p
     
     is
     
      prime
     
     precisely when
     
      p
     
     divides (
     
      p
     
     -1)!+1
    
    
     - 
      (2-1)!+1 = 1!+1 =
      
       2
      
     
 
     - 
      (3-1)!+1 = 2!+1 =
      
       3
      
     
 
     - 
      (4-1)!+1 = 3!+1 = 7
     
 
     - 
      (5-1)!+1 = 4!+1 = 25 =
      
       5
      
      *5
     
 
     - 
      (6-1)!+1 = 5!+1 = 121 = 11*11
     
 
     - 
      (7-1)!+1 = 6!+1 = 721 =
      
       7
      
      *103
     
 
     - 
      (8-1)!+1 = 7!+1 = 5041 = 71*71
     
 
     - 
      (9-1)!+1 = 8!+1 = 40321 = 61*661
     
 
     - 
      (10-1)!+1 = 9!+1 = 362881 = 19*71*269
     
 
     - 
      (11-1)!+1 = 10!+1 = 3628801 =
      
       11
      
      *329891
     
 
     - 
      (12-1)!+1 = 11!+1 = 39916801
     
 
     - 
      (13-1)!+1 = 12!+1 = 479001601 =
      
       13
      
      *13*2834329
     
 
     - 
      (14-1)!+1 = 13!+1 = 6227020801 = 83*75024347
     
 
     - 
      (15-1)!+1 = 14!+1 = 87178291201 = 23*3790360487
     
 
     - 
      (16-1)!+1 = 15!+1 = 1307674368001 = 59*479*46271341
     
 
     - 
      (17-1)!+1 = 16!+1 = 20922789888001 =
      
       17
      
      *61*137*139*1059511
     
 
     - 
      (18-1)!+1 = 17!+1 = 355687428096001 = 661*537913*1000357
     
 
     - 
      (19-1)!+1 = 18!+1 = 6402373705728001 =
      
       19
      
      *23*29*61*67*123610951
     
 
     - 
      (20-1)!+1 = 19!+1 = 121645100408832001 = 71*1713311273363831
     
 
     - 
      etc