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Neuroimaging studies have revealed topographically organised patterns of response to different objects in the
ventral visual pathway. These patterns are thought to be based on the form of the object. However, it is not
clear what dimensions of object form are important. Here, we determined the extent to which spatial properties
(energy across the image) could explain patterns of response in these regions.We compared patterns of fMRI re-
sponse to images from different object categories presented at different retinal sizes. Although distinct neural
patternswere evident to different object categories, changing the size (and thus the spatial properties) of the im-
ages had a significant effect on these patterns. Next, we used a computational approach to determine whether
morefine-grained differences in the spatial properties can explain the patterns of neural response to different ob-
jects. We found that the spatial properties of the image were able to predict patterns of neural response, even
when categorical factors were removed from the analysis. We also found that the effect of spatial properties
on the patterns of response varies across the ventral visual pathway. These results show how spatial properties
can be an important organising principle in the topography of the ventral visual pathway.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Although a large number of studies have investigated the functional
properties of high-level regions in the ventral visual pathway, an over-
arching framework for how information is represented topographically
in this region is not fully resolved (Opde Beeck et al., 2008; Grill-Spector
and Weiner, 2014). Neuroimaging studies using univariate analyses
have shown that regions of the ventral visual pathway are selective
for different categories of objects (Kanwisher, 2010). The location of
these regions is broadly consistent across individuals, suggesting that
common organising principles underpin the topography of this region
(Malach et al., 1995; Kanwisher et al., 1997; Epstein and Kanwisher,
1998; Cohen et al., 2000; Downing et al., 2001). The importance of
this topography is evident in multivariate studies that have shown
that the pattern of response across the entire ventral stream can distin-
guish a greater range of object categories than shown in previous uni-
variate studies (Haxby et al., 2001; Spiridon and Kanwisher, 2002;
Kriegeskorte et al., 2008b). The potential importance of the pattern of
response is demonstrated by the fact that the ability to discriminate par-
ticular object categories is still evident when the most category-
selective regions are removed from the analysis (Haxby et al., 2001).

The distributed nature of the fMRI response to different categories of
objects within the ventral visual pathway has been interpreted as
rews).
showing a topographicmap of object forms; a hypothesis known as ‘ob-
ject form topography’ (Haxby et al., 2001). However, it is not clearwhat
dimensions are important for this object form topography. A variety of
evidence has suggested that patterns of response in the ventral visual
pathway are linked to the categorical or semantic information that the
images convey (Kriegeskorte et al., 2008b; Naselaris et al., 2009;
Connolly et al., 2012). Evidence for other organising principles can be
found in the large-scale patterns of response to animacy (Chao et al.,
1999; Kriegeskorte et al., 2008b; Clarke and Tyler, 2014) or to the
real-world size of objects (Konkle and Oliva, 2012; Konkle and
Caramazza, 2013). However, it remains unclear how these higher level
categorical or semantic properties in the ventral visual pathway might
arise from the image-based representations found in early visual re-
gions (Op de Beeck et al., 2008).

In recent studies, we have asked to what extent image-based repre-
sentations might underpin category-selective patterns of response in
the ventral visual pathway (Rice et al., 2014; Watson et al., 2014). We
found that similarities in the patterns of fMRI response between differ-
ent categories of objects could be predicted by corresponding similari-
ties in their low-level image properties. However, more needs to be
known about which image properties are important. Previous studies
have suggested that ventral temporal cortex may be sensitive to the
spatial properties of the visual scene (Levy et al., 2001; Malach et al.,
2002; Golomb and Kanwisher, 2012; Cichy et al., 2013; Troiani et al.,
2014), but it has not been clear whether this reflects a modification of
the underlying categorical organisation based on theway natural object
categories are viewed or whether spatial properties themselves
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represent a fundamental organising principle in the ventral visual path-
way (Kanwisher, 2001).

The aim of this study was to systematically investigate the impor-
tance of spatial properties to the pattern of response across the ventral
visual pathway. To address this question, we determined the effect of
changes in the actual size of the image on thepatterns of response todif-
ferent types of object using multi-voxel pattern analysis (MVPA). The
image sizemanipulation is known to have a negligible effect on the per-
ception of objects but will clearly have a profound effect on the spatial
energy across the image. If the pattern of response is invariant to chang-
es in image size then we would expect similar patterns of response to
the same object category presented at different image sizes. If, on the
other hand, the patterns of response are sensitive to changes in image
size, we would expect significant differences in the pattern of response
to the same object presented at different image sizes. Next, we used a
computational approach to more directly measure energy across the
image. Our aim was to determine whether more subtle differences in
spatial properties beyond those carried by the large changes conveyed
by size could explain patterns of response in the ventral visual pathway.
Methods

Participants

20 participants (8males; median age 26; age range 19–36) took part
in the experiment. All participants were neurologically healthy, right-
handed, and had normal or corrected-to-normal vision.Written consent
was obtained for all participants and the study was approved by the
York Neuroimaging Centre Ethics Committee.
Stimuli

Visual stimuli were back-projected onto a custom in-bore acrylic
screen at a distance of approximately 57 cm from the participant with
all images subtending approximately 10.7° of visual angle. Objects
depicted within the images subtended an average width of 6.94°
(SD = 2.40°) and height of 7.38° (SD = 2.12°) at the large size, and an
average width of 3.50° (SD = 1.20°) and height of 3.72° (SD = 1.06°)
at the small size. On average large and small objects occupied 27.23%
(SD = 9.92%) and 6.99% (SD = 2.47%) of pixels within the image re-
spectively. Images of bottles, chairs, faces, and houses were presented
on a mid-grey background, with 48 images per category. Face images
were taken from the Radboud Face Database (Langner et al., 2010). Im-
ages from the other categories came from a variety of internet sources.
Small images were created by down sampling the original images to
50% of their width and height and then placing them on a mid-grey
background of the same dimensions as the original images. Fig. 1
shows examples of the images used in the study.
Experimental design

The experiment comprised a single MRI scan run. During the scan,
participants viewed images from 8 stimulus conditions comprising 4
categories (bottle, chair, face, house) across 2 sizes (large and small).
Images from each condition were presented in a blocked fMRI design
with 9 images per block (8 unique and 1 repeated). Each imagewas pre-
sented for 750ms followed by a 250msmid-grey screen. Each stimulus
block was separated by a 9 s period in which a fixation screen with a
mid-grey background was presented. Each condition was repeated 6
times in a counterbalanced block design, giving a total of 48 blocks. To
maintain attention throughout the scan session the participants per-
formed a one-back task in which they were required to detect the re-
peated presentation of one image in each block, responding with a
button press.
Imaging parameters

All scanningwas conducted at the YorkNeuroimagingCentre (YNiC)
using a GE 3 Tesla HDx Excite MRI scanner. A Magnex head-dedicated
gradient insert coil was used in conjunction with a birdcage, radiofre-
quency coil tuned to 127.7 MHz. Data were collected from 38 contigual
axial slices in an interleaved order via a gradient-echo EPI sequence
(TR = 3 s, TE = 32.5 ms, FOV = 288 × 288mm, matrix size =
128 × 128, voxel dimensions = 2.25 × 2.25 mm, slice thickness =
3 mm with no inter-slice gap, flip angle = 90°, pixel bandwidth =
39.06 kHz, phase-encoding direction = anterior–posterior).
fMRI analysis

Univariate analyses of the fMRI data were performed with FEAT
v5.98 (http://www.fmrib.ox.ac.uk/fsl). In all scans the initial 9 s of
data were removed to reduce the effects of magnetic stimulation. Mo-
tion correction (MCFLIRT, FSL) was applied followed by temporal
high-pass filtering (Gaussian-weighted least-squares straight line
fitting, sigma = 18 s). Spatial smoothing (Gaussian) was applied at
6 mm FWHM. Parameter estimates were generated for each condition
by regressing the hemodynamic response of each voxel against a box-
car regressor convolvedwith a single-gammaHRF. Next, individual par-
ticipant data were entered into higher-level group analyses using a
mixed-effects design (FLAME, FSL). Functional datawere first registered
to a high-resolution T1-anatomical image and then onto the standard
MNI brain (ICBM152).

A series of anatomical regions of interest (ROIs) from the Harvard–
Oxford cortical atlas included in FSL (Smith et al., 2004) were combined
to form a mask that corresponded with a recent definition of ventral
temporal cortex (Grill-Spector and Weiner, 2014). Specifically, these
masks were: inferior temporal gyrus (temporo-occipital portion), tem-
poral–occipital fusiform cortex, occipital fusiform gyrus, and lingual
gyrus. The overall ventral temporal mask was defined by a concatena-
tion of the individual anatomical masks. The locations of these masks
are shown in Fig. 2. Functional data were then transformed to the
MNI152 standard space and restricted to these anatomical ROIs for all
further statistical analyses.

Next, we measured patterns of response to the different stimulus
conditions. Parameter estimates were generated for each condition in
the experiment scans. The reliability of response patterns across partic-
ipants was tested using a leave-one-participant-out (LOPO) cross-
validation paradigm (Shinkareva et al., 2008; Poldrack et al., 2009;
Rice et al., 2014; Watson et al., 2014) in which parameter estimates
were determined using a group analysis of all participants except one.
This generated parameter estimates for each condition in each voxel.
This LOPO process was repeated such that every participant was left
out of a group analysis once. The LOPO procedure thus yields 2 patterns
(one group, one individual) per condition per subject. These data were
then submitted to correlation-based pattern analyses (developed from
Haxby et al., 2001, 2014) implemented using the PyMVPA toolbox
(http://www.pymvpa.org/; Hanke et al., 2009). Parameter estimates
were normalised by subtracting the mean response per voxel across
all experimental conditions (Fig. 4a). For each iteration of the LOPO
cross-validation the normalised patterns of response to each stimulus
condition were correlated between the group and the left-out partici-
pant. Importantly, this allows us to not only test the relative similarities
within and between the conditions, but also whether these patterns are
consistent across individuals. Fisher's Z-transformation was then ap-
plied to the correlations prior to further statistical analyses. To test
whether there may also be patterns of response that are idiosyncratic
within each participant we also repeated our analyses at an individual
level using an odd/even partition of the stimulus blocks. These analyses
produced a pattern of results whichwas highly consistent with those of
the LOPO analyses (Supplementary Fig. 1).We provided a further test of
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Fig. 1. Examples of images from each condition in the experiment.
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this hypothesis using intra-class correlations; results were again highly
consistent with the LOPO analyses (Supplementary Fig. 2).

A representational similarity analysis (RSA; Kriegeskorte et al.,
2008a) utilising multiple regression was used to assess the contribu-
tions of size and category to the neural response patterns. For each fac-
tor (size and form), a binary regressor was generated representing a
model correlation matrix in which ones were placed on those elements
where the relevant factor was shared and zeroes on all other elements.
The regressors therefore represent the extreme cases where the pat-
terns of response are entirely predicted by either size or by category;
these regressors are illustrated in Fig. 5a–b. For each model, elements
within the matrix were extracted and flattened to a vector. These
vectors were then repeated and tiled to match the number of iterations
of the LOPO procedure, and entered into the model as regressors. For
each iteration of the LOPO procedure elements of the corresponding
MVPA correlations matrices were extracted and flattened to a vector.
These vectors were then concatenated across LOPO iterations and en-
tered into the model as the outcome variable. This analysis yielded a
Fig. 2. Harvard–Oxford anatomical masks used for pattern analyses: inferior temporal
gyrus (temporo-occipital portion), temporo-occipital–fusiform cortex, occipital–fusiform
gyrus and lingual gyrus. The ventro-temporal region was defined by the concatenation
of these masks.
beta value for each regressor which would be expected to differ signifi-
cantly from zero if that regressor was able to explain a significant
amount of the variance in the MVPA correlations. A t-contrast was
used to assess the significance of the differences between the betas.
All regressors and outcomes were Z-scored such that all beta values
are given in standardised units. For analysis of the ventro-temporal
sub-regions, a Bonferroni correction for multiple comparisons was ap-
plied across the number of regions.

Image properties analysis

Visual properties of the images were assessed using modified ver-
sions of the GIST descriptor (Oliva and Torralba, 2001). To generate a
GIST descriptor, each image was passed through a series of Gabor filters
spanning 8 orientations and 4 spatial frequencies, generating 32 filtered
images for each input image. Next, each filtered image was divided into
an 8 × 8 grid and pixel intensities were averaged within each grid cell.
We then constructed two variants of the GIST descriptor that measured
the spatial and non-spatial properties of each image separately (Fig. 3).
First, we constructed a spatial GIST descriptor that remained sensitive to
the spatial but not the spectral properties of the image. For each grid cell
independently we averaged across the filtered images, yielding a single
8 × 8 grid whichwas then flattened to a vector of 64 numbers. This vec-
tor therefore represents the spatial energy across the image; higher
values indicate a greater amount of spatial energy at a specific spatial lo-
cation within the image. Second, we constructed a spectral GIST de-
scriptor that remained sensitive to the spectral properties (spatial
frequency, orientation) but not the spatial properties of the image. For
each filtered image we further averaged across the grid cells, such that
each filtered image was reduced to a single value, and these values
then concatenated into a vector of 32 numbers representing the image's
spectral or non-spatial properties; higher values indicate a greater pres-
ence of a particular or spatial frequency and orientation within the
image.

In each case, the spatial and spectral GISTs were then correlated
across within-condition (e.g. small bottle–small bottle) and between-
condition (e.g. small bottle–large bottle or small bottle–large chair)
comparisons using a leave-one-image-out cross-validation procedure.



Fig. 3. Schematic illustration of the calculation of the modified GIST descriptors. A series of Gabor filters (8 orientations × 4 scales) were applied to the image, yielding 32 filtered images.
Each of these was then windowed by an 8 × 8 grid and the pixel intensities within each grid cell were averaged. The spatial GIST descriptor was constructed by averaging across filtered
images whilst retaining the 8 × 8 grid, and then reshaping the resulting grid to yield a vector of 64 values. The spectral GIST descriptor was constructed by further averaging across win-
dows for each filtered image separately, and then concatenating these to yield a vector of 32 values.
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An average correlation matrix for each GIST descriptor type (spatial,
spectral) was then produced by averaging across the iterations of the
cross-validation.

An RSA utilisingmultiple regression was used to assess the ability of
each GIST descriptor to predict the neural response patterns. The spatial
and spectral GIST correlation matrices were entered as regressors,
whilst the fMRI MVPA correlation matrices, concatenated across LOPO
iterations, were entered as the outcome variable. A t-contrast was
used to assess the significance of the differences between the betas.
All regressors and outcomes were Z-scored such that all beta values
are given in standardised units. For analysis of the ventro-temporal
sub-regions, a Bonferroni correction for multiple comparisons was ap-
plied across the number of regions.

Analyses of posterior–anterior and medial–lateral axes

Finally, we tested how the patterns of response varied across the
ventro-temporal region. First, the main ventro-temporal mask was
split along the posterior–anterior axis into 4 slices each 7 voxels thick
(Fig. 8a). In addition, the main ventro-temporal mask was first split
into 8 slices, each 8 voxels thick, spanning the left-to-right extent of
the volume, and then combined across hemispheres to yield 4 splits
covering the medial–lateral axis (Fig. 8b). The pattern analysis, object-
size/object-form regression, and spatial-GIST/spectral-GIST regression
procedures were then repeated for each slice separately.

Results

Patterns of neural response were measured for 4 different object cat-
egories (bottle, chair, face, house) presented at 2 different sizes (large,
small). Behavioural performance on the one-back task was near the ceil-
ing (mean accuracy = 97.40%, SEM= .41%), indicating that participants
maintained attention throughout the scan. Fig. 4a shows the normalised
group responses to each condition across the ventro-temporal ROI. Re-
sponses above the mean are shown in red, and responses below the
mean are shown in blue. Both size and category manipulations can be
seen to modulate the patterns of response. For illustrative purposes, we
also normalised the response patterns within each size independently
(Fig. 4b). When this is done, distinct patterns of response are seen across
categories, but these patterns appear highly similar across sizes. This sug-
gests that, although ventro-temporal regions may be very sensitive to
image size, they are nevertheless capable of respondingwith a consistent
underlying pattern when the responses are normalised for a specific size.

To determine the contributions of size and category to the patterns
of neural response within the ventro-temporal region we used an RSA
analysis (Kriegeskorte et al., 2008a). First, correlation-based MVPA
(Haxby et al., 2001) was performed on the normalised responses. The
resulting correlation matrix is shown in Fig. 5c. Next, model correlation
matrices were generated representing the outcome if the patterns of re-
sponse were entirely predicted by either the size (Fig. 5a) or category
(Fig. 5b). These were then used as regressors in a multiple regression
analysis of the fMRI data. Fig. 5d shows the resulting coefficient values
for each regressor. Both the size (β = .55, t(717) = 25.80, p b .001)
and category (β = .54, t(717) = 25.52, p b .001) regressors were able
to significantly predict the fMRI responses. A t-contrast revealed no sig-
nificant difference between the coefficients (t = .18, p = .856). This
shows that both the size of the image and the categorymake significant
contributions to the patterns of response. Given that the effect of cate-
gory was already well-established (Haxby et al., 2001), we consider
the effect of size to be the novel finding here.



Fig. 4. Group-level patterns of response to each condition, restricted to the ventral temporal ROI. Red and blue colours indicate normalised values above and below the voxel-wise mean
respectively. (a) Patterns normalised across all conditions. (b) Patterns normalised within large and small conditions independently.
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Next, we used a computational approach to more directly explore
the relative importance of spatial and non-spatial image properties on
the patterns of response in the ventral visual pathway. In previous stud-
ies (Rice et al., 2014; Watson et al., 2014) we have shown that image
properties measured by the GIST descriptor (Oliva and Torralba, 2001)
can be used to predict fMRI patterns of response. In this study, we creat-
ed two versions of the GIST descriptor (see Fig. 3): one that was sensi-
tive to spatial properties of the image (spatial GIST), and one that was
sensitive to non-spatial properties, such as orientation and spatial fre-
quency content (spectral GIST). These GIST descriptors were used to
calculate the spatial and non-spatial profiles of images within each con-
dition. We then compared these profiles within and between different
stimulus conditions. Fig. 6a, b shows the average correlation matrices
for spatial GIST and spectral GIST across all stimulus conditions. These
correlation matrices were then used as regressors in a multiple regres-
sion analysis of the fMRI data (see Fig. 5c). Fig. 6c shows that both the
spatial GIST (β = .54, t(717) = 16.93, p b .001) and spectral GIST
(β= .24, t(717)=7.66, p b .001) explained a significant amount of var-
iance in the neural responses, with significantly more variance ex-
plained by the spatial GIST (t = 5.31, p b .001). We also tested for



Fig. 5. Ventro-temporal region: Representational similarity analysis on the effect of size and category on the patterns of response in ventral temporal cortex. Acronyms: S = small, L =
large, B = bottle, C = chair, F = face and H= house. Binary model correlation matrices were defined representing the extreme cases where patterns of response are entirely predicted
by either the size (a) or category (b)manipulations. These were entered as regressors into a multiple regression analysis, whilst the fMRIMVPA correlation matrix (c) was entered as the
outcome variable. The resulting standardised regression coefficients are shown in (d). Error bars represent ±1 SEM.
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differences between the hemispheres; results were consistent both
across hemispheres and with the analysis of the bilateral region (Sup-
plementary Fig. 3).

These results suggest that image properties in addition to categorical
information can predict patterns of response in the ventral visual path-
way. However, images drawn from the same condition are likely to have
similar low-level properties. So, the link between image properties and
Fig. 6. Ventro-temporal region: Representational similarity analysis between fMRI response an
between-condition correlations for each conditionwere determined for spatial GIST (a) and spe
analysis, whilst the fMRI MVPA correlation matrix (Fig. 5c) was entered as the outcome variabl
±1 SEM.
patterns of neural response is expected under both categorical and
image-based accounts. To address this issue, we repeated the analysis
only using the off-diagonal elements of the correlation matrices. As be-
fore, both the spatial (β = .41, t(557) = 10.90, p b .001) and spectral
(β= .15, t(557)= 3.84, p b .001) GISTs significantly predicted the neu-
ral responses within the ventral visual region, but with significantly
more variance explained by the spatial GIST (t = 4.79, p b .001).
d image properties defined by the spatial GIST and spectral GIST (see Fig. 3). Within- and
ctral GIST (b) descriptors. Thesewere then entered as regressors into amultiple regression
e. The resulting standardised regression coefficients are shown in (c). Error bars represent
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Although this suggests that the patterns of response are not driven by
the difference between within-condition and between-condition com-
parisons, the off-diagonal elements themselves still contain correlation
values representing within-category comparisons (e.g. small bottle vs
large bottle), which again might be expected to be higher than be-
tween-category values irrespective of the underlying representational
structure. To this end, we repeated our analyses excluding not only the
on-diagonal elements, but also those off-diagonal elements representing
within-category comparisons.Within the ventral stream region, the spa-
tial GIST again significantly predicted responses (β = .52, t(477) =
12.95, p b .001). In contrast, the spectral GIST coefficientwas significantly
negative (β=− .18, t(477) =−4.38, p b .001). The spatial GIST coeffi-
cient was significantly greater than the spectral GIST coefficient (t =
11.12, p b .001). Thus, the predictive capability of the spatial GIST re-
mains even in the absence of categorical information.

The ROI used for the ventral temporal mask was composed of 4 an-
atomical regions from the Harvard–Oxford atlas. To determine if the
representation was different across anatomical regions, we repeated
our analyses for each anatomical region. MVPA correlation matrices
for each anatomical region are shown in Fig. 7a. The size vs category
RSA analyses are shown for each region in Fig. 7b.We found a significant
effect of size in the lingual (β= .72, t(717)=31.43, p b .001) and occip-
ital–fusiform (β= .49, t(717)= 22.48, p b .001) regions, but not in the
temporo-occipito-fusiform (β= .05, t(717)= 1.72, p= .344) and infe-
rior temporal (β = .05, t(717) = 1.78, p = .304) regions. A significant
effect of category was found in the lingual (β = .26, t(717) = 11.29,
p b .001), occipital–fusiform (β = .57, t(717) = 25.98, p b .001),
temporo-occipito-fusiform (β= .67, t(717)= 24.39, p b .001) and infe-
rior temporal (β= .57, t(717)=18.44, p b .001) regions. More variance
was explained by size compared to the category in the lingual (t =
13.23, p b .001) region, but there was no significant difference between
regressors in the occipital–fusiform region (t = 2.30, p = .086), and
Fig. 7. Representational similarity analyses for anatomical subdivisions of the ventro-temporal
ficient values of multiple regression analyses contrasting size and category models (b), and sp
more variance was explained by category compared to size in the
temporo-occipital–fusiform (t= 14.89, p b .001) and inferior temporal
(t = 10.95, p b .001) regions.

Next, we repeated the spatial GIST/spectral GIST analysis for each re-
gion (Fig. 7c). We found a significant effect of spatial GIST in the lingual
(β = .61, t(717) = 17.38, p b .001), occipital–fusiform (β = .45,
t(717) = 13.84, p b .001), temporo-occipito-fusiform (β = .20,
t(717) = 5.66, p b .001) and inferior temporal (β = .15, t(717) =
4.12, p b .001) regions. We found a significant effect of spectral GIST in
the occipital–fusiform (β = .31, t(717) = 9.55, p b .001), temporo-
occipito-fusiform (β = .44, t(717) = 12.26, p b .001) and inferior tem-
poral (β= .4.23, t(717)=11.30, p b .001) regions, but not in the lingual
(β = − .04, t(717) = −1.21, p = .900) region. More variance was ex-
plained by the spatial compared to the spectral GIST in the lingual re-
gion (t = 10.65, p b .001) region, whilst more variance was explained
by the spectral compared to the spatial GIST in the inferior temporal
(t = 4.11, p b .001) and temporo-occipito-fusiform regions (t = 3.79,
p = .001). There was no significant difference between regressors in
the occipital–fusiform region (t = 2.46, p = .057).

Next, we tested how the patterns of response might change along
the posterior–anterior axis of the ventro-temporal region. The main
ventro-temporal mask was split into 4 slices spanning the posterior
(slice 1) to anterior (slice 4) extent of the mask. The MVPA and RSA
analyses were then repeated for each slice independently. The results
of these analyses are illustrated in Fig. 8a. We first contrasted the cate-
gory and size models using multiple regression analyses. The size
model significantly predicted responses in the most posterior regions,
however the amount of variance explained declined towards more an-
terior regions and failed to reach significance in the most anterior slice
(slice1: β = .50, t(717) = 20.36, p b .001; slice2: β = .33, t(717) =
11.78, p b .001; slice3: β = .09, t(717) = 3.23, p = .004; slice4: β =
.05, t(717) = 1.86, p = .190). The category model significantly
mask. (a) fMRI MVPA correlation matrices for each anatomical region. Standardised coef-
atial GIST and spectral GIST descriptors (c). Error bars represent ±1 SEM.



Fig. 8. Analyses of the ventral temporal mask along posterior–anterior (a) andmedial–lateral (b) axes. The ROI was split into 4 slices running along each axis, and pattern analyses run for
each split separately. Mask divisions are shown in the leftmost column. Also shown are standardised coefficient values of multiple regression analyses contrasting category (red) and size
(blue) models (middle column), and spatial GIST (green) and spectral GIST (orange) descriptors (right column). Coloured asterisks indicate the significance of the regressor coefficients,
whilst black asterisks indicate the significance of the t-contrast between regressor coefficients at each slice. Error bars represent ±1 SEM.
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predicted neural responses throughout the ventro-temporal region
(slice1: β = .49, t(717) = 19.85, p b .001; slice2: β = .54, t(717) =
19.43, p b .001; slice3: β = .64, t(717) = 22.68, p b .001; slice4: β =
.65, t(717)=23.19, p b .001), and indeed a slight increase in the amount
of variance explained was observed moving anteriorly. This suggests
that neural representations of visual objects show an increasing degree
of size invariance along the posterior to anterior regions of the ventral
visual pathway. We then repeated this analysis with the spatial and
spectral GISTs. Both spatial and spectral GISTs explained a significant
amount of variance throughout the ventro-temporal region. The spatial
GIST explained progressively less variance moving anteriorly (slice1:
β = .46, t(717) = 13.43, p b .001; slice2: β = .40, t(717) = 11.41,
p b .001; slice3: β = .21, t(717) = 5.95, p b .001; slice4: β = .23,
t(717) = 6.52, p b .001). Conversely, the spectral GIST explained pro-
gressively more variance moving anteriorly (slice1: β = .24, t(717) =
7.08, p b .001; slice2: β = .28, t(717) = 8.05, p b .001; slice3: β = .43,
t(717) = 11.93, p b .001; slice4: β = .43, t(717) = 12.21, p b .001). Fi-
nally, removing the within-category comparisons from the analysis
did not affect the ability of the spatial GIST to predict patterns of re-
sponse, but did affect the ability of the spectral GIST to predict patterns
of neural response. Results of these analyses are shown in Table 1.

We next tested how the patterns of response change along the me-
dial–lateral axis of the ventro-temporal region. The results of these anal-
yses are illustrated in Fig. 8b. The size model significantly predicted the
most variance in the most medial region, but gradually declined to-
wards more lateral regions (slice1: β = .64, t(717) = 26.13, p b .001;
slice2: β = .46, t(717) = 20.98, p b .001; slice3: β = .17, t(717) =
6.13, p = .004; slice4: β = .07, t(717) = 2.03, p = .129). In contrast,
the categorymodel significantly predicted neural responses throughout
the ventro-temporal region (slice1: β = .31, t(717) = 12.43, p b .001;
slice2: β = .61, t(717) = 28.12, p b .001; slice3: β = .64, t(717) =
23.27, p b .001; slice4: β = .49, t(717) = 14.98, p b .001). We next
contrasted the spatial and spectral GISTs along the medial to lateral
axis of the ventral stream. The spatial GIST explained progressively
less variance moving from medial to lateral (slice1: β = .61, t(717) =
17.35, p b .001; slice2: β = .43, t(717) = 13.12, p b .001; slice3: β =
.27, t(717) = 7.35, p b .001; slice4: β = .13, t(717) = 3.26, p = .005).
Conversely, the spectral GIST explained progressively more variance
moving from medial to lateral (slice1: β b .01, t(717) = .03, p = 1;
slice2: β = .34, t(717) = 10.51, p b .001; slice3: β = .38, t(717) =
10.56, p b .001; slice4: β = .38, t(717) = 9.83, p b .001). This suggests
that neural representations of visual objects show an increasing degree
of size and spatial invariancemoving frommedial to lateral through the
ventral temporal region. Removing the on-diagonal elements from the
analysis had a greater effect on the spectral GIST compared to the spatial
GIST (Table 2).

Discussion

The aimof this studywas to investigate how spatial properties of im-
ages influence patterns of neural response in the ventral visual pathway.
We found that patterns of neural response to images of different object
categories are influenced by the actual size of the images. We then used
a computational approach to more directly test whether more subtle
variance in the spatial properties of images could explain the different
patterns of response to objects in the ventral temporal cortex. Our re-
sults suggest that the spatial properties of images are an important
organising principle in the topography of the ventral visual pathway.

The distributed nature of the fMRI response to different categories of
objectswithin the ventral visual pathwayhas been interpreted as show-
ing a topographic map of object form (Haxby et al., 2001) that is analo-
gous with the continuous, topographic maps found in early stages of
visual processing (Hubel and Wiesel, 1968; Bonhoeffer and Grinvald,
1991; Wandell et al., 2007). However, it is not clear what dimensions
might be important for the hypothesised object form topography of
higher visual areas. By varying the size and category fromwhich images
were presented, it was possible for us to compare the relative contribu-
tion of these factors to the patterns of response across the ventral visual
pathway. Our results show, consistent with previous studies (Haxby
et al., 2001; Hanson et al., 2004), that there are indeed distinct patterns



Table 1
Multiple regression analysis of ventro-temporal region along anterior–posterior axis, restricted to off-diagonal or between-category elements of correlation matrices. The off-diagonal
analysis removes all within-condition comparisons (e.g. small bottle–small bottle or large bottle–large bottle). The Between-category analysis additionally removes all within-category
comparisons (e.g. small bottle–large bottle or small chair–large chair).

Slice 1 (posterior) Slice 2 Slice 3 Slice 4 (anterior)

Off-diagonal (DoF = 557) Spectral GIST (β) .20⁎⁎⁎ .17⁎⁎⁎ .26⁎⁎⁎ .30⁎⁎⁎
Spatial GIST (β) .34⁎⁎⁎ .29⁎⁎⁎ .04 (ns) .11⁎
Contrast (t) 2.41 (ns) 2.07 (ns) 3.65⁎⁎ 3.17⁎⁎

Between-category (DoF = 477) Spectral GIST (β) − .02 (ns) − .27⁎⁎⁎ -.29⁎⁎⁎ − .26⁎⁎⁎
Spatial GIST (β) .41⁎⁎⁎ .42⁎⁎⁎ .18⁎⁎⁎ .26⁎⁎⁎
Contrast (t) 6.46⁎⁎⁎ 10.47⁎⁎⁎ 6.82⁎⁎⁎ 7.41⁎⁎⁎

Values of regression coefficients and t-contrasts between regressors and corresponding significance levels are shown.
⁎⁎⁎ p b .001.
⁎⁎ p b .01.
⁎ p b .05.
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of response to different object categories. However, we also show that
these patterns of response across the ventral stream are significantly af-
fected by the retinal size of the objects. That is, thepattern of response to
one object category is significantly reducedwhen the images have a dif-
ferent size.

The marked effect of size on the patterns of response shown in the
current study suggests that spatial properties are an important
organising dimension in the topography of some regions of the ventral
visual pathway. To more directly explore the importance of spatial
properties as an important organising principle in the topography of
the ventral visual pathway, we used a computational approach in
which we directly measured spatial and non-spatial properties of the
image (see Fig. 3). We produced modified versions of the GIST descrip-
tor (Oliva and Torralba, 2001): one version of the GIST descriptor was
sensitive to spatial properties of the stimulus (spatial GIST), whilst the
other version was sensitive to non-spatial properties, such as orienta-
tion and spatial frequency content (spectral GIST). The use of the spatial
GIST allowed us to take into account more subtle differences in spatial
properties beyond those carried by the large changes conveyed by
size. For example, there are significant differences in the spatial proper-
ties of objects from different categories even when they are scaled to a
similar size (Fig. 1).We found that both the spatial GIST and the spectral
GIST were able to predict neural responses throughout the ventral re-
gion. However, we found that the spatial GIST explainedmore variance.

Our results are consistentwith previous studies inwhichwe showed
that patterns of response in high-level visual areas may be better ex-
plained by the response to image properties that are characteristic of
different object categories (Rice et al., 2014; Watson et al., 2014). Nev-
ertheless, it was not evident from these data which image dimensions
were important. The importance of spatial properties is consistent
with previous studies demonstrating the importance of spatial visual
properties in ventral visual regions, such as biases for eccentricity
(Levy et al., 2001) and retinotopic location (Golomb and Kanwisher,
2012; Cichy et al., 2013). However, it has not been clear until now
whether spatial properties represent a fundamental organising princi-
ple in the organisation of the ventral visual stream or whether they re-
flect a modification of the underlying category-selective representation
due to the statistics of natural viewing (Kanwisher, 2001).
Table 2
Multiple regression analysis of ventro-temporal region along the medial–lateral axis, restricted

Slice 1 (m

Off-diagonal (DoF = 557) Spectral GIST (β) − .04 (ns)
Spatial GIST (β) .53⁎⁎⁎
Contrast (t) 10.69⁎⁎⁎

Between-category (DoF = 477) Spectral GIST (β) − .06 (ns)
Spatial GIST (β) .57⁎⁎⁎
Contrast (t) 10.28⁎⁎⁎

Values of regression coefficients and t-contrasts between regressors and corresponding signific
⁎⁎⁎ p b .001.
⁎⁎ p b .01.
⁎ p b .05.
In principle, the link between image properties and the patterns of
neural response we have shown in the ventral visual pathway need
not be entirely counter to categorical representations reported in previ-
ous studies (Kriegeskorte et al., 2008b; Naselaris et al., 2009). This is be-
cause object categories typically contain objects that are visually
similar. So, the effect of category that was evident throughout the ven-
tral stream could reflect sensitivity to visual properties besides object
size, thatwere not directlymanipulated here, but nevertheless differ re-
liably between object categories (Rice et al., 2014). For example, image
properties were still able to predict the patterns of neural response
when all thewithin-category correlations were removed from the anal-
ysis. If the organisation of the ventral temporal cortex were solely de-
pendent on categorical principles, then the relationship between
neural responses and the spatial properties of the images should not ex-
tend to between-category correlations. Interestingly, this effect was
greater for the spatial than the spectral properties. Therefore, the appar-
ently high-level selectivity for object categories in ventral visual cortex
could, at least in part, arise from biases for the lower-level, visual com-
ponents of the image (Op de Beeck et al., 2008).

The effect of size on patterns of response in the ventral stream
showed a progressive decline from posterior to anterior regions of the
ventral stream. Indeed, there was no significant effect of object size in
the most anterior regions of interest, suggesting a greater degree of
size invariance in more anterior regions of the ventral stream. These
findings are consistent with other univariate fMRI analyses showing a
degree of size invariance in regions of the ventral stream. For example,
a number of studies have shown fMR-adaptation to objects even
when the images vary in size (Grill-Spector et al., 1999; Andrews and
Ewbank, 2004; Ewbank et al., 2005). The findings are also in line with
non-human primate studies, which show an increase in the receptive
field size of neurons from posterior to anterior regions of temporal
lobe (Rust andDiCarlo, 2010; Kay et al., 2015). This increase in receptive
field size could explain the decreased effect of size or increased size in-
variance that we observe in more anterior regions.

To determine whether the influence of image properties varied
across the ventral stream, we repeated our analysis along different
axes of our mask. Both the spatial GIST and spectral GIST predicted pat-
terns of response in all anterior–posterior subdivisions of the ventral
to off-diagonal or between-category elements of correlation matrices.

edial) Slice 2 Slice 3 Slice 4 (lateral)

.27⁎⁎⁎ .25⁎⁎⁎ .35⁎⁎⁎

.32⁎⁎⁎ .08 (ns) b .01 (ns)

.96 (ns) 2.82⁎ 6.03⁎⁎⁎
− .06 (ns) − .26⁎⁎⁎ .15⁎⁎
.43⁎⁎⁎ .20⁎⁎⁎ .03 (ns)
7.54⁎⁎⁎ 6.65⁎⁎⁎ 1.68 (ns)

ance levels are shown.
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stream mask. However, there was a slight decrease in the amount of
variance explained by the spatial GIST and a slight increase in the
amount of variance explained by the spectral GIST along the posterior
to anterior axis. Gradual changes in the specificity along the posterior–
anterior axis of the ventral visual pathway have been argued to reflect
a transition from image-based representations in more posterior re-
gions tomore categorical and semantic representations inmore anterior
regions (Rust and DiCarlo, 2010; Clarke and Tyler, 2014; Shimotake
et al., 2014). Our results suggest that these changes in selectivity across
may better be interpreted as showing a transition in theway that image
properties are represented.

In an additional set of analyseswe split the ventral streammask along
amedial-to-lateral axis. We found the predictive capability of the spatial
GIST decreased towards more lateral regions whilst the opposite was
true of the spectral GIST. Previous studies have indicated a medial-to-
lateral organisation of the ventral stream for stimulus properties such
as animacy (Chao et al., 1999; Konkle and Caramazza, 2013), real-
world size (Konkle and Oliva, 2012; Konkle and Caramazza, 2013), and
visual eccentricity (Malach et al., 2002). The current findings are there-
fore consistent with a division of labour between medial and lateral
sites, although further investigationwill be required to determine if a di-
rect link can be made between the image properties tested here and the
stimulus properties identified in previous research.

Our findings do not imply that the representation of image proper-
ties in high-level visual areas is similar to the way information is repre-
sented in lower-level regions. For example, it seems likely that high-
level areas will increasingly selectively represent those low-level
image properties that are more commonly found in natural images
(Kayaert et al., 2003; Op de Beeck et al., 2008). Moreover, the low-
level image description used in our studies may not account for all of
the variances in the magnitude and patterns of response. A number of
fMRI studies have shown a link between patterns of fMRI response in
object-selective regions and both the physical and perceived shapes of
objects (Haushofer et al., 2008; Op de Beeck et al., 2008; Drucker and
Aguirre, 2009). So, it seems that models of image properties that incor-
porate these mid-level properties of objects could provide a more com-
plete account of cortical organisation in the ventral visual pathway.

Another important feature of our results is that they show that the
patterns of fMRI response generalise across participants. Our analysis
compared the pattern of response in one participant with the pattern
from a group analysis in which that participant was left out
(Shinkareva et al., 2008; Poldrack et al., 2009). This approach showed
that the topographic patterns of response to different object categories
were consistent across individuals and thus reflect the operation of con-
sistent, large-scale topographical organising principles. Although this
does not preclude the possibility that further informationmay be repre-
sented in amore idiosyncraticmanner in individual brains, we nonethe-
less found similar patterns of results when we repeated our analysis at
the individual level (see Supplementary Fig. 1, Figs. 5–7).

In conclusion, we have shown that the retinal size of objects has a
significant effect on patterns of fMRI response in the ventral visual path-
way. We have also shown that variance in the spatial properties of im-
ages can explain patterns of response and that the influence of spatial
properties was still evident when only between-category comparisons
were analysed. Finally, we found that the importance of spatial proper-
ties on the topographic patterns of response varied systematically
across the ventral visual pathway. Together, these results suggest that
spatial properties are an important organising principle in the topogra-
phy of the ventral visual pathway.
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