng, C. A. R. Hoare, and Je W. Sanders. Data renement rened (resume).
In ESOP'86, number 213 in Lecture Notes in Computer Science, pages 187{196.
Springer Verlag, 1986.

[Hoare & He 1998]
C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice Hall,
1998.

[Hoare 1985]
C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[ITSEC 1996]
UK IT Security Evaluation and Certication Scheme, issue 3.0. Technical report,
UK ITSEC, Cheltenham, December 1996.

[Jacob 1992]
Jeremy L. Jacob. Basic theorems about security. Journal of Computer Security,
1(4):385{411, 1992.

[Roscoe 1995]
A. W. Roscoe. CSP and determinism in security modelling. In Proceedings 1995

IEEE Symposium on Security and Privacy, pages 114{127. IEEE Computer Society
Press, 1995.

[Rushby 1981]
J. M. Rushby. The design and verication of secure systems. In Proceedings 8th

ACM Symposium on Operating System Principles, December 1981.
[Stepney & Cooper 2000]

Susan Stepney and David Cooper. Formal methods for industrial products. (These
proceedings), 2000.

[Stepney et al. 1998]
Susan Stepney, David Cooper, and Jim Woodcock. More powerful Z data rene-
ment: pushing the state of the art in industrial renement. In Jonathan P. Bowen,
Andreas Fett, and Michael G. Hinchey, editors, ZUM'98: 11th International Con-

ference of Z Users, Berlin 1998, volume 1493 of Lecture Notes in Computer Science,
pages 284{307. Springer Verlag, 1998.

[Woodcock & Davies 1996]
Jim Woodcock and Jim Davies. Using Z: Specication, Renement, and Proof.
Prentice Hall, 1996.

