
NeuroImage 99 (2014) 402–410

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img
Patterns of response to visual scenes are linked to the low-level
properties of the image
David M. Watson, Tom Hartley, Timothy J. Andrews ⁎
Department of Psychology and York Neuroimaging Centre, University of York, York YO10 5DD, United Kingdom
⁎ Corresponding author.
E-mail address: timothy.andrews@york.ac.uk (T.J. And

http://dx.doi.org/10.1016/j.neuroimage.2014.05.045
1053-8119/© 2014 Elsevier Inc. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Accepted 15 May 2014
Available online 23 May 2014

Keywords:
fMRI
MVPA
PPA
Scenes
Scene-selective regions in the brain play an important role in the way that we navigate through our visual
environment. However, the principles that govern the organization of these regions are not fully understood.
For example, it is not clear whether patterns of response in scene-selective regions are linked to high-level
semantic category or to low-level spatial structure in scenes. To address this issue, we used multivariate pattern
analysis with fMRI to compare patterns of response to different categories of scenes. Although we found distinct
patterns of neural response to each category of scene, the magnitude of the within-category similarity varied
across different scenes. To determine whether this variation in the categorical response to scenes could reflect
variation in the low-level image properties, we measured the similarity of images from each category of scene.
Although we found that the low-level properties of images from each category were more similar to each
other than to other categories of scenes, we also found that the magnitude of the within-category similarity
varied across different scenes. Finally, we compared variation in the neural response to different categories of
scenes with corresponding variation in the low-level image properties. We found a strong positive correlation
between the similarity in the patterns of neural response to different scenes and the similarity in the image
properties. Together, these results suggest that categorical patterns of response to scenes are linked to the
low-level properties of the images.

© 2014 Elsevier Inc. All rights reserved.
Introduction

The ability to perceive and recognize different visual scenes is essen-
tial for spatial navigation in the world. Although real-world scenes can
be incredibly complex and heterogeneous, human observers are able
to reliably recognize and categorize images of scenes even when the
images are shown briefly (Greene and Oliva, 2009; Joubert et al., 2007;
Potter, 1975). These studies have been taken to suggest that the initial
perception of natural images is based on the global, visual properties –
the gist – of the scene (Greene and Oliva, 2009; Oliva and Torralba,
2001).

Neuroimaging studies have found a number of regions of the human
brain that respond selectively to visual scenes. Damage to these regions
often leads to impairments that are specific to scene perception and
spatial navigation (Aguirre and D'Esposito, 1999; Mendez and Cherrier,
2003). The parahippocampal place area (PPA) is a region of the posterior
parahippocampal gyrus that displays preferential activity to images of
scenes over and above images of objects and faces (Aguirre and
D'Esposito, 1997; Epstein and Kanwisher, 1998). Other place selective
regions include the retrosplenial complex (RSC) located immediately
superior to the PPA and the transverse occipital sulcus (TOS) or occipital
rews).
place area (OPA) on the lateral surface of the occipital lobe (Dilks et al.,
2013; Epstein, 2008).

The spatial layout of different categories of scenes can vary quite
considerably (Torralba and Oliva, 2003). Although neuroimaging
studies using univariate analyses have reported comparable levels of
response to scenes as diverse as natural landscapes, cityscapes and
indoor scenes in scene-selective regions (Aguirre and D'Esposito,
1997; Epstein and Kanwisher, 1998), more recent studies using multi-
variate analyses have found distinct patterns of response in these
regions to different categories of scene (Walther et al., 2009, 2011).
Interestingly, these patterns of neural response have also been shown
to correlate with patterns of behavioral response, but not with the
low-level image properties of the images (Walther et al., 2009). This
suggests that there is a dissociation between the perceptual categoriza-
tion of scenes and their underlying image properties. However, this
conclusion has been challenged by other studies that have suggested
that the patterns of response in scene-selective regions are better
explained by the spatial layout of the scene rather than by semantic
category (Kravitz et al., 2011; Park et al., 2011). Although these studies
are not explicit about how the image properties of the scene are linked
to the patterns of neural response, work in computer vision indicates
that semantically-distinct scene categories can be identified on the
basis of their characteristic low-level image statistics. For example, the
GIST descriptor can be used to accurately classify different scene
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categories and derive spatial properties such as openness (Torralba and
Oliva, 2003).

Our aim was to determine whether categorical patterns of brain
activity within scene-selective regions are linked to the low-level
properties of the images from each category of scene. To address this
issue, we measured the pattern of response to different categories of
scenes using fMRI. Next, we asked how similar the low-level properties
of images from each category were to each other. Finally, we asked
whether differences in the categorical response to different visual
scenesmight be due to variation in low-level image properties. Our pre-
diction was that, if low-level visual properties are linked to categorical
patterns of response in these regions, then scene categories with similar
image statistics should elicit correspondingly similar patterns of brain
activity.

Methods

Participants

Twenty participants took part in Experiment 1 (9 males, mean age:
24.5) and 20 participants took part in Experiment 2 (9 males, mean
age: 25.2). All participants were neurologically healthy, right-handed,
and had normal or corrected-to-normal vision.

Stimuli

All imageswere taken from the LabelMe scene database (http://cvcl.
mit.edu/database.htm); (Oliva and Torralba, 2001) and presented in
greyscale at a resolution of 256 × 256 pixels. All further image processing
was performed in MATLAB v7.10 (http://www.mathworks.co.uk/).
Fourier-scrambled images were created by randomizing the phase of
each 2-dimensional frequency in the original image while keeping the
power of the components constant. For each experiment, the luminance
Fig. 1. Examples of images from each experimental condition in (a) Experiment 1 and (b) Experi
shown for (c) Experiment 1 and (d) Experiment 2.
histogram of images across all conditions was equated using the SHINE
toolbox (Willenbockel et al., 2010).

Experimental design

In Experiment 1 and Experiment 2, participants viewed images from
5 stimulus conditions. Fig. 1 shows examples of images taken from the
stimulus conditions used in both experiments. The stimulus conditions
in Experiment 1 included: (1) cityscapes, (2) indoor scenes, (3) natural
landscapes, (4) mixed (interleaved images from conditions 1–3) and
(5) scrambled (Fourier scrambled versions of the mixed condition).
The stimulus conditions in Experiment 2 included: (1) coast, (2) forest,
(3)mountains, (4)mixed (interleaved images from conditions 1–3) and
(5) scrambled (Fourier scrambled versions of the mixed condition). In
each experiment, images from each condition were presented in a
block design with 9 images in each block. Each image was presented
for 850 ms followed by a 150 ms black screen. Each stimulus block was
separated by a 9 s period in which a fixation cross was superimposed
on a gray screen that was equal in mean luminance to the scene images.
Each condition was repeated 8 times in a counterbalanced block design,
giving a total of 40 blocks. To maintain attention throughout the scan
session, participants performed a one-back task in which one image
from each block was repeated.

Imaging parameters

All scanningwas conducted at the YorkNeuroimagingCentre (YNiC)
using a GE 3 Tesla HDx Excite MRI scanner. A Magnex head-dedicated
gradient insert coil was used in conjunction with a birdcage, radio-
frequency coil tuned to 127.7 MHz. Data were collected from 240
volumes each comprising 38 contigual axial slices via a gradient-
echo EPI sequence (TR = 3 s, TE = 32 ms, FOV = 28.8 × 28.8 cm,
matrix size = 128 × 128, voxel dimensions = 2.25 × 2.25 mm, slice
ment 2. Category average contour plots of Fourier power spectrawithin 4 × 4windows are
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thickness = 3 mm, flip angle = 90°). Visual stimuli were back-
projected onto a custom in-bore acrylic screen at a distance of
approximately 57 cm from the participant with images subtending
approximately 9.5° of visual angle.
fMRI analysis

Univariate analysis of the fMRI data was performed with FEAT v 5.98
(http://www.fmrib.ox.ac.uk/fsl). All analyseswere performed separately
for each experiment in the manner described below. In all scans the
initial 9 s of data was removed to reduce the effects of magnetic stimu-
lation. Motion correction (MCFLIRT, FSL) was applied followed by
temporal high-pass filtering (Gaussian-weighted least-squares straight
line fitting, σ = 50 s). Spatial smoothing (Gaussian) was applied at
6 mm (FWHM). Individual participant data were entered into a higher-
level group analysis using a mixed-effects design (FLAME, http://www.
fmrib.ox.ac.uk/fsl). Functional data were first registered to a high-
resolution T1-anatomical image and then onto the standard MNI brain
(ICBM152). A scene-selective region of interest was defined by the
contrast of mixed N scrambled. The resulting group statistical maps
were thresholded at Z N 2.3. The thresholded statistical maps were
then combined across experiments to generate a single scene-selective
region of interest (ROI) used for subsequent MVPA analyses across
both experiments (Suppl. Fig. 1). We also generated a more restrictive
ROI constrained to the scene-selective regions (parahippocampal
place area (PPA), retrosplenial cortex (RSC) and the transverse occipital
sulcus (TOS) or occipital place area (OPA)) that have been reported in
previous fMRI studies (Epstein and Kanwisher, 1998; Grill-Spector,
2003; Maguire, 2001). This ROI was defined as follows: firstly, group
mixed N scrambled statistical maps were averaged across the experi-
ments. Next, seed points were defined at the peak voxels within this
average statistical map for each region (PPA, RSC, TOS/OPA) in each
hemisphere. The peak voxels of the ROIs had similar coordinates to
those found in previous studies (Suppl. Table 1). For a given seed, a
flood fill algorithmwas used to identify a cluster of spatially contiguous
voxels around that seedwhich exceeded a given threshold. This thresh-
old was in turn iteratively adjusted till a cluster size of 500 voxels was
achieved. This process was then repeated for each seed. Clusters
for each region were combined across hemispheres to yield 3 ROIs
each comprising 1000 voxels. Additionally, a single ROI combining all
clusters across both hemispheres was defined. MNI coordinates of the
seeds and corresponding thresholds are given in Table 1. All further
analyses were restricted to these regions of interest.

Parameter estimates from the univariate analysis were normalized
by subtracting the response to the mixed condition. Pattern analyses
were then performed using the PyMVPA toolbox http://www.pymvpa.
org/; (Hanke et al., 2009). Fig. 2 illustrates the method for determining
the reliability of these neural patterns within and across subjects. To
determine the reliability of the data within individual participants, the
parameter estimates for each scene condition were correlated across
odd (1, 3, 5, 7) and even (2, 4, 6, 8) blocks across all voxels in the
scene-selective region (Haxby et al., 2001). The individual participant
(IP) analysis was complemented by a group analysis, to determine the
Table 1
MNI mm coordinates and thresholds of standard place-selective (PPA, RSC, TOS/OPA)
clusters.

Region Hemisphere x y Z Threshold (Z)

PPA L −26 −48 −14 4.23
R 30 −42 −16 4.24

RSC L −16 −60 4 3.58
R 18 −56 6 3.77

TOS/OPA L −42 −84 20 3.52
R 32 −88 12 3.28
reliability of the pattern across participants. We used a leave-one-
participant-out (LOPO) method (Poldrack et al., 2009; Shinkareva
et al., 2008) in which the parameter estimates were determined using
a group analysis of all participants except one. This generated parameter
estimates for each scene condition in each voxel across the scene-
selective region. This LOPO process was repeated such that every
participant was left out of a group analysis once. For each LOPO itera-
tion, the normalized patterns of response to each stimulus condition
were correlated between the group and the participant that was left-
out. This allowed us to determine whether there are reliable patterns
of response that are consistent across individual participants. A Fisher's
z-transformation was applied to the within-category and between-
category correlations prior to further statistical analyses. For each
category, the within-category and the average of the between-category
correlations were calculated. These were entered into 3 × 2 repeated
ANOVAs with the scene category (Experiment 1: city, indoor, natural;
Experiment 2: coast, forest, mountain) and comparison (within,
between) as the main factors. If neural response patterns to a given
category can be distinguished from those to other categories, a
significant main effect of comparison showing greater within- than
between-category correlations would be expected. In order to obtain a
measure of the decoding accuracy of our MVPA analyses, parameter
estimates from the univariate analysis were also submitted to a k-
nearest neighbor (kNN) classifier (k = 1) using correlation as the
distance measure.

In addition to the ROI analyses listed above we also performed
whole-brain searchlight analyses (Kriegeskorte et al., 2006). A spherical
ROI of radius 6 mm was defined, and MVPA performed as described
above. The average within- minus between-category correlation
difference across categories was then assigned to the central voxel of
the sphere, and the process repeated iterating the sphere over the
whole-brain volume. A higher-level analysis using a mixed-effects
design (FLAME) was used to determine whether the value at each voxel
differed significantly from zero across individuals/LOPO-iterations.
The resulting group statistical maps were thresholded at Z N 2.3 with
a cluster-correction of p b .05 applied.

Image properties

Finally, we asked whether the patterns of neural response in
Experiment 1 and 2 could be explained by the image statistics of the
visual scenes. The image statistics of the scene images were computed
using the GIST descriptor (http://people.csail.mit.edu/torralba/code/
spatialenvelope/; Oliva and Torralba, 2001). First, each image is passed
through a series of Gabor filters across 8 orientation and 4 spatial
frequencies. This generates 32 filtered images. Next, each image is
divided into a 4 × 4 grid giving 16 windows. The mean intensity is
measured in each window. This generates a vector of 512 (32 × 16)
values – the GIST descriptor – which represents the image in terms of
the spatial frequencies and orientations present at different positions
across the image. A schematic illustration of the calculation is given in
Fig. 3. In order to determine the similarity between individual scenes
and the average of each scene category, GIST descriptorswere correlated
between each image and the average descriptor derived for each scene
condition. This cross-validation procedure was used to determine how
similar each image was to the average of its own category and to the
other categories. Similarity with the neural response was determined
by correlating the average GIST correlations matrix with the average
MVPA correlations matrix. In order to assess the significance of this
relationship, a simple regression analysis was performed using the
averageGIST correlationsmatrix as the regressor, and the corresponding
MVPA correlation matrices concatenated across individuals/LOPO
iterations as the outcomes. If the GIST correlations matrix is able to
explain a significant amount of the variance in the corresponding
MVPA correlation matrices, the model regression coefficient (β) can
be expected to be significantly greater than zero. All regressor and
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http://www.fmrib.ox.ac.uk/fsl
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Fig. 2. Schematic diagram of pattern analysis procedures. (a) Individual participant analyses correlated neural patterns across odd and even runs of the stimulus presentation. (b) Group
analyses compared individual patterns of response with the group pattern of response derived from all participants except that individual (LOPO). In both analyses this process is then
repeated across all participants/LOPO iterations for all conditions.

Fig. 3. Schematic illustration of the calculation of a GISTdescriptor for an example image. A series of Gaborfilters across 8 orientations and 4 spatial frequencies is applied to the image. Each
of the resulting 32 filtered images is thenwindowed by a 4 × 4 grid and the pixel intensities within each grid cell averaged together. Each grid cell thus represents the degree towhich that
window of the image is preserved by a Gabor filter at a given orientation and spatial frequency. The final GIST descriptor is a vector of 512 values yielded by concatenating these 16 cells
across the 32 filtered images.
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outcome variables were Z-scored prior to the regression analysis, such
that all regression coefficients are given in standardized units. The
image statistics of the scene images were also computed using
pixelwise correlation of luminance values (cf. Walther et al., 2009).
This provided us with a more basic image-based measure with which
to compare with GIST descriptor.

Results

Experiment 1

In the first experiment, we measured the patterns of response to
different categories of visual scenes: city, indoor and natural. Fig. 4
shows the normalized group response to city, indoor, and natural
categories across the scene-selective region. Responses above the
mean are shown in red and responses below the mean are shown in
blue. Each category of scene had a distinct pattern of response, which
was similar in appearance across the two cerebral hemispheres. Similar
patterns were evident in individual participants (Suppl. Fig. 2).

Correlation based MVPA methods (Haxby et al., 2001) were used to
measure the reliability of the neural response to these different catego-
ries of scene within individual participants (IP). Fig. 5A shows a matrix
of the correlations for the within- and between-category correlations.
A 3 × 2 repeated measures ANOVA with Scene (city, indoor, natural)
and Comparison (within, between) as themain factors showed a signif-
icant main effect of Comparison (F(1,19) = 11.6, p = .003), showing
that within-category correlations were higher than between-category
correlations. However, there was no significant interaction between
Scene * Comparison (F(2,38) = 1.7, p = .196). A kNN classifier
revealed that the decoding accuracy across categories was 46.7%, p =
.008 (chance = 33%). A similar classification was evident when the
ROIwas restricted to all the standard scene-selective regions (combined
PPA + RSC + TOS: 58.3%, p b .001). Suppl. Fig. 3A shows the corre-
sponding correlations matrix for this region. Splitting this ROI into its
constituent regions revealed accuracies significantly above chance in
Fig. 4.Experiment 1: Grouppatterns of response to city, indoor, andnatural conditions on latera
regions defined by the response of mixed scenes N scrambled scenes. Red and blue colors indi
PPA and TOS, but not RSC (PPA: 64.1%, p b .001; RSC: 42.5%, p = .09;
TOS: 53.3%, p = .006).

We then determined the extent to which these patterns were
consistent across participants using the LOPO method (see Methods).
Fig. 5B shows the correlation matrix using the LOPO method. There
was a significant main effect of Comparison (F(1,19) = 90.8, p b .001),
which was due to higher within-category compared to between-
category correlations. There was also a significant Scene * Comparison
interaction (F(2,38) = 3.9, p= .028). This interaction was due to larger
differences in within- versus between-category comparisons for the
indoor and natural conditions compared to the city condition (city:
p = .004, indoor: p b .001, natural: p b .001). A kNN classifier revealed
a decoding accuracy across categories of 72.5%, p b .001 (chance =
33%). A similar classification was evident when the ROI was restricted
to the standard scene-selective regions (combined PPA + RSC + TOS:
59.2%, p b .001); Suppl. Fig. 3B shows the corresponding correlations
matrix for this region. Splitting this ROI into its constituent regions
revealed a similar pattern of results (PPA: 59.1%, p b .001; RSC: 50.8%,
p = .003; TOS: 54.1%, p = .002).

To address the spatial scale of the patterns we repeated the LOPO
and IP analyses with no spatial smoothing. Consistent with a coarser
scale representation, we found a similar pattern of results (Suppl.
Fig. 4). We then repeated the LOPO and IP analyses using a whole-
brain searchlight paradigm. Consistent with the previous analysis, we
found that the majority of significant spheres clustered around the
scene selective cortices defined by the ROI (Suppl. Fig. 5).

Next, we used the GIST descriptor to measure the statistics of
each image used in the fMRI experiment. Fig. 5C shows the within-
and between-category correlations in image properties for different
categories of visual scenes. We found higher within-category than
between-category correlations (city: p b .001, indoor: p b .001, natural:
p b .001). To determine whether there was a relationship between
image properties of the stimuli and patterns of brain activity, the GIST
correlations for each combination of scene were then correlated with
the corresponding neural correlations for both the IP and LOPO.
l (leftmost panels) andventro-medial surfaces (rightmost panels). Patterns are restricted to
cate normalized values above and below the mean respectively.



Fig. 5. Experiment 1: Relationship between fMRI response and low-level image properties. Within- and between-category correlations for city, indoor, and natural conditions as
determined by the individual participant (a) and LOPO (b) MVPA analyses, and by the GIST image descriptor (c). Scatter-plots (d and e) showing strong positive correlations of the
correlation matrices in (a) and (b) with (c) respectively.

407D.M. Watson et al. / NeuroImage 99 (2014) 402–410
Figs. 5D–E show the relationship between the similarity in image prop-
erties and the similarity in the pattern of response across different
scenes. Strong positive correlations were evident for both the IP (r =
.86) and LOPO analyses (r = .91). The significance of this relationship
across participants or LOPO iterations was assessed using a simple
regression analysis. The image properties significantly predicted the
neural response in the IP (β = .28, p = .001) and LOPO analyses
(β = .57, p b .001). A similar pattern of results was evident when the
ROI was restricted to the standard scene-selective regions (combined
PPA + RSC + TOS) for both the IP (r = .78, β = .32, p b .001) and
LOPO analyses (r = .58, β = .33, p b .001); Suppl. Figs. 3C–D. Splitting
this ROI into its constituent regions produced a similar pattern of results
for the IP analyses (PPA: r= .76, β= .46, p b .001; RSC: r= .75, β= .21,
p= .022; TOS: r= .73, β= .21, p= .024) and LOPO analyses (PPA: r=
.64, β= .42, p b .001; RSC: r= .55, β= .17, p= .065; TOS: r= .78, β=
.26, p = .004).

We next repeated our analysis using pixel correlations as a measure
of image properties. Pixel correlations did not significantly predict
the neural response for the IP analysis (r = .12, β = .04, p = .653).
However, a significant relationship was found for the LOPO analysis
(r = .55, β = .34, p b .001). The pixel correlations were also poor pre-
dictors of the neural responses in the standard scene-selective regions
for the IP analyses (combined PPA + RSC + TOS: r = .27, β = .11,
p = .221; PPA: r = .01, β = .003, p = .973; RSC: r = .36, β = .10,
p = .281; TOS: r = .31, β = .09, p = .339) and LOPO analyses (com-
bined PPA + RSC + TOS: r = .17, β = .10, p = .298; PPA: r = .34,
β = .12, p = .120; RSC: r = .24, β = .22, p = .017; TOS: r = .25, β =
.08, p = .361). Thus, the pixel correlations measure was outperformed
by the GIST descriptor.

Experiment 2

In the second experiment, we compared the patterns of responses to
different types of natural landscapes: coasts, forests and mountains.
Fig. 6 shows the normalized group responses to coast, forest, andmoun-
tain sceneswithin scene-selective regions. Again, each category of scene
had a distinct pattern of response, which was similar in appearance
across the two cerebral hemispheres. Similar patterns of response can
be found in the individual participants (Suppl. Fig. 6). The reliability of
these patterns of response was measured using the LOPO and IP
methods. A 3 × 2 repeated measures ANOVA with Scene (coast, forest,
mountain) and Comparison (within, between) as the main factors was
used to test statistical significance.

First, we performed the pattern analyses for individual participants
(IP). The correlation between different scene categories is shown in
Fig. 7A. There was a significant main effect of Comparison (F(1,19) =
33.3, p b .001), revealing significantly higher within-category compared
to between-category correlations. However, there was not a significant
Scene * Comparison interaction (F(2,38) = 2.7, p = .079). A kNN
classifier obtained mean decoding accuracy across all scene categories
of 53.3%, p= .001 (chance = 33%). A similar classification was evident
when the ROI was restricted to the standard scene-selective regions
(combined PPA + RSC + TOS: 55.8%, p b .001). Suppl. Fig. 7A shows
the corresponding correlations matrix for this region. Splitting this ROI
into its constituent regions revealed accuracies significantly above
chance in PPA and TOS, but not RSC (PPA: 56.7%, p b .001; RSC: 37.5%,
p = .362; TOS: 52.5%, p = .002).

To determine whether the pattern of response was consistent
across participants, we repeated the analysis using the LOPO method
(Fig. 7B). There was a significant main effect of Comparison (F(1,19) =
114.4, p b .001) and a significant Scene * Comparison interaction
(F(2,38) = 18.18, p b .001). This interaction was due to larger within-
versus between-category comparisons for the coast and mountain
conditions compared to the forest condition (coast: p b .001, forest:
p = .009,mountain:p b .001). A kNN classifier obtainedmean decoding
accuracy across all scene categories of 67.5%, p b .001 (chance= 33%). A
similar classification was evident when the ROI was restricted to
the standard scene-selective regions (combined PPA + RSC + TOS:



Fig. 6. Experiment 2: Group patterns of response to coast, forest, and mountain conditions on lateral (leftmost panels) and ventro-medial surfaces (rightmost panels). Patterns are
restricted to regions defined by the response of mixed scenes N scrambled scenes. Red and blue colors indicate normalized values above and below the mean respectively.
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50.8%, p b .001). Suppl. Fig. 7B shows the corresponding correlations
matrix for this region. Splitting this ROI into its constituent regions
revealed a similar pattern of results (PPA: 49.2%, p = .002; RSC: 50.0%,
p = .002; TOS: 49.2%, p = .002).
Fig. 7. Experiment 2: Relationship between fMRI response and low-level image properties. W
determined by the individual participant (a) and LOPO (b) MVPA analyses, and by the GIST
correlation matrices in (a) and (b) with (c) respectively.
To address the spatial scale of the patterns we repeated the LOPO
and IP analyses with no spatial smoothing. Consistent with a coarser
scale representation, we found a similar pattern of results (Suppl.
Fig. 8). To determine the extent to which our findings generalize to
ithin- and between-category correlations for coast, forest, and mountain conditions as
image descriptor (c). Scatter-plots (d and e) showing strong positive correlations of the
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regions outside the ROI, the LOPO and IP analyseswere repeated using a
whole-brain searchlight paradigm. Significant spheres fell within the
scene-selective ROI, particularly along the lateral regions, that included
the TOS, and alongmedial regions that included the PPA and RSC. Suppl.
Fig. 9 shows the resulting searchlight group-average statistical maps.

Next, we used the GIST description to measure the statistics of
each image used in the fMRI experiment. Fig. 7C shows the within-
and between-category correlations in image properties for different
categories of visual scenes. We found higher within-category than
between-category correlations (coast: p b .001, forest: p b .001, moun-
tain: p b .001). To determinewhether there was a relationship between
image properties of the stimuli and patterns of brain activity, the GIST
correlations for each combination of scene were then correlated with
the correspondingneural correlations for both the IP and LOPOanalyses.
Figs. 7D and E show the relationship between the similarity in image
properties and the similarity in the pattern of response across different
scenes for the IP and LOPO analyses. Positive correlations were evident
for both the IP (r = .77) and LOPO analyses (r = .53). The significance
of this relationship across participants/LOPO iterations was assessed
using a simple regression analysis. The image properties significantly
predicted the neural response in the IP (β = .27, p = .003) and LOPO
analyses (β = .36, p b .001). A similar pattern of results was evident
when the ROI was restricted to the standard scene-selective regions
(combined PPA + RSC + TOS) for both the IP (r = .85, β = .27, p =
.003) and LOPO analyses (r = .84, β = .37, p b .001); Suppl. Figs. 7C
and D. When the scene-selective ROI was split into its constituent
regions, for the IP analysis the relationship between image properties
and fMRI response was significant for the PPA and TOS, but not for the
RSC (PPA: r = .70, β = .26, p = .004; RSC: r = .49, β = .08, p = .394;
TOS: r= .91, β= .32, p b .001). The LOPO analysis showed a significant
relationship for the TOS and RSC, but not in the PPA (PPA: r= .32, β=
.13, p = .172; RSC: r = .56, β = .23, p = .012; TOS: r = .90, β = .24,
p = .008).

We next repeated our analysis using pixel correlations as a measure
of image properties. The pixel correlations significantly predicted the
neural response for the IP (r = .70, β = .24, p = .008) but not the
LOPOanalyses (r=.23,β=.16, p= .084).When theROIwas restricted
to the standard scene-selective regions, a more variable pattern of
results was observed: IP analyses (combined PPA + RSC + TOS: r =
.72, β = .22, p = .014; PPA: r = .59, β = .22, p = .014; RSC: r = .43,
β= .07, p= .450; TOS: r= .76, β= .27, p= .003) and LOPO analyses
(combined PPA+ RSC+ TOS: r= .69, β= .31, p= .001; PPA: r= .09,
β =.04, p= .672; RSC: r=.38,β=.16, p= .088; TOS: r=.83,β=.22,
p = .014). Although pixel correlations accounted for significant
variance in the similarity of neural responses in some of the ROIs
and analyses, performance was typically inferior to that of the GIST
descriptor.

Discussion

The aim of this study was to understand the principles that underlie
the organization of scene-selective regions of the human brain. We
found that the patterns of response to images from the same scene
categoryweremore similar than the patterns of response fromdifferent
categories of scene. However, there were differences in the magnitude
of both the within- and between-category correlations. Next, we inves-
tigated the extent to which this variation in the categorical pattern of
response to different scenes could be explained by systematic differ-
ences in image properties. We found a strong, linear relationship
between the pattern of neural response in scene-selective regions and
the image statistics of the scenes.

Our results show that the within-category correlations in fMRI
response to sceneswere higher than the between-category correlations.
These results are consistent with previous neuroimaging studies that
have used pattern classification techniques to show distinct patterns
of response to different categories of scene (Walther et al., 2009,
2011). However, our results also show that there was marked variation
in the capacity of MVPA to distinguish different categories of real-world
scenes. In Experiment 1, although we found distinct patterns of neural
response to different categories of scenes, the pattern of response to
natural landscapes was more distinct than to cityscapes or indoor
scenes. In Experiment 2, we asked whether the patterns of response in
scene-selective regions could discriminate between more subtle differ-
ences in scene type using different types of natural landscapes (coasts,
forests, mountains). The results again showed that, although within-
category responses were higher than between-category responses, but
that there were also differences in the patterns of response to different
types of natural scenes. For example, coastal scenes could be accurately
distinguished from other scene categories on the basis of the pattern of
brain activity they evoked, but the pattern of response to forests was
often confused with the responses to the other scenes.

The variability in the ability of the pattern of response to discrimi-
nate different scenes suggests that factors other than categorymember-
ship may contribute to the organization of scene-selective regions.
Other studies have found that classification of fMRI responses is
impaired when poor exemplars of a scene are used (Torralbo et al.,
2013). This suggests that the image properties may also be important.
This conclusion is supported by other MVPA studies that have shown
that variation in the pattern of response in scene-selective regions is
not reflected by categorical differences in scenes, but rather by the
spatial layout of the scene (Kravitz et al., 2011; Park et al., 2011). How-
ever, these studies do not provide a statistical account of how the spatial
layout of the scene is linked to the patterns of response.

To directly address this issue, we determined the low-level proper-
ties of the images used in our experiment using the GIST descriptor
(Oliva and Torralba, 2001). This determines the orientation energy at
different spatial frequencies and spatial positions in the image and
generates a list of values for each image that could be used to determine
the similarity of images within and across different categories of scenes.
The results showed that the properties of individual images of a scene
were more similar to the average of images from the same category
than they were to average image of different categories. However, like
the neural patterns of response, there were also differences in the
consistency or homogeneity of the image properties within different
categories of scenes.

The main finding from this study was that the similarity of patterns
of response to different categories of scenes showed a strong positive
correlation with the similarity of their low-level image statistics. This
relationship between the neural response and image properties was
found in both experiments with two different methods of pattern anal-
ysis (IP, LOPO). The correlation is based not only on the variationwithin
each category of scene, but also reflects systematic variation in the
between-category confusions. Our findings contrast with those of
Walther et al. (2009) who found no significant correlation between
neural responses and image similarity. However, their analysis involved
a differentmeasure of image similarity based on correlating pixel values
across images. We likewise found, consistent with these previous
results, that pixel correlations did not reliably predict the similarity of
neural responses. The difference in results may reflect the fact that the
GIST descriptor used in our main analysis more accurately reflects
statistics encoded by the human visual system and was expressly
devised to capture the critical spatial variables used to distinguish
scene categories (Oliva and Torralba, 2001).

Whether we consider the ventral stream as a whole or whether we
restrict our analysis to the standard scene-selective regions, the current
findings suggest that the pattern of response to different categories of
scenes is linked to the low-level properties of the image. This conclusion
is consistent with other work showing that low-level image biases may
be encoded in scene-selective regions. For example, spatial frequency
(Rajimehr et al., 2011) and orientation (Nasr and Tootell, 2012) biases,
along with visual field representations (Arcaro et al., 2009) have been
reported in these regions.
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Our results show that the neural patterns were not specific to
individual participants; rather they reflect a more consistent functional
organization. Using a modified cross-validation analysis (Haxby et al.,
2001) we compared the pattern of response in one participant with
the pattern from a group analysis in which that participant was left
out. This leave-one-participant-out (LOPO) approach indicates that
patterns of response to different visual scene categories are consistent
across individuals (see also Haxby et al., 2011; Poldrack et al., 2009;
Shinkareva et al., 2008). We found that the LOPO method often
outperformed equivalent individual participant (IP) analyses. These
observations are significant in that they suggest that our findings reflect
the operation of consistent, large-scale organizing principles, rather
than an arbitrarily distributed representation in each individual.

In conclusion, our results showed that the pattern of response in
scene-selective regions of the brain can beused to discriminate different
categories of scene. However, there was systematic variation in the
within- and between-category similarity of neural responses across
different scenes. We found that low-level image properties could
explain these variations in response to visual scenes in scene-selective
regions of the human brain.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2014.05.045.
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