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Low-Level Image Properties of Visual Objects Predict
Patterns of Neural Response across Category-Selective
Regions of the Ventral Visual Pathway

Grace E. Rice, David M. Watson, Tom Hartley, and Timothy J. Andrews
Department of Psychology and York Neuroimaging Centre, University of York, York YO10 5DD, United Kingdom

Neuroimaging studies have revealed strong selectivity for object categories in high-level regions of the human visual system. However, it
is unknown whether this selectivity is truly based on object category, or whether it reflects tuning for low-level features that are common
to images from a particular category. To address this issue, we measured the neural response to different object categories across the
ventral visual pathway. Each object category elicited a distinct neural pattern of response. Next, we compared the patterns of neural
response between object categories. We found a strong positive correlation between the neural patterns and the underlying low-level
image properties. Importantly, this correlation was still evident when the within-category correlations were removed from the analysis.
Next, we asked whether basic image properties could also explain variation in the pattern of response to different exemplars from one
object category (faces). A significant correlation was also evident between the similarity of neural patterns of response and the low-level
properties of different faces, particularly in regions associated with face processing. These results suggest that the appearance of
category-selective regions at this coarse scale of representation may be explained by the systematic convergence of responses to low-level

features that are characteristic of each category.
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Introduction

Neuroimaging studies have shown that discrete regions of the
ventral visual pathway are specialized for different categories of
objects. For example, some regions are more responsive to faces
than to images of nonface objects (Kanwisher et al., 1997),
whereas other regions are selective for images of places (Epstein
and Kanwisher, 1998), body parts (Downing et al., 2001), visually
presented words (Cohen et al., 2000), and inanimate objects
(Malach et al., 1995). This selectivity has been regarded as char-
acteristic of a modular organization in which distinct areas are
responsible for processing functionally distinct categories of the
visual stimulus (Kanwisher, 2010). Despite the evidence for cat-
egory selectivity in the ventral visual pathway, specialized regions
have only been reported for a limited number of object categories
(Downing et al., 2006; Op de Beeck et al., 2008). Other studies
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provide support for a more distributed categorical organization.
For example, it has been shown that the spatial pattern of re-
sponse across the entire ventral stream can distinguish a much
greater range of object categories (Haxby et al., 2001; Spiridon
and Kanwisher, 2002; Cox and Savoy, 2003; Kriegeskorte et al.,
2008). Indeed, the ability of the pattern to discriminate particular
object categories is still evident when the most category-selective
voxels were removed from the analysis.

Although these studies show robust and reliable patterns of
response to different object categories in the ventral visual
pathway, it is not clear if more basic principles underpin these
patterns of response. Evidence for larger scale patterns of re-
sponse across the ventral visual pathway have been found for
the animacy (Chao et al., 1999), real-world size (Konkle and
Oliva, 2012), and the location in the visual field (Levy et al.,
2001; Brewer et al., 2005; Arcaro et al., 2009) of visual objects.
However, it is unclear how these factors explain the stronger
category-selective patterns of response (Op de Beeck et al.,
2008). A potential answer to this question was proposed by
O’Toole et al. (2005), who showed that the capacity to dis-
criminate neural responses to images in one category from
those of another could be predicted by corresponding dis-
criminations based on image properties. These results suggest
that a purely category-based account of these patterns is in-
complete. However, the ability to discriminate one category
from another can depend on local features of image or brain
activity rather than the pattern as a whole. To understand the
relationship between low-level image properties and patterns
of neural response it is necessary to compare the similarity of
entire patterns. Moreover, this relationship should still be ev-
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ident in comparisons between images
that do not share a category.

The aim of the current study was to
compare global low-level image proper-
ties with patterns of neural response
across the whole ventral visual pathway. If
patterns of response are based on categor-
ical properties of the stimulus, any simi-
larities in responses to different objects
should only reflect high-level relation-
ships between categories to which they
belong. On the other hand, if image prop-
erties play an important role, the response
to different objects should be better ex-
plained in terms of their low-level
characteristics.

Materials and Methods

Participants
Data were collected from 40 participants (30
females; mean age, 23). Twenty participants
took part in Experiment 1 and 20 participants
took part in Experiment 2. All observers had
normal or corrected-to-normal vision. Writ-
ten consent was obtained for all participants
and the study was approved by the York Neu-
roimaging Centre Ethics Committee. All im-
ages (approximately 8° X 8°) were presented in
grayscale and were back projected onto a
screen located inside the bore of the scanner,
~57 cm from the participants’ eyes.
Experiment 1 had five different object cate-
gories: bottle, chair, face, house, and shoe. Ex-
amples of images from each condition are
shown in Figure 1. Images were presented on a
mid-gray background. Face images from Ex-
periment 1 were taken from the Radboud Face
Database. Stimuli were presented with a
blocked design. There were six images from
one stimulus condition in each block. Each im-
age was presented for 800 ms and followed by a

Figure 1.
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Examples of images from the different object categories: bottles, chairs, faces, houses, and shoes.

200 ms blank screen, resulting in a total block
length of 6 s. Stimulus blocks were separated by
a 9 s gray screen with a central fixation cross.
There were eight runs in the scan. In each run,
each of the five categories was shown in a pseu-
dorandomized order to ensure that each con-
dition was presented evenly across the scan.

Different exemplars of each stimulus condition
were used in all blocks. The stimulus condi-
tions for Experiment 2 included exemplars
from one category (faces). A face image was
taken from each of the following familiar
identities: Brad Pitt, David Beckham, Gary
Lineker, Rowan Atkinson, Tom Cruise, and
Tom Hanks. In all other respects, the design
and procedure was identical to the first
experiment.

Figure 2.

fMRI data acquisition and analysis

The experiment was performed usinga GE 3 T HD Excite MRI scanner at
the York Neuroimaging Centre at the University of York. An 8-channel,
phased-array head coil (GE) tuned to 127.4 MHz was used to acquire
MRI data. A gradient-echo EPI sequence was used to collect data from 38
contiguous axial slices. (TR = 3 s, TE = 25 ms, FOV 28 * 28 cm, matrix
size = 128 * 128, slice thickness 3 mm). These were coregistered onto a
T1-weighted anatomical image (1 X 1 X 1 mm) from each participant.
To improve registrations, an additional T1-weighted image was taken in

Schematic diagram of pattern analysis procedure. A LOPO method was used to measure patterns of response to
different stimulus conditions. In this analysis, the pattern of response elicited by one participant is compared with the pattern
generated by a group analysis of all remaining participants. This procedure is repeated for all combinations of stimulus conditions
and participants. This example shows the response to faces from an individual participant and the group. This cross-validation
analysis was used to ask whether the patterns of response to different object categories are consistent across participants.

the same plane as the EPI slices. Finally, individual participant data were
registered to the standard brain (MNI 152).

Statistical analysis of the fMRI data was performed using FEAT in the
FSL toolbox (http://www.fmrib.ox.ac.uk/fsl). The first three volumes (9
s) of each scan were removed to minimize the effects of magnetic satu-
ration, and slice-timing correction was applied. Motion correction was
followed by temporal high-pass filtering (cutoff, 0.01 Hz) and spatial
smoothing 6 mm (Gaussian, FWHM). Regressors for each condition in
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other than to responses to different categories.
Pearson correlation was used to determine the
similarity of the patterns across all combina-
tions of object categories.

To avoid any assumptions about the func-
tional organization of the ventral stream, we
used anatomical masks defined by the Harvard
Oxford Atlas. These masks included: lateral
occipital cortex—inferior, middle temporal— tem-
poral occipital, inferior temporal— temporal oc-
cipital, fusiform—occipital, fusiform-temporal
occipital, fusiform—posterior, parahippocampal—
posterior, lingual, superior temporal— posterior,
superior temporal-anterior, middle temporal—
posterior, middle temporal-anterior, inferior
temporal—posterior, inferior temporal-anterior,
fusiform—anterior, parahippocampal—anterior,
and the temporal pole. The location of the indi-
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individual anatomical masks.

The ability to discriminate patterns of re-
sponse to specific object categories or to spe-
cific exemplars of an object category was
calculated by determining whether the within-
condition correlations were greater than the
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Figure 3.
the individual anatomical masks.

the general linear model were convolved with a gamma hemodynamic
response function. This generated parameter estimates for each condi-
tion in each voxel across the entire scan.

The reliability of the neural patterns of response was determined using
the correlation-based multivoxel pattern analysis (MVPA) method de-
vised by Haxby et al. (2001). To determine whether the pattern of re-
sponse to different object categories generalized across individuals, we
adapted the method so that the pattern of response to each condition in
an individual participant was compared with the pattern of response
from the group (Fig. 2). The parameter estimate for each regressor was
taken as a measure of response relative to baseline in each voxel across the
entire scan. The mean response in each voxel across all conditions was
subtracted from the response to each condition. The group pattern was
derived by entering the remaining 19 participants’ data into a higher level
group analysis (mixed effects, FLAME; http://www.fmrib.ox.ac.uk/fsl).
The group response was then compared with the data from the individual
who was omitted from the group. For each comparison, this “leave one
participant out” (LOPO) method was repeated 20 times with a different
participant being compared with the group each time. If a given stimulus
category evoked a distinct pattern of activity, then independent observa-
tions of the response to that category should be more similar to each

Location of regional masks in the ventral visual pathway. The ventral stream mask was based on a concatenation of

image statistics of the visual objects. The image
statistics of each object were computed using
the GIST descriptor (http://people.csail.mit.
edu/torralba/code/spatialenvelope/). For each
image, a vector of 512 values was obtained by
passing the image through a series of Gabor
filters across eight orientations and four spatial
frequencies, and windowing the filtered images
along a 4 X 4 grid (Fig. 4). Each vector repre-
sents the image in terms of the spatial frequen-
cies and orientations present at different
positions across the image. A cross-validation
procedure was used to determine how similar
individual objects were to the average of each
object category. GIST descriptors were aver-
aged across all but one of the images within each category of object. These
average descriptors were then compared with each unique image creating
within- and between-category correlations for each combination of ob-
ject category.

The correlation values for the GIST descriptor across different object
categories were then compared with the corresponding correlation val-
ues in the fMRI pattern of response to different object categories. This
generated a group r value. The significance of the correlation was assessed
by determining the reliability of the r value across all subjects. To deter-
mine whether the correlations depended on the difference between
within-category and between-category values, we removed the within-
category correlations and repeated the analysis. This analysis provided a
stronger test of whether the low-level image properties influenced the
pattern of response to different objects, because the pattern of response
cannot be predicted by category.

Results

Experiment 1

In Experiment 1, we determined the relationship between low-
level properties of objects and the patterns they elicit in the ven-
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tral visual pathway. First, we measuredthe  Gabor filters
patterns of response to different object
categories across the ventral visual path-
way. Figure 5 shows distinct topographic
patterns of response to each object cate-
gory across the ventral visual pathway. We
then compared the similarity of these top-
ographic patterns across participants
using MVPA. Figure 6A shows the corre-
lation matrix for all combinations of
object category. To quantify the reliability
of these patterns of activation, a two-way
ANOVA with Comparison (within-
category, between-category) and Category
(bottle, chair, face, house, and shoe) was
run on the correlations from the ventral
visual pathway. We found that the within-
category (e.g., face—face) patterns of fMRI
response were significantly more posi-
tively correlated than the between-
category (e.g., face—house) patterns of
response (F(, 9y = 283.3, p < 0.001).
However, we also found a significant
Comparison * Category interaction
(Fa76) = 18.6, p < 0.001). This reflected
differences between the within-category
and between-category correlations for
each object category (within-between:
Bottle: t,4) = 7.83, p < 0.001; Chair: ¢,
= 7.04, p < 0.001; Face: £,4) = 15.05, p <
0.001; House: f,9) = 16.43, p < 0.001;
Shoe: £,y = 9.20, p < 0.001). This sug-
gests that there was systematic variation in
the magnitude of the within-category and
between-category correlations across dif-
ferent object categories.

To determine whether the variance in
the patterns of neural response could be
explained by differences in the image sta-
tistics of different object categories, we
measured the low-level properties of all
images in the fMRI experiment. The im-
age statistics of each object were com-
puted using the GIST descriptor (Oliva
and Torralba, 2001). Using the GIST
descriptor, we calculated the average ori-
entation energy at different spatial fre-
quencies and spatial positions within each
object category. We then determined the
within- and between-category correla-
tions in GIST values across images. Figure
6B shows that there were higher correlations
in the image properties for within-category
compared with between-category images,
but the magnitude of this difference
appears to vary for different object catego-
ries. We then compared the within-
category and between-category correlations for the fMRI
response with the corresponding correlations in the image prop-
erties. We found a strong positive correlation across the ventral
visual pathway (r = 0.79, p < 0.001; Fig. 6C). Importantly, the
correlation between low-level image properties and the neural
pattern of response was still evident when the within-category
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Schematicillustration of the calculation of a GIST descriptor for an example image. A series of Gabor filters across eight
orientations and four spatial frequencies are applied to the image. Each of the resulting 32 filtered images is then windowed along
a4 X 4 grid to give a final GIST descriptor of 512 values (right).
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Topographic patterns of response to different object categories (left) in the ventral visual pathway. Red/yellow and
blue/light blue colors represent positive and negative fMRI responses relative to the mean response across all objects. The patterns
or response are restricted to the combined ventral visual pathway mask (see Fig. 3). Average image properties from each object
category were described by contour plots of the Fourier power spectra across different spatial locations in the image.

comparisons were removed from the correlation (r = 0.53, p <
0.001). This finding shows that low-level image properties can
explain systematic variation in the patterns of fMRI response
regardless of category label.

Next, we asked whether this relationship between image prop-
erties and fMRI response varied across different anatomical re-
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Correlation between fMRI response to different object categories and GIST description across subregions of the ventral
visual pathway. The scatter plots show variation in the way that low-level image properties described by the GIST can explain the
pattern of response across the ventral visual pathway.

gions within the ventral stream. Figure 7
shows that there was a significant positive
relationship between the patterns of re-
sponse and the image properties in the
Temporal Pole (r = 0.54, p < 0.008), Mid-
dle Temporal Gyrus—-Temporal Occipital
(0.67, p < 0.001), Inferior Temporal
Gyrus—Posterior (r = 0.58, p < 0.006),
Inferior Temporal Gyrus—-Temporal Oc-
cipital (r = 0.63, p < 0.001), Lateral Oc-
cipital (r 0.66, p < 0.001),
Parahippocampal Gyrus—Posterior (r
0.61, p < 0.001), Lingual (r = 0.72, p <
0.001), Fusiform Gyrus—Posterior (r
0.59, p < 0.001), Fusiform Gyrus—-Tem-
poral Occipital (r = 0.66, p < 0.001), and
Fusiform Gyrus—Occipital (r = 0.74, p <
0.001) regions. When the within-category
comparisons were removed from the
analysis, the Inferior Temporal Gyrus—
Temporal Occipital (r = 0.64, p < 0.001),
Lateral Occipital (r = 0.57, p < 0.001),
Lingual (r = 0.66, p < 0.001), Fusiform
Gyrus—Temporal Occipital (r = 0.35, p <
0.01), and Fusiform Gyrus—Occipital (r =
0.63, p < 0.001) regions showed signifi-
cant positive correlations.

Finally, we asked whether the neural pat-
terns of response to complex images in early
visual cortex can also be predicted by the
low-level properties of the image. We found
significant correlations were evident for the
intracalcarine (r = 0.69, p < 0.001), supra-
calcarine (r = 0.37, p < 0.01), and occipital
pole (r = 0.64, p < 0.001) regions.

Experiment 2

In Experiment 2, we asked whether low-
level image properties could also explain
variation in the pattern of response to in-
dividual exemplars from one object cate-
gory (faces). We measured fMRI patterns
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is not as strong when compared with exemplars from different object categories (Fig. 6).

of response to six different face images. Figure 8A shows the
correlation matrix for all combinations of face images. To quan-
tify the reliability of the patterns of fMRI response to each face
image, a two-way ANOVA with Comparison and Face as the
main factors was used. We found a main effect of comparison
that was due to larger within-exemplar compared to between-
exemplar correlations (F; 1oy = 21.01, p < 0.001). This shows
that pattern of response across the ventral visual pathway can
discriminate different facial identities ( Kriegeskorte et al., 2007;
Natu et al., 2010; Nestor et al., 2011). We also found a significant
Comparison*Face interaction (Fs o5 = 13.83, p < 0.001). This
reflected differences between the within-category and between-
category correlations for each facial identity (within-between:
Brad Pitt: ¢4y = 0.28, p = 0.782; David Beckham: t,4) = 1.81,
p = 0.086; Gary Lineker: £ ;) = 2.09, p = 0.050; Rowan Atkinson:
te) = 8.75,p < 0.001; Tom Cruise: t,4) = 2.79, p = 0.012; Tom
Hanks: ¢,y = —1.33, p = 0.199).

Next, we determined whether low-level differences between
faces described by the GIST description could account for the
differences in the neural patterns of response. Figure 8B shows
the differences in the image properties between the different face
exemplars. Finally, we correlated the fMRI response correlations
with the corresponding image properties. We found significant
correlations between the similarity of neural patterns of response
and the image properties for different face images in the ventral
pathway (r = 0.44, p < 0.001; Fig. 8C). However, no correlation
was found between image properties and neural responses when
the within-category correlations were removed from the analysis
(r= —0.03, p = 0.95). These results suggest that a finer scale of
cortical organization may be necessary to discriminate exemplars
of a single category such as faces.

To determine whether there were regional differences, we
measured the relationship between fMRI response and image
properties across different regions of the ventral visual pathway
(Fig. 9). Significant correlations were evident in the Lateral Oc-
cipital (r = 0.27, p < 0.005), Lingual Gyrus (r = 0.53, p < 0.001),
Fusiform Gyrus—Temporal Occipital (r = 0.49, p < 0.001) and
Fusiform Gyrus—Occipital (r = 0.62, p < 0.001) regions. How-
ever, when the within-category correlations were removed from
the analysis, only the Fusiform Gyrus—Occipital region showed a
significant correlation between image properties and fMRI re-
sponse (r = 0.24, p < 0.05).

Finally, we asked whether the neural patterns of response to
complex images in early visual cortex can also be predicted by the
low-level properties of the image. We found significant correla-
tions were only evident in the intracalcarine (r = 0.53, p < 0.001)
and occipital pole (r = 0.47, p < 0.001)

Discussion

The aim of this study was to determine whether more basic prin-
ciples and dimensions than category could underlie the topo-
graphic organization of the ventral visual pathway. We found
that the patterns of response to images from the same object
category were more similar than the patterns of response to ob-
jects from different categories. However, there were differ-
ences in the magnitude of both the within-category and
between-category correlations. Next, we investigated the extent
to which this variation in the neural response to different objects
could be explained by systematic differences in low-level image
properties. We found a strong, linear relationship between the
pattern of neural response in the ventral visual pathway and the
image statistics of different object categories.

These results have important implications for understanding
how the ventral visual cortex is organized. A dominant per-
spective on the organization of this region is that it encodes
information based on object category (Kanwisher, 2010). This
organization contrasts with the continuous, topographic maps
found in early stages of visual processing, which are tightly linked
to the properties of the visual image (Hubel and Wiesel, 1968;
Wandell et al., 2007). Until now, it has proved difficult to explain
how selectivity for object categories suddenly emerges from these
low-level representations (Op de Beeck et al., 2008). The strong,
linear relationship between low-level image properties and large-
scale, distributed patterns of neural response, we report, suggests
that no explanation may be necessary. Patterns of response at this
coarse scale of representation can be explained by low-level prop-
erties of the image. These findings are consistent with previous
studies that used principal component analysis to show that neu-
ral responses to different object categories in inferior temporal
cortex can be predicted by variance in the principal components
of the images (O’Toole et al., 2005; Baldassi et al., 2013). How-
ever, this need not be counter to a categorical representation,
given that a category typically contains objects that are visually
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discontinuous variable. It is possible to
change continuously between exemplars
from one category (morphing between
two faces, for example), because the cor-
responding features are obvious. How-
ever, the corresponding features of
exemplars from different categories (e.g.,
face and house) are less clear. The low-
level image properties of the GIST de-
scriptor reflect variation in spatial
position, orientation, and spatial fre-
quency across the image. With this lower
level framework of stimulus representa-
tion, it is more straightforward to deter-
mine how a continuous map could
emerge (Op de Beeck et al.,, 2008). It is
important to note that these representa-
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pathway. The scatter plots show variation in the way that low-levelimage properties described by the GIST can explain the pattern
of response to different faces across the ventral visual pathway. It is interesting to note that significant positive correlations were

only evident in the Fusiform (Temporal—Occipital, Occipital) and Lingual gyri.

similar. The key finding from this study is that the correlation
between the pattern of neural response and the low-level proper-
ties was still evident when the within-category correlations were
removed from the analysis. If the organization of the ventral vi-
sual cortex is solely dependent on categorical principles, then the
linear relationship between neural and image properties should
not extend to between-category correlations when the within-
category correlations are removed from the analysis.

Our results provide a novel framework in which to consider
the topographic organization of the ventral visual pathway. Pre-
vious studies have shown that category-selective patterns of re-
sponse are robust and reliable within and between individuals
(Kanwisher, 2010; Haxby et al., 2011). However, it has remained
a substantial challenge to describe the strong categorical specific-
ity that exists in ventral visual pathway by simpler properties that
can be continuously mapped across the cortical surface. A funda-
mental problem in this endeavor is that category membership is a

low-level properties of the image. This
finding is consistent with previous work
that has shown that activity in lower level
visual areas (V1, V2, V3) could be de-
coded to correctly identify natural images,
using a model derived from estimates of each voxel’s selectivity
for location, spatial frequency, and orientation (Kay et al., 2008).
However, previous attempts to characterize the topographic
properties of visual areas beyond this early stage of visual process-
ing have needed to include categorical or semantic information
about the images ( Kriegeskorte et al., 2008; Naselaris et al., 2009).
The key result from our study is that, even within these higher
level regions, patterns of activity are parametrically related to low-
level image properties. This applies even in between-category com-
parisons, which suggests that such image properties play a
fundamental role in organizing the topography of the ventral stream.

Regional variation was evident in the correlation between im-
age properties of different object categories and fMRI responses
across different anatomical regions. Stronger correlations were
found in posterior and inferior regions of the ventral visual path-
way. Regional variation was also evident when we compared
fMRI responses and image properties for different exemplars of
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one object category (faces). For example, the fusiform gyrus, a
region associated with face processing, showed a significant pos-
itive correlation between image properties and fMRI responses
even when the within-exemplar comparisons were removed from
the analysis. This pattern of results was not evident in other ana-
tomical masks, such as the parahippocampal gyrus. These find-
ings are consistent with previous work that showed that patterns
of response across the ventral visual pathway are not equipoten-
tial in the ability to discriminate different object categories (Spiri-
don and Kanwisher et al., 2002). Rather, the ability of the pattern
to discriminate a specific object category is higher in regions that
are more responsive to that category.

Our results show that the patterns of fMRI response generalize
across participants. Using a modified cross-validation analysis
(Haxby et al., 2001), we compared the pattern of response in one
participant with the pattern from a group analysis in which that
participant was left out (Shinkareva et al., 2008; Poldrack et al.,
2009; Haxby et al., 2011). This LOPO approach showed that the
topographic patterns of response to different object categories
were consistent across individuals. These observations are sig-
nificant in that they suggest that our findings reflect the oper-
ation of consistent, large-scale topographical organizing
principles, rather than an arbitrarily distributed representa-
tion in each individual.

In conclusion, previous neuroimaging studies have revealed
strong selectivity for object categories, such as faces, in the human
visual system. However, it has never been clear whether this re-
gional selectivity is driven solely by tunings to discrete object
categories or whether it reflects tunings for continuous low-level
features that are common to images from a particular category.
Here, we show a clear link between patterns of response in higher
level visual cortex and the image statistics characteristic of each
category that cannot be explained solely in terms of discrete cat-
egorical organization.
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