
www.sciencedirect.com

c o r t e x 9 2 ( 2 0 1 7 ) 1 6 2e1 7 4
Available online at
ScienceDirect

Journal homepage: www.elsevier.com/locate/cortex
Research report
Patterns of response to scrambled scenes reveal the
importance of visual properties in the organization
of scene-selective cortex
David M. Watson, Tom Hartley and Timothy J. Andrews*

Department of Psychology and York Neuroimaging Centre, University of York, York, United Kingdom
a r t i c l e i n f o

Article history:

Received 15 November 2016

Reviewed 17 January 2017

Revised 3 March 2017

Accepted 11 April 2017

Action editor Robert McIntosh

Published online 21 April 2017

Keywords:

Scene

Cortex

Category

PPA

RSC

OPA

Topographic
* Corresponding author.
E-mail address: timothy.andrews@york.a

http://dx.doi.org/10.1016/j.cortex.2017.04.011
0010-9452/© 2017 Elsevier Ltd. All rights rese
a b s t r a c t

Neuroimaging studies have found distinct patterns of neural response to different cate-

gories of scene in scene-selective regions of the human brain. However, it is not clear how

information about scene category is represented in these regions. Images from different

categories vary systematically in their visual properties as well as their semantic category.

So, it is possible that patterns of neural response could reflect variation in visual properties.

To address this question, we used fMRI to measure patterns of neural response to intact

and scrambled scene categories. Although scrambling preserved many of their visual

characteristics, perception of scene categories was severely impaired. Nevertheless, we

found distinct patterns of response to different scene categories in the parahippocampal

place area (PPA) and the occipital place area (OPA) for both intact and scrambled scenes.

Moreover, intact and scrambled scenes produced highly similar patterns of response. Our

finding that reliable and distinct patterns of response in scene-selective regions are still

evident when categorical perception is impaired suggests that visual properties play an

important role in the topographic organization of these regions.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The ability to perceive and recognize the spatial layout of vi-

sual scenes is essential for spatial navigation. Neuroimaging

studies have identified a number of regions in the human

brain that respond selectively to visual scenes (Epstein, 2008).

For example, the parahippocampal place area (PPA) is a region

on the ventral surface of the temporal lobe that displays

preferential activity to images of scenes over and above
c.uk (T.J. Andrews).

rved.
images of objects and faces (Aguirre, Zarahn, & D'Esposito,
1998; Epstein & Kanwisher, 1998). Other place selective re-

gions include the retrosplenial complex (RSC) located imme-

diately superior to the PPA and the transverse occipital sulcus

(TOS) or occipital place area (OPA) on the lateral surface of the

occipital lobe (Dilks, Julian, Paunov, & Kanwisher, 2013).

Damage to these regions leads to specific impairments in

scene perception and spatial navigation (Aguirre& D'Esposito,
1999; Mendez & Cherrier, 2003).
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Despite the importance of scene-selective regions for

spatial navigation, the functional organisation of these re-

gions remains unclear (Groen, Silson,& Baker, 2017; Lescroart,

Stansbury, & Gallant, 2015). For example, although scene-

selective regions show distinct patterns of response to im-

ages of different scene categories (Walther, Caddigan, Fei-Fei,

& Beck, 2009; Watson, Hartley, & Andrews, 2014), the basic

organizing principles are unresolved. Some studies have

argued that scene-selective regions represent information

about ‘high-level’ semantic properties of natural scenes

(Huth, Nishimoto, Vu, & Gallant, 2012; Stansbury, Naselaris, &

Gallant, 2013; Walther, Chai, Caddigan, Beck, & Fei-Fei, 2011;

Walther et al., 2009). This conclusion has, however, been

challenged by other studies that have suggested that the

patterns of response in scene-selective regions are better

explained by properties of the scene, such as openness

(Kravitz, Peng, & Baker, 2011; Park, Brady, Greene, & Oliva,

2011) or distance (Amit, Mehoudar, Trope, & Yovel, 2012;

Park, Konkle, & Oliva, 2015) rather than by semantic category.

Although concepts such as openness or distance provide

plausible ‘mid-level’ dimensions with which to understand

the organization of scene-selective regions, it is not clear

whether they can be explained at an even more basic level in

terms of low-level visual properties that co-vary with these

properties (Oliva & Torralba, 2001). In recent studies, we have

shown that variance in the patterns of response to different

scene categories can be explained by corresponding variance

in the image properties of the scenes (Andrews, Watson, Rice,

& Hartley, 2015; Watson, Hymers, Hartley, & Andrews, 2016;

Watson et al., 2014). These findings are consistent with pre-

viously reported biases in scene-selective regions for orien-

tation (Nasr & Tootell, 2012; Nasr, Echavarria, & Tootell, 2014),

spatial frequency (Musel et al., 2014; Rajimehr, Devaney,

Bilenko, Young, & Tootell, 2011) and visual field location

(Arcaro, McMains, Singer, & Kastner, 2009; Golomb &

Kanwisher, 2012; Levy, Hasson, Avidan, Hendler, & Malach,

2001; Silson, Chan, Reynolds, Kravitz, & Baker, 2015) and

provide further evidence for the role of image properties in the

organization of scene-selective regions. However, a funda-

mental problem is that images drawn from the same scene

category or with the same spatial layout are likely to have

similar visual properties (Oliva & Torralba, 2001). So, reliable

patterns of response are expected under high-level, mid-level

and low-level accounts of scene perception.

The aim of this study was to directly determine the extent

to which the patterns of neural response across scene-

selective regions can be explained by selectivity to more

basic properties of the stimulus. To address this question, we

measured the neural response across scene-selective regions

to intact images of different scene categories, as well as ver-

sions of these images that had been phase-scrambled at a

global or local level. Our rationale for using scrambled images

is that they have many of the visual properties found in intact

images, but disrupt perception of categorical and semantic

information (Andrews, Clarke, Pell, & Hartley, 2010; Coggan,

Liu, Baker, & Andrews, 2016; Loschky, Hansen, Sethi, &

Pydimarri, 2010; Loschky et al., 2007). Applying scrambling

both locally and globally allowed us to further investigate the

importance of the spatial properties of scenes to the neural

response, as local scrambling better preserves the coarse-
scale spatial arrangement of visual features in the original

image. Our hypothesis was that, if scene-selective regions are

sensitive to the visual differences between scene categories,

then we would expect to find similar patterns of neural

response to these categories even when images are

scrambled.
2. Methods

2.1. Participants

20 participants (5 males; mean age: 25.85; age range: 19e34)

took part in the experiment. All participants were neurologi-

cally healthy, right-handed, and had normal or corrected-to-

normal vision. Written consent was obtained for all partici-

pants and the study was approved by the York Neuroimaging

Centre Ethics Committee.

2.2. Stimuli

Participants viewed scene images in two independent runs,

one to localize the scene-selective regions, the other to

experimentally investigate the effects of local and global

scrambling manipulations. Images presented in the experi-

ment runs were taken from the LabelMe database (http://cvcl.

mit.edu/database.htm; Oliva & Torralba, 2001). Images for the

localiser run were taken from the SUN database (http://

groups.csail.mit.edu/vision/SUN/; Xiao, Hays, Ehinger, Oliva,

& Torralba, 2010). Stimuli were presented using PsychoPy

(Peirce, 2007, 2009) and were back-projected onto a custom in-

bore acrylic screen at a distance of approximately 57 cm from

the participant, with all images presented at a resolution of

256 � 256 pixels subtending approximately 10.7� of visual

angle.

The image set for the main experiment comprised 180

greyscale images from 5 scene categories: city, coast, forest,

indoor, and mountain (36 images per category). Each image

was shown at 3 levels of image scrambling: intact, locally

scrambled, and globally scrambled. Globally scrambled im-

ages were created by randomising the phase of the 2D fre-

quency components across the whole image while keeping

the magnitude constant. Locally scrambled images were

created by the same process, except that scrambling was

applied independently within each of 64 windows of an 8 � 8

grid across the image. Luminance histograms across all im-

ages in all conditions were normalised using the SHINE

toolbox (Willenbockel et al., 2010). Examples of the stimuli

used in each condition are shown in Fig. 1. Corresponding

Fourier amplitude spectra plots are shown in Supplementary

Fig. 1. In order to assess the impact of the scrambling pro-

cess on the visual similarity of the scene categories, we

assessed the visual statistics of the images using the GIST

descriptor (Oliva & Torralba, 2001). This generates a vector for

each image describing the spectral energy at assorted spatial

frequencies, orientations, and spatial positions within the

image. We employed 32 filters spanning 8 orientations and 4

spatial frequencies, within 64 windows of an 8� 8 spatial grid,

yielding vectors of 2048 values. These vectors were then

correlated within- and between-categories using a leave-one-



Fig. 1 e Examples of the scene images used in each condition.
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image-out cross-validation procedure for each scrambling

condition independently (Supplementary Fig. 2a). The result-

ing similarity matrices are shown in Supplementary Fig. 2a.

We next tested the ability to distinguish scene categories

based on this visual information by contrasting the within-

over the between-category correlations (Supplementary

Fig. 2b). Significantly greater within-than between-category

correlations were observed for the intact [t(35) ¼ 29.44,

p < .001, Cohen's d ¼ 4.91], locally scrambled [t(35) ¼ 25.57,

p < .001, Cohen's d ¼ 4.26], and globally scrambled scenes

[t(35) ¼ 18.69, p < .001, Cohen's d ¼ 3.11]. Thus, the scene cat-

egories remained visually distinct under all conditions of

scrambling.

The localiser images comprised a separate set of 64 scene

images plus their phase scrambled counterparts (128 images

total), with all images presented in full colour. Images were

chosen in approximately equal number from categories of

indoor-manmade, outdoor-manmade, and outdoor-natural

scenes as these represent the 3 top-level branches of the

SUN database hierarchy. Fourier-scrambled images were

created by randomising the phase of the 2D frequency com-

ponents in each colour channel of the original image while

keeping the magnitude constant. Mean luminance was then

equated across images.

2.3. fMRI experimental design

During the experimental runs participants viewed images

from the 5 scene categories. Images from each level of image

scrambling were presented across separate experiment runs.

For all participants, globally scrambled imageswere presented

in the first run, locally scrambled in the second run, and intact

images in the third run. This order was chosen as it was

crucial to ensure that responses to scrambled scenes could

not be primed by earlier viewing of the intact versions.

In each run, images fromeach categorywere presented in a

blocked design. There were 6 images in each block. Each

imagewas presented for 750msec followed by a 250msec grey
screen that was equal inmean luminance to the scene images.

Each stimulus block was separated by a 9 sec period in which

the same grey screen as used in the inter-stimulus interval

was presented. Each condition was repeated 6 times (total 30

blocks) in each run. To maintain attention throughout the

experimental runs, participants had to detect the presence of

a red dot randomly superimposed on one of the images in

each block, responding via a button press.

To define scene-selective regions, independent data was

collected while participants viewed images from 2 stimulus

conditions (intact scenes, scrambled scenes). Images from

each condition were presented in a blocked fMRI design, with

each block comprising 9 images. Each condition was repeated

8 times (16 blocks). In each stimulus block, an image was

presented for 750 msec followed by a 250 msec grey screen.

Each stimulus blockwas separated by a 9 sec period inwhich a

grey screenwas presented. Participants performed a one-back

task that involved pressing a button when they detected a

repeated image in each block.

2.4. Imaging parameters

All scanning was conducted at the York Neuroimaging Centre

(YNiC) using a GE 3 T HDx Excite MRI scanner. Images were

acquired with an 8-channel phased-array head coil tuned to

127.72 MHz. Data were collected from 38 contigual axial slices

in an interleaved order via a gradient-echo EPI sequence

(TR ¼ 3 sec, TE ¼ 32.5 msec, FOV ¼ 288 � 288 mm, matrix

size ¼ 128 � 128, voxel dimensions ¼ 2.25 � 2.25 mm, slice

thickness ¼ 3 mm with no inter-slice gap, flip angle ¼ 90�,
phase-encoding direction ¼ anterior-posterior, pixel

bandwidth ¼ 39.06 kHz). In order to aid co-registration to

structural images, T1-weighted in-plane FLAIR images were

acquired (TR ¼ 2.5 sec, TE ¼ 9.98 msec, FOV ¼ 288 � 288 mm,

matrix size ¼ 512 � 512, voxel dimensions ¼ .56 � 0.56 mm,

slice thickness ¼ 3 mm, flip angle ¼ 90�). Finally, high-

resolution T1-weighted structural images were acquired

(TR ¼ 7.96 msec, TE ¼ 3.05 msec, FOV ¼ 290 � 290 mm, matrix
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size ¼ 256 � 256, voxel dimensions ¼ 1.13 � 1.13 mm, slice

thickness ¼ 1 mm, flip angle ¼ 20�).

2.5. fMRI analysis

Univariate analyses of the fMRI data were performed with

FEAT v5.98 (http://www.fmrib.ox.ac.uk/fsl). In all scans the

initial 9 sec of data were removed to reduce the effects of

magnetic stimulation. Motion correction (MCFLIRT, FSL;

Jenkinson, Bannister, Brady, & Smith, 2002) was applied fol-

lowed by temporal high-pass filtering (Gaussian-weighted

least-squared straight line fittings, sigma ¼ 15 sec). Spatial

smoothing (Gaussian) was applied at 6 mm FWHM to both the

localiser and experiment runs, in line with previous studies

employing smoothing in conjunction with MVPA (Op de

Beeck, 2010; Watson et al., 2014). Parameter estimates were

generated for each condition by regressing the haemody-

namic response of each voxel against a box-car convolved

with a single-gamma HRF. Next, individual participant data

were entered into higher-level group analyses using a mixed-

effects design (FLAME, FSL). Functional data were first co-

registered to an in-plane FLAIR anatomical image then to a

high-resolution T1-anatomical image, and finally onto the

standard MNI brain (ICBM152).

Scene selective regions of interest (ROIs) were defined from

the localiser data of both experiments. ROIs were defined for

the parahippocampal place area (PPA), retrosplenial complex

(RSC), and occipital place area (OPA) that have been reported

in previous fMRI studies (Dilks et al., 2013; Epstein &

Kanwisher, 1998; Maguire, 2001). The locations of these ROIs

were consistent with those reported in previous literature e

see Supplementary Table 1. Within the MNI-2 � 2 � 2 mm

space, seed points were defined at the peak voxels within the

intact > scrambled statistical map for each region (PPA, RSC,

OPA) in each hemisphere. For a given seed, a flood fill algo-

rithm was used to identify a cluster of spatially contiguous

voxels around that seed which exceeded a given threshold.

This threshold was then iteratively adjusted till a cluster size

of approximately 500 voxels was achieved (corresponding to a

volume of 4000 mm3); actual cluster sizes ranged from 499 to

502 voxels as an optimal solution to the algorithm was not

always achievable. This step ensures that estimates of multi-

voxel pattern similarity are not biased by the different sizes of

ROIs being compared. Clusters were combined across hemi-

spheres to yield 3 ROIs, each comprising approximately 1000

voxels. These regions are shown in Supplementary Fig. 3, and

MNI co-ordinates of the seeds are given in Table 1. For com-

parison, we defined two alternative versions of each of the

scene ROIs using the same clustering method, based upon
Table 1 e Peak MNI mm co-ordinates, voxel counts, and thresho

Region Hemisphere x y

PPA L �34 �46

R 26 �50

RSC L �18 �52

R 16 �58

OPA L �36 �90

R 38 �82
independent localiser data from other experiments (not re-

ported here). Specifically, regions were defined using re-

sponses from contrasts of 1) Scenes > Faces, and 2)

Scenes > Objects. The locations of these regions are shown in

Supplementary Fig. 8, and MNI co-ordinates of the seeds are

given in Supplementary Table 2. In addition, a V1 control ROI

was defined from a recent standard atlas of retinotopic re-

gions (Wang, Mruczek, Arcaro, & Kastner, 2015).

Next, we measured patterns of response to different

stimulus conditions in each ROI. Parameter estimates were

generated for each condition in the experimental scans. The

reliability of response patterns was tested using a leave-one-

participant-out (LOPO) cross-validation paradigm (Poldrack,

Halchenko, & Hanson, 2009; Shinkareva et al., 2008) in which

parameter estimates were determined using a group analysis

of all participants except one. This generated parameter es-

timates for each scene condition in each voxel. This LOPO

process was repeated such that every participant was left out

of a group analysis once. These data were then submitted to

correlation-based pattern analyses (Haxby, Connolly, &

Guntupalli, 2014; Haxby et al., 2001) implemented using the

PyMVPA toolbox (http://www.pymvpa.org/; Hanke et al.,

2009). Parameter estimates were normalised by subtracting

the voxel-wise mean response across all experimental con-

ditions (Haxby et al., 2001). For each iteration of the LOPO

cross-validation, the normalized patterns of response to each

stimulus conditionwere correlated between the group and the

left-out participant. This allowed us to determine whether

there are reliable patterns of response that are consistent

across individual participants.

2.6. Statistical analyses

A Fisher's z-transform was applied to the correlation simi-

larity matrices before further statistical analyses. We tested

whether scene categories could be distinguished on the basis

of the pattern of activity within each region to under each

level of image scrambling. For each iteration of the LOPO

cross-validation, we calculated an average within-category

(on-diagonal) and an average between-category (off-diago-

nal) value across categories. These values were then entered

into a paired-samples t-test. If scene category can be

discriminated based on the pattern of activity it elicits, then

significantly greater within-than between-category correla-

tions would be expected. For the scene regions, a Bonferroni-

Holm correction for multiple comparisons was applied across

the 3 regions (PPA, RSC, OPA) and 3 scrambling conditions

(intact, locally scrambled, globally scrambled). The V1 ROI

represents a control analysis and hence was handled
lds of standard scene selective clusters (PPA, RSC, OPA).

z Voxel count Threshold (Z)

�22 500 5.06

�18 500 5.59

�2 500 4.63

6 502 4.79

2 500 5.14

4 499 5.03
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separately; here a Bonferroni-Holm correction for multiple

comparisons was applied across the 3 scrambling conditions.

A possible caveat here is that the leave-one-out procedure

means that samples from each iteration are not truly inde-

pendent, potentially violating the statistical assumptions of

the t-test. To address this we repeated these analyses using a

sign-flip permutation test on the differences between the

scores. The results of these analyses closely followed those of

the parametric t-tests e see Supplementary Table 3.

Next, we conducted a series of representational similarity

analyses (RSAs; Kriegeskorte, Mur, & Bandettini, 2008) to

investigate effects of different levels of scrambling. Correla-

tion matrices were averaged across iterations of the cross-

validation. Representational similarity was assessed by

correlating the off-diagonal elements of the averaged simi-

larity matrices between the intact and locally scrambled

conditions, and between the intact and globally scrambled

conditions. If the scrambling does not abolish the pattern of

relative similarity between categories relative to the intact

condition, then a significant positive correlation would be

expected between the intact and corresponding scrambled

matrices. For the scene regions, a Bonferroni-Holm correction

was applied across the 3 regions (PPA, RSC, OPA) and 2 ana-

lyses (intact vs locally scrambled, intact vs globally scram-

bled). The V1 ROI represents a control analysis and hence was

handled separately; here a Bonferroni-Holm correction for

multiple comparisons was applied across the 2 analyses.

To test for effects outside our ROIs, we also performed a

series of whole-brain searchlight analyses (Kriegeskorte,

Goebel, & Bandettini, 2006). A spherical ROI (6 mm radius)

was iterated over the whole-brain volume, and the MVPA

repeated within each sphere. Decoding and representational

similarity analyses were conducted in the samemanner as for

the ROI analyses. For the decoding analysis, for a given sphere

an average within- and between-category correlation value

was calculated for each LOPO iteration, and then a paired-

samples t-test used to test the within > between difference

across LOPO iterations. For the representational similarity

analyses, for a given sphere the correlation matrices were

averaged across LOPO iterations and the off-diagonal ele-

ments correlated between the scrambling conditions. In both

cases, the p-value of the test was then assigned to the central

voxel of the sphere.

2.7. Behavioural experiment

We also tested the ability of participants to recognise the

scenes under each level of image scrambling. An independent

set of 18 participants naive to the purposes of the study were

recruited (6 males; mean age: 21.7; age range: 19e39). Written

consent was obtained for all participants and the study was

approved by the University of York Psychology Department

Ethics Committee. Each participant viewed a subset of 1/6th of

the image set comprising 6 images from each category. Sub-

sets were counterbalanced across participants. Participants

viewed each image under all three levels of scrambling.

Crucially, to prevent priming effects, participants viewed

globally scrambled images first, followed by locally scrambled

images, and finally intact images (as per the fMRI experiment).

In each trial participants were shown an image for 750 msec,
and were then prompted to describe the type of scene they

thought was shown, typing their responses. The stimulus

duration was chosen to match that of the fMRI experiment.

Participants were free to provide any description theywanted,

and were also informed that they did not have to give a

response if they could not reasonably see what type of scene

was depicted. Accuracy was coded manually by two inde-

pendent raters (both authors of the study). A correct response

was defined as any which could reasonably be seen to accu-

rately describe the corresponding intact scene, while an

incorrect response was defined as one that did not accurately

describe the intact scene or where no response was given.

Accuracies were converted to proportions and an arcsine

square-root transform was applied prior to further statistical

tests. If participants did provide a description, they were next

prompted to provide a confidence rating of their decision on a

7 point scale (not at all confident e very confident). No confi-

dence ratings were collected for trials where participants did

not provide descriptive responses. Participants were not pro-

videdwith any information about the scene categories prior to

the experiment e this was necessary in order to match the

design of the fMRI experiment, where participants were not

provided with any information about the structure of the

stimulus set beforehand either.
3. Results

3.1. Behavioural experiment

We tested the effects of the different levels of scrambling on

participants' ability to recognise the scenes. Two independent

raters (both authors) coded the descriptive responses for ac-

curacy. Inter-rater reliability was high across the subjects

(mean Cohen's kappa ¼ .96 ± .01). For all subsequent tests,

accuracy values were averaged between the raters. Mean ac-

curacy for each condition is shown in Fig. 2a. As expected,

accuracy was higher for intact (mean ¼ 98.33 ± .80%)

compared to locally scrambled (mean ¼ 20.20 ± 2.54%) and

globally scrambled images (mean ¼ 3.35 ± .82%). A one-way

repeated measures ANOVA revealed a significant main effect

of scrambling [F(2,34) ¼ 374.76, p < .001, generalized-ƞ2 ¼ .95].

A series of post-hoc t-tests revealed significantly higher ac-

curacies for intact compared to locally scrambled scenes,

intact compared to globally scrambled scenes, and locally

scrambled compared to globally scrambled scenes (all

p < .001). For trials where descriptive responses were given,

participants also provided confidence ratings of their de-

scriptions on a scale of 1 (not at all confident) to 7 (very

confident). Median ratings for each condition were calculated

for each participant and are shown in Fig. 3b. One participant's
data were excluded from the analysis as they provided no

responses, and hence no confidence ratings, for the scrambled

images. Similar to accuracy, confidence ratings were higher

for intact (median ¼ 7, IQR ¼ 6e7) compared to locally

scrambled (median ¼ 2, IQR ¼ 2e3) and globally scrambled

images (median ¼ 2, IQR ¼ 1e2). A Friedman's ANOVA

revealed a significant main effect of scrambling [c2(2) ¼ 31.60,

p < .001]. A series of post-hoc Wilcoxon signed-rank tests

revealed significantly higher confidence ratings for intact than



Fig. 2 e Results of the behavioural experiment. (a) Mean scene identification accuracies for each level of scrambling. Error

bars represents 1 SEM. (b) Box-plots of median confidence ratings for each level of scrambling. (***p < .001, **p < .01, *p < .05).

Fig. 3 e MVPA results: correlation similarity matrices for each level of scrambling in each region of interest. To aid

visualisation, symmetrically opposite points across the diagonal have been averaged and displayed within the lower-

triangle portion of the matrix only.
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locally scrambled scenes (p < .001), intact than globally

scrambled scenes (p < .001), and locally scrambled than

globally scrambled scenes (p ¼ .004). Thus both types of

scrambling significantly impaired participants' recognition

and confidence on a scene recognition test.

3.2. Scene decoding analysis

Next, we used fMRI to measure the patterns of neural

response to each of the conditions. The group normalised

responses within the PPA, RSC, and OPA regions are shown in
Fig. 4 e Decoding of categories from MVPA. Average within-cat

values were calculated from the MVPA correlation matrices. Sig

correlations indicate categories can be successfully decoded. Er
Supplementary Fig. 4 (red and blue colours indicate responses

above and below the mean respectively). Correlation-based

MVPA (Haxby et al., 2001) using a leave-one-participant-out

(LOPO) cross-validation scheme was then used to assess the

reliability of these responses. Average correlation similarity

matrices for each of the ROIs and each of the scrambling types

are shown in Fig. 3, with symmetrically opposite points

averaged across the diagonal to aid visualisation.

We first assessed the ability of the MVPA to decode the

scene categories under each of the levels of scrambling. We

calculated within- and between-category correlation values
egory (on-diagonal) and between-category (off-diagonal)

nificantly greater within-than between-category

ror bar represent 1 SEM. (***p < .001, **p < .01, *p < .05).
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averaged across categories for each scrambling type and ROI.

These values are shown in Fig. 4. Paired-samples t-tests were

then used to test for differences between within- and

between-category correlations; if categories can be decoded

based on patterns of brain activity, then significantly greater

within-than between-category correlations would be ex-

pected. For the intact scenes, significantly greater within-than

between-category correlations were observed in the PPA

[t(19) ¼ 10.90, p < .001, Cohen's d ¼ 2.44] and OPA [t(19) ¼ 9.89,

p < .001, Cohen's d ¼ 2.21], but not in the RSC [t(19) ¼ .17,

p > .999, Cohen's d ¼ .04]. In the locally scrambled condition,

significantly greater within-than between-category correla-

tions were found in the PPA [t(19) ¼ 5.54, p < .001, Cohen's
d ¼ 1.24] and OPA [t(19) ¼ 4.57, p ¼ .001, Cohen's d ¼ 1.02], but

not in the RSC [t(19) ¼ 1.43, p ¼ .498, Cohen's d ¼ .32]. For the

globally scrambled scenes, no significant differences were

seen for any ROI [PPA: t(19)¼ .43, p > .999, Cohen's d¼ .10; RSC:

t(19)¼ 2.20, p¼ .200, Cohen's d¼ .49; OPA: t(19)¼ 2.14, p¼ .200,

Cohen's d ¼ .48].

A further test of the similarity in response between

scrambling conditions is the extent to which neural response

patterns generalise across them. This was tested using cross-

decoding analyses. MVP analyses were conducted in which

the neural response patterns to intact scenes were now

correlated with the neural response patterns to 1) the locally

scrambled scenes, and 2) the globally scrambled scenes. If

response patterns to a given scene category remain similar

across the scrambling conditions, then significant decoding of

the scene categories from these cross-conditionMVP analyses

would be expected. The results of these cross-decoding ana-

lyses are shown in Supplementary Fig. 7. The comparison of

intact and locally scrambled scenes revealed significant

decoding of scene category in the PPA [t(19) ¼ 8.13, p < .001,

Cohen's d ¼ 1.82] and OPA [t(19) ¼ 7.13, p < .001, Cohen's
d¼ 1.59], but not the RSC [t(19)¼ 1.08, p¼ .583, Cohen's d¼ .24].

Similarly, the comparison of intact and globally scrambled

scenes also revealed significant decoding of scene category in

the PPA [t(19) ¼ 5.62, p < .001, Cohen's d ¼ 1.26] and OPA

[t(19) ¼ 5.82, p < .001, Cohen's d ¼ 1.30], but not the RSC

[t(19) ¼ .45, p ¼ .655, Cohen's d ¼ .10]. Thus, response patterns

in PPA and OPA generalised well between intact and locally

scrambled, and intact and globally scrambled conditions.

3.3. Representational similarity analysis

We next conducted a series of representational similarity

analyses (RSAs; Kriegeskorte et al., 2008) to test to what extent

the two types of scrambling influence the representational

structure of the responses relative to those of the intact

scenes. The off-diagonal elements of the group average

matrices (20 elements per matrix) were correlated between

intact and locally scrambled conditions, and intact and glob-

ally scrambled conditions. If the scrambling does not disrupt

the representational space, a significant positive correlation

would be expected with the intact scenesmatrix. A significant

positive correlation was observed between intact and locally

scrambled scenes in the PPA [r(18) ¼ .66, p ¼ .009], but not in

the OPA [r(18) ¼ �.15, p > .999], whilst a significant negative

correlation was observed in the RSC [r(18) ¼ �.56, p ¼ .044]. A

significant positive correlation was observed between intact
and globally scrambled conditions in the OPA [r(18) ¼ .62,

p ¼ .019], but not the PPA [r(18) ¼ .44, p ¼ .160] or RSC

[r(18) ¼ .02, p > .999]. These results are illustrated in Fig. 5 (see

also Supplementary Fig. 6).

To further quantify the degree of preserved pattern simi-

larity under scrambling we undertook an additional analysis

of representational similarity, taking into account individual

variation and the distribution of correlations this entails

(Supplementary Fig. 7). Such variation leads to a “noise ceil-

ing” (Nili,Wingfield,Walther, Su,&Marslen-Wilson, 2014), i.e.,

an upper bound to the observable correlation between intact

and scrambled conditions. By comparing the observed corre-

lations with the noise ceiling, we can determine the degree to

which preserved representational structure under scrambled

conditions accounts for the explicable variance in the data.

This approach also permits a more sensitive comparison with

a zero correlation, which would be expected if scrambling

abolished the representational structure for intact images.

The noise ceiling is estimated by correlating each LOPO

iteration's intact similarity matrix against the group average

intact similarity matrix (calculated across all LOPO iterations

for the noise ceiling upper bound, and across all LOPO itera-

tions but the current one for the noise ceiling lower bound),

and then averaging these correlations. This reflects the

maximum similarity that could be expected for any correla-

tion between the intact and scrambled conditions. Noise

ceilings were reasonably high in the PPA and OPA indicating a

good degree of reliability in the intact responses across LOPO

iterations, but were much closer to zero in the RSC indicating

relatively poor reliability in this region.

Next, we calculated the correlation between each LOPO

iteration's locally- or globally-scrambled similaritymatrix and

the group average intact similaritymatrix. A one-sample t-test

was used to contrast each of these correlation distributions

against zero. For the comparison of intact and locally scram-

bled conditions, correlations were significantly greater than

zero in the PPA [t(19) ¼ 7.44, p < .001, Cohen' d ¼ 1.66], signif-

icantly less than zero in the RSC [t(19) ¼ 3.17, p ¼ .015, Cohen's
d ¼ .71], and less than zero in the OPA with the difference

approaching significance [t(19) ¼ 2.41, p ¼ .053, Cohen' d¼ .54].

For the comparison of intact and globally scrambled condi-

tions, correlations were significantly greater than zero in the

PPA [t(19) ¼ 5.51, p < .001, Cohen's d ¼ 1.23] and OPA

[t(19) ¼ 8.83, p < .001, Cohen's d ¼ 1.97], and did not differ

significantly from zero in the RSC [t(19) ¼ .09, p ¼ .929, Cohen's
d ¼ .02]. Next, we compared the correlations with the noise

ceiling. For the comparison of intact and locally scrambled

conditions, correlations were significantly below the lower

bound of the noise ceiling in the RSC [t(19) ¼ 5.00, p < .001,

Cohen's d ¼ 1.12] and OPA [t(19) ¼ 14.69, p < .001, Cohen's
d¼ 3.28], but not the PPA [t(19)¼ 1.70, p¼ .211, Cohen's d¼ .38].

For the comparison of intact and globally scrambled condi-

tions, correlationswere significantly below the lower bound of

the noise ceiling in the PPA [t(19) ¼ 5.89, p < .001, Cohen's
d¼ 1.32] andOPA [t(19)¼ 2.97, p¼ .023, Cohen's d¼ .66], but not

the RSC [t(19)¼ 1.21, p¼ .241, Cohen's d¼ .27]. This shows that

in most cases the local and global scrambling conditions

ability to predict the intact responses fell significantly below

the theoretical maximum of the noise ceiling. Overall, this

analysis demonstrates that, for PPA and OPA, significant



Fig. 5 e Representational similarity analyses. Off-diagonal elements of group average MVPA correlation matrices (Fig. 3) are

correlated between (a) intact and locally-scrambled conditions, and (b) intact and globally-scrambled conditions. Shaded

regions represent 95% confidence intervals. (***p < .001, **p < .01, *p < .05).
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representational structure is preserved under even global

scrambling conditions although it also shows that other

sources of variance play a role.

We next tested the extent to which the definition of the

scene ROIs influenced the MVPA results. The main scene

ROIs were defined using a contrast of Scenes > Phase

Scrambled versions of those scenes. We defined an alter-

native set of ROIs for the main scene regions (PPA, RSC, OPA)

from independent localiser data of separate experiments

(not reported here) using contrasts of Scenes > Faces and

Scenes > Objects. The locations of these ROIs are illustrated

in Supplementary Fig. 8, and co-ordinates of the corre-

sponding peak voxels are given in Supplementary Table 2.

Locations of the PPA and RSC regions remained relatively

consistent across the definitions (cf. Table 1 and

Supplementary Fig. 3). We next repeated our MVP analyses

for these alternative ROIs. Results of the decoding analyses

were largely consistent with those for the main ROIs

(Supplementary Fig. 9; cf. Fig. 4). Representational similarity

analyses remained broadly consistent between the main and

alternative definitions (Supplementary Fig. 10; cf. Fig. 5).

In order to interpret the results of representational simi-

larity analyses within scene selective regions, it is essential to

identify any disruption of earlier stages of visual processing.

To test whether category specific visual responses in early

visual cortex survive scrambling of low-level image proper-

ties, we repeated our analyses in a V1 control region defined

using a probabilistic atlas (Wang et al., 2015). The results of
this analysis are shown in Supplementary Fig. 11. Paired-

samples t-tests revealed significantly higher within-than be-

tween-category correlations for the intact [t(19) ¼ 7.82,

p < .001, Cohen's d ¼ 1.75], locally scrambled [t(19) ¼ 4.28,

p < .001, Cohen's d ¼ .96], and globally scrambled scenes

[t(19) ¼ 4.68, p < .001, Cohen's d ¼ 1.05]. Representational

similarity analyses revealed a significant correlation between

the intact and globally scrambled conditions [r(18) ¼ .71,

p ¼ .001], but not between intact and locally scrambled con-

ditions [r(18)¼ .37, p¼ .112]. Overall, these results indicate that

preserved low-level features are sufficient tomaintain reliable

spatial patterns of response in V1 after scrambling.

Finally, we repeated our analyses using a whole-brain

searchlight approach to identify areas beyond our regions of

interest where patterns of response to intact and scrambled

images are systematically affected by stimulus category. The

results of these analyses are plotted on the cortical surface in

Supplementary Fig. 12. Spheres showing significant decoding

of category for intact scenes were observed throughout oc-

cipital and ventro-temporal cortices. Decoding for the

scrambled scene conditions was less widespread; neverthe-

less, significant spheres were observed in right ventro-

temporal cortices and some occipital regions for locally

scrambled scenes, and in some occipital regions for globally

scrambled scenes. Representational similarity analyses

revealed significant spheres in regions including ventro-

temporal and occipital cortices, both for the comparison of



c o r t e x 9 2 ( 2 0 1 7 ) 1 6 2e1 7 4 171
intact and locally scrambled scenes, and intact and globally

scrambled scenes.
4. Discussion

The aim of the present study was to directly determine

whether category-selective patterns of response in scene-

selective regions can be explained by the visual properties of

the stimulus. To address this issue, we compared patterns of

response to intact and scrambled images. Our hypothesis was

that, if category-selective patterns of response purely reflect

the semantic content of the images, there should be little

similarity between the patterns of response elicited by intact

and scrambled images. On the other hand, if category-specific

patterns are based on visual properties, similar patterns

should be elicited by both intact and scrambled images. Image

scrambling significantly impaired the ability to categorize

scenes, consistent with previous results showing that local

phase information is important for recognition of scene gist

(Loschky et al., 2007). However, we found distinct and reliable

category-selective patterns of response for both the intact and

scrambled image conditions in the PPA and OPA scene-

selective regions. Moreover, the patterns of response elicited

by intact scenes were similar to the patterns of response to

scrambled scenes.

Previous studies have identified distinct patterns of neural

response to different categories of scene in scene selective

regions (Walther et al., 2011, 2009; Watson et al., 2014). Our

results show that categorical patterns of response in scene-

selective regions are still evident to images with significantly

reduced semantic information. These findings are consistent

with recent studies in which we have shown that basic image

properties of different scene categories can predict patterns of

response in scene-selective regions (Rice, Watson, Hartley, &

Andrews, 2014; Watson et al., 2014, 2016). However, because

images drawn from the same category are likely to have

similar visual properties (Oliva & Torralba, 2001), it was un-

clear from this previous work whether or not patterns are

determined primarily by categorical or visual properties of the

image. The results from the current study provide more direct

evidence that lower-level visual properties of the image can

account for a substantial proportion of the variance in the

patterns of response in scene-selective regions. This does not

dispute that there are distinct patterns of response to different

scene categories in scene-selective regions, but rather sug-

gests that such effectsmay be underpinned, at least in part, by

sensitivity to the visual properties of scenes.

To evaluate the importance of spatial properties in the

neural representation of scenes, we compared scrambling

across the full global extent of the image, or independently

within local windows of the image. The local scrambling thus

preserves the coarse-scale global structure of the original

image more than the global scrambling, in the sense that the

local scrambling leaves the windows of the grid in their orig-

inal spatial positions (see also Fig. 1 & Supplementary Fig. 1).

In PPA, we found that responses could be discriminated for

locally scrambled scenes, but the ability to discriminate

globally scrambled images was less reliable. Furthermore, a

representational similarity analysis showed that local
scrambling preserved the pattern of response to intact images

more than globally scrambling. This would suggest that the

PPA is sensitive to the coarse-scale spatial organisation of the

image, such that responses are disrupted more by global

scrambling. Such a conclusion would be consistent with pre-

vious studies demonstrating sensitivity of the PPA to the

spatial structure of scenes (Epstein, Higgins, Parker, Aguirre,&

Cooperman, 2006; Kravitz et al., 2011; Park et al., 2011), and

displaying visual field biases (Arcaro et al., 2009; Cichy et al.,

2013; Silson et al., 2015). Indeed, it has been proposed that

the PPA may support extraction of local spatial geometries of

the scene (Epstein, 2008; Epstein, Parker, & Feiler, 2007), for

which local visual features may be important.

There was a reduction in the magnitude of the category

effect for scrambled scenes relative to intact scenes, sug-

gesting that the scrambling process introduced some disrup-

tion to the neural representations. This suggests that patterns

of response are dependent on higher-level information about

the scene that is only available from the intact images. One

possibility is that this higher-level information reflects the

semantic or categorical properties conveyed by the image. For

example, our noise ceiling analysis suggests that while sig-

nificant pattern similarity is preserved, a substantial compo-

nent is disrupted, particularly by global scrambling. However,

an alternative possibility is that unexplained variance might

reflect image properties that are disrupted by the scrambling

process. An important feature of intact images is the strong

statistical dependencies between features, such as location-

specific combinations of orientation and spatial frequency.

Indeed, the behavioural sensitivity to the regularities that

occur in intact objects suggests that these properties are

critical for differentiating between different classes of images

(Loschky et al., 2007, 2010). It is possible that these properties

also contribute to the patterns of response in scene-selective

regions. When evaluating these possibilities, it is important

to recognize that high- and low-level contributions to the

observed representational structure are not mutually exclu-

sive. The extraction of any high-level features depends on the

availability of relevant low-level features preserved in the

scrambled stimuli.

We found that category responses in the OPA could be

discriminated for intact scenes and locally scrambled scenes,

but not globally scrambled scenes. However, in contrast to the

PPA the representational structure of the intact scenes was

maintained by the global scrambling. Although the OPA has

been causally implicated in the perception of scenes (Dilks

et al., 2013; Ganaden, Mullin, & Steeves, 2013), its precise

functional properties are less well established than other

scene regions. The greater similarity between intact and

globally scrambled images suggests that the OPA is sensitive

to global visual statistics, such as the texture of the image.

Interestingly, this implies a possible functional distinction

between PPA and OPA, with the PPA more clearly tuned to the

local visual features than the OPA. Recent studies have re-

ported a double dissociation in visual field biases between the

PPA and OPA (Silson, Groen, Kravitz, & Baker, 2016; Silson

et al., 2015), suggesting inputs to these regions may at least

partially function in parallel rather than in series, and which

may therefore support some degree of functional dissociation

between them.
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In contrast to the PPA and OPA, responses in RSC failed to

discriminate the scene categories in any of the conditions. The

representational similarity analyses showed that neither local

nor global scrambling maintained the representational

structure relative to the intact scenes. It has been proposed

that the RSC may play a role representing the scene as part of

the wider spatial environment (Epstein, 2008; Epstein et al.,

2007) playing a crucial role in spatial memory, navigation

and imagery e for example, translating between ego- and

allocentric spatial representations (Byrne, Becker, & Burgess,

2007; Vann, Aggleton, & Maguire, 2009). Such processes sug-

gest a more abstract form of representation, less directly tied

to image features.

We also examined the response patterns within a V1 con-

trol region (Wang et al., 2015). We would expect this region to

display sensitivity to the visual features of the scenes, but

would be less likely to be modulated by higher-level semantic

features of the scene categories. We observed significant

decoding of the scene categories under all of the different

scrambling conditions, consistent with the reliable differ-

ences in visual features between different scene categories.

We also observed a significant association between the pat-

terns in the intact and globally scrambled conditions,

consistent with the presence of the shared global visual fea-

tures between the intact and globally scrambled conditions.

In conclusion, our results demonstrate distinct responses

to different categories of scenes even when the perception of

scene category is severely impaired by phase scrambling.

These results should not be taken to imply that perception of

scene category is independent of the neural response in

scene-selective regions, but they do suggest that the topo-

graphic organization of regions such as the PPA and, to a

lesser extent, the OPA can be explained by selectivity for the

visual properties of the image.
Supplementary data

Supplementary data related to this article can be found at

http://dx.doi.org/10.1016/j.cortex.2017.04.011.
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