Malcev expansions of finite semigroups

Mário J.J. Branco^{*}, Univ. Lisbon, Portugal Joint work with Joana Matos, ISCTE-IUL, Portugal

York – 4 December 2024

*

Supported by Fundação para a Ciência e a Tecnologia (FCT) through project UIDB/04621/2020 of CEMAT at Faculdade de Ciências, Universidade de Lisboa.

Malcev expansions of finite semigroups

Preliminaries

Alphabet – non-empty set (finite or infinite) ALetter – element of AWord (non-empty) – finite sequence of letters $a_1a_2...a_n$ with $n \ge 1$

 A^+ – free semigroup over A, that is the set of all words with multiplication

$$(a_1a_2\ldots a_n)\cdot(b_1b_2\ldots b_p)=a_1a_2\ldots a_nb_1b_2\ldots b_p$$

 $A^* = A^+ \cup \{1\}$ – free monoid over A

A is a generating set of A^+ .

Proposition

Any map $A \to S$, where S is a semigroup, can be extended to a unique morphism $A^+ \to S$.

・ロット (雪) (日) (日) (日)

Identity (in A^+) – formal equality u = v, where $u, v \in A^+$

A semigroup S satisfies an identity u = v over A if $u\varphi = v\varphi$ for all morphisms $\varphi \colon A^+ \to S$.

Variety (of semigroups): class of semigroups closed under the formation of homomorphic images, subsemigroups, and direct products (with finitely or infinitely many factors).

For a set Σ of identities,

 $[\Sigma]$ – class of the semigroups that satisfy all the identities of Σ

Theorem (Birkhoff, 1935)

A class V of semigroups is a variety if and only if $V = [\Sigma]$ for some set Σ of identities.

Examples: $\mathcal{S} = [x = x] - (all)$ semigroups $\mathcal{I} = [x = y] - trivial semigroups$ $\mathcal{B} = [x^2 = x] - bands$ (i.e. every element is idempotent) $\mathcal{SL} = [x^2 = x, xy = yx] - semilattices$ $\mathcal{LZ} = [xy = x] - left$ zero semigroups $\mathcal{RB} = [xyx = x] - rectangular bands$ Mário BrancoMalcev expansions of finite semigroups4 December 20243/27

A-generated semigroup: pair (S, φ) , where S is a semigroup and $\varphi: A^+ \to S$ is a surjective morphism (so S is generated as semigroup by $A\varphi$).

Morphism of A-generated semigroups from (T, ψ) to (S, φ) : semigroup morphism $\eta: T \to S$ respecting generators, that is $\psi \eta = \varphi$:

Malcev expansion

The Malcev expansion was formally introduced in: Elston, *Semigroup expansions using the derived category, kernel and Malcev products*, J. Pure Appl. Algebra **136** (1999), 231–265.

 \mathcal{V} – variety of semigroups

For a surjective morphism $\eta\colon \mathcal{T}\to S$ such that $(e)\eta^{-1}\in\mathcal{V}$ for any $e\in E(S)$, we say that

- the subsemigroups $(e)\eta^{-1}$ of T are the Malcev kernels of η .
- η is a \mathcal{V} -morphism.
- T is a Malcev product of a semigroup S by \mathcal{V} .

Analogously for A-generated semigroups, in which case η respects generators.

We want the Malcev expansion of an A-generated semigroup (S, φ) over \mathcal{V} to be the "largest" A-generated Malcev product (\mathcal{T}, ψ) of (S, φ) .

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Given an A-generated semigroup (S, arphi), that is a surjective morphism

$$\varphi \colon A^+ \to S$$

how to define such a largest (T, ψ) ?

Note that we immediately have

- $\mathcal{T}\simeq \mathcal{A}^+\!/\!\equiv_\psi$, so a quotient of \mathcal{A}^+ .
- $\equiv_{\psi} \subseteq \equiv_{\varphi}$
- η has Malcev kernels in \mathcal{V} .

6 / 27

Elston gives the following definition for an A-generated semigroup (S, φ) :

The Malcev expansion of (S, φ) by \mathcal{V} is the semigroup $\mathcal{V} \textcircled{m} S = A^+/\mu_{\varphi}$, where μ_{φ} is the congruence on A^+ generated by imposing the identities of \mathcal{V} on each $(e)\varphi^{-1}$ for e an idempotent of S.

Let us give this definition in two more precise ways.

Let $\varphi \colon A^+ \to S$ be a surjective morphism.

1) [McCammond, Steinberg, Rhodes, 2011] $\mathcal{V} \bigcirc S = A^+/\mu_{\varphi}$, where μ_{φ} is the intersection of all congruences \sim on A^+ contained in \equiv_{φ} whose natural morphism $A^+/\sim \rightarrow S$ has Malcev kernels in \mathcal{V} (\equiv_{φ} is one of such congruences).

2) [Pin, 2006; McCammond, Steinberg, Rhodes, 2011]
Suppose that V = [Σ], with Σ a set of identities over an alphabet B.
V mS = Smg(A | R), where
R = {uσ = vσ: u = v ∈ Σ and σ: B⁺ → A⁺ is a morphism such that B⁺σ ⊆ eφ⁻¹ for some e ∈ E(S)}
Thus VmS = A⁺/μ_φ, where μ_φ is the congruence on A⁺ generated by R.

 It can be proved that this definition does not depend on the choosen set Σ.

Mário Branco

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

It follows that, for an A-generated semigroup (A, φ) ,

•
$$\mathcal{I}(\underline{m}S = \text{Smg}\langle A \mid \{u = v : u\varphi = v\varphi = u^2\varphi\}\rangle$$

 $(\mathcal{I} = [x = y])$

- $\mathcal{LZ} \textcircled{m} S = \operatorname{Smg} \langle A \mid \{ uv = u : u\varphi = v\varphi = u^2 \varphi \} \rangle$ $(\mathcal{LZ} = [xy = x])$
- $\mathcal{RB} \textcircled{m} S = \operatorname{Smg} \langle A \mid \{ uvu = u : u\varphi = v\varphi = u^2 \varphi \} \rangle$ $(\mathcal{RB} = [xyx = x])$

Remark: From above, $\mathcal{I}(m)S = A^+/\mu_{\varphi}$, where μ_{φ} is the congruence on A^+ generated by the relation

$$M_{\varphi} = \left\{ (u, v) \in E(S)\varphi^{-1} \times E(S)\varphi^{-1} \colon u\varphi = v\varphi \right\}$$

Examples:

• $G = \text{Smg}\langle a: a^4 = a \rangle = \{g, g^2, 1\}$ - cyclic group of order 3 $A = \{a\}$ $\varphi: A^+ \to G$ the natural morphism $(a\varphi = g)$ ▶ $1\varphi^{-1} = \{a^3, a^6, a^9, \dots\}$ • $\mathcal{I}(m)G = \text{Smg}\langle a: a^3 = a^6 \rangle$, which has exactly 5 elements: $a. a^2. a^3. a^4. a^5$ *I*(*m*)*G* is not a monoid • $G = \text{Smg}(a: a^4 = a) = \{g, g^2, 1\}$ - cyclic group of order 3 $A = \{a, b\}$ $arphi \colon {\cal A}^+ o {\cal G}$ the morphism such that aarphi = barphi = g• $1\varphi^{-1} = \{ u \in A^+ : |u| \text{ is multiple of } 3 \}$ • $\mathcal{I}(\overline{m})G$ has exactly 9 elements: $a, b, a^2, ab, ba, b^2, a^3, a^4, a^5$

くロ そう ふ 山 そう きょう きょう く 日 く の く つ

Example:

• $G = \text{Smg}\langle a: a^4 = a \rangle = \{g, g^2, 1\}$ - cyclic group of order 3 G' - G with an extra identity I adjoined $A = \{a, b\}$ $arphi \colon {\cal A}^+ o {\cal G}$ the morphism such that aarphi = g and barphi = I• $I\varphi^{-1} = \{b^n : n \in \mathbb{N}\} = b^+$ $1\varphi^{-1} = (b^*ab^*ab^*ab^*)^+$ Im G has exactly 16 elements: $a_{1}a^{2}$, a^{3} , a^{4} , a^{5} , b. ba, ab, bab $(|u|_b \neq 0 \text{ and } |u|_a = 1)$ ba^2 , aba, a^2b , baba, ba^2b , abab, babab $(|u|_b \neq 0 \text{ and } |u|_a = 2)$

Properties:

- For an A-generated semigroup (S, φ) ,
 - there is a morphism $\pi_S \colon \mathcal{V}(\overline{m}S \to S \text{ of } A \text{-generated semigroups:}$

where α_{S} is the canonical morphism.

• π_S is a \mathcal{V} -morphism, that is $e\varphi^{-1} \in \mathcal{V}$ for any $e \in E(S)$.

Properties:

• The correspondence

$$S \mapsto \mathcal{V} \widehat{m} S$$

defines an expansion (in sense of Birget-Rhodes) of the category of *A*-generated semigroups:

Properties:

• $\mathcal{V} \textcircled{m} S$ is the largest Malcev product A-generated semigroup of S: If (\mathcal{T}, ψ) is an A-generated semigroup and $\eta : (\mathcal{T}, \psi) \to (S, \varphi)$ is a \mathcal{V} -morphism, then there exists a morphism $\gamma : (\mathcal{V} \textcircled{m} S, \alpha_S) \to (\mathcal{T}, \psi)$ such that the following diagram commutes:

- A semigroup S is locally finite if every finitely generated subsemigroup of S is finite.
- \mathcal{V} is locally finite if all of its semigroups are locally finite.
- Every variety of bands and every variety generated by a single semigroup is locally finite.

A – finite alphabet

Theorem (Brown, 1971)

Let S be a locally finite semigroup and $\eta: T \to S$ be a surjective morphism such that $e\eta^{-1}$ is a locally finite subsemigroup of T for any $e \in E(S)$. Then T is locally finite.

Corollary

If S is a finite A-generated semigroup and ${\cal V}$ is locally finite, then ${\cal V} \textcircled{mS}$ is finite.

Remark:

- Idempotent-pure morphisms are precisely the *B*-morphisms.
- Lawson, Margolis, Steinberg (2006) study $\mathcal{B} \textcircled{m} S$ when S is an inverse semigroup.

Our focus: $\mathcal{V} = \mathcal{I} - trivial variety.$

A crucial result:

Proposition

Let S and T be finite semigroups and let $\eta: T \to S$ be a surjective \mathcal{I} -morphism.

Then η is injective on regular elements.

Corollary

Let S and T be finite semigroups and let $\eta: T \to S$ be a surjective \mathcal{I} -morphism.

Then, for each regular \mathcal{J} -class J of S, there exists a unique regular \mathcal{J} -class K of T such that $K\eta = J$. In this situation, K is a subsemigroup of T if and only if J is a subsemigroup of S.

The Malcev expansion by the variety \mathcal{I} is stable:

Proposition

For any A-generated semigroup (S, φ) , one has $\mathcal{I}(\mathfrak{M}(S)) = \mathcal{I}(\mathfrak{M}S)$.

$\mathcal{I} \bigcirc S$, for S locally group

A finite semigroup S is locally group if eSe is a subgroup of S for any $e \in E(S)$.

Proposition

Let S be a finite semigroup and let I be its minimal ideal. The following are equivalent:

$$e (S) \subseteq I$$

$$I Reg(S) = I$$

- Finite groups, finite unipotent semigroups and finite simple semigroups are locally groups.
- ▶ If S is locally group, then \mathcal{I} m S is locally group.

In general, $\mathcal{I} \bigcirc S \not\simeq S$ when S is locally group.

If (S, arphi) is an A-generated semigroup, let

 $\mathsf{Red}(\varphi) = \{ u \in A^+ : \forall v \in \mathsf{Fact}(u), \ u\varphi \notin E(S) \}$

• Associative multiplication in $\operatorname{Red}(\varphi) \cup \operatorname{Reg}(S)$: for $u, v \in \operatorname{Red}(\varphi)$ and $s, t \in \operatorname{Reg}(S)$,

$$u \cdot v = \begin{cases} uv & \text{if } uv \in \operatorname{Red}(\varphi) \\ (uv)\varphi & \text{otherwise} \end{cases}$$
$$u \cdot s = (u\varphi)s, \quad s \cdot u = s(u\varphi)$$
$$s \cdot t = st \text{ (product in } S)$$

• Generating morphism $\psi \colon \mathcal{A}^+ o \mathsf{Red}(arphi) \cup \mathsf{Reg}(\mathcal{S})$ defined by

$$u\psi=\left\{egin{array}{cc} u & ext{if} \ u\in \mathsf{Red}(arphi)\ uarphi & ext{otherwise} \end{array}
ight.$$

Proposition

For every finite locally group A-generated semigroup (S, φ) , one has the following, where $T = Red(\varphi) \cup Reg(S)$:

- $\mathcal{I} \bigcirc S \simeq T$
- Reg(S) is the minimal ideal of T and T/Reg(S) is nilpotent.

L-factorization expansion

 $L \subseteq A^+$

(S, arphi) a finite A-generated semigroup

Let $W_{\varphi}(L)$ be the smallest subset X of A^+ such that

$$\bullet L \subseteq X$$

② for any
$$u,w\in A^*$$
 and $v\in A^+$,

$$uv, vw \in X \implies uvw \in X$$

• for any $x, y \in X$ such that $x\varphi = y\varphi$ and $u, v \in A^*$,

$$uxv \in X \implies uyv \in X$$

Let Z(L) be the smallest subset X of A^+ satisfying conditions () and ().

A sequence (u_1, u_2, \ldots, u_n) of words of A^* is a factorization of length n. If $u = u_1 u_2 \ldots u_n$, we say that (u_1, u_2, \ldots, u_n) is a factorization of u.

A condition concerning a factorization (u₀, x, u₁):
 (C) x ∈ W_φ(L) and, for all y ∈ Suf(u₀) and z ∈ Pref(u₁),
 yxz ∈ W_φ(L) ⇒ y = z = 1

This says that the factor x is "locally maximal" on $u_0 \times u_1$ relatively to $W_{\varphi}(L)$.

For each i ∈ N, a condition concerning a factorization

(u₀, x₁, u₁,..., x_n, u_n) of odd length:
(C_i) If n ≥ i, the factorization (u₀x₁u₁...x_{i-1}u_{i-1}, x_i, u_ix_{i+1}u_{i+1}...x_nu_n)
satisfies (C).

A factorization $(u_0, x_1, u_1, \ldots, x_n, u_n)$ is an *L*-factorization if satisfies $(C_1), (C_2), \ldots, (C_n)$ and $u_0, u_1, \ldots, u_n \in A^+ \setminus A^*LA^* \cup \{1\}$.

Proposition

Each word of A^+ has a unique L-factorization.

Mário Branco

4 December 2024

22/27

• Two factorizations

$$\underline{u} = (u_0, x_1, u_1, \dots, x_n, u_n)$$
 and $\underline{v} = (v_0, y_1, v_1, \dots, y_m, v_m)$

are φ -equivalent if n = m, $u_0 = v_0$, $u_1 = v_1, \ldots, u_n = v_n$ and $x_1\varphi = y_1\varphi, \ldots, x_n\varphi = y_n\varphi$.

• Binary relation $\theta_{\varphi}(L)$ on A^+ : $u \theta_{\varphi}(L) v$ if and only if the *L*-factorizations of *u* and *v* are φ -equivalent.

Proposition

The relation $\theta_{\varphi}(L)$ is a congruence on A^+ , which is generated by the relation $\{(u, v) \in W_{\varphi}(L) \times W_{\varphi}(L) : u\varphi = v\varphi\}.$

Let $\rho_{\varphi}(L)$ be the congruence on A^+ generated by

$$\{(u,v)\in Z(L)\times Z(L): u\varphi=v\varphi\}$$

Proposition

The correspondences

$$S \longmapsto \tilde{S}_{\varphi}(L) = A^+/\theta_{\varphi}(L)$$

and

$$S \longmapsto \bar{S}_{\varphi}(L) = A^+ / \rho_{\varphi}(L)$$

define expansions on the category of A-generated semigroups, which are both stable.

Recall that $\mathcal{I}(m)S = A^+/\mu_{arphi}$, with μ_{arphi} the congruence on A^+ generated by

$$M_{\varphi} = \left\{ (u, v) \in E(S)\varphi^{-1} \times E(S)\varphi^{-1} \colon u\varphi = v\varphi \right\}$$

4 December 2024

E-factorization expansion

(S, arphi) an A-generated semigroup Let

•
$$L = (E(S))\varphi^{-1} \subseteq A^+$$

• $\tilde{S}_E = A^+/\theta_{\varphi}(L)$, $\tilde{\varphi}_E \colon A^+ \to \tilde{S}_E$ the canonical morphism
• $\bar{S}_E = A^+/\rho_{\varphi}(L)$, $\bar{\varphi}_E \colon A^+ \to \bar{S}_E$ the canonical morphism

 $(E(S))\varphi^{-1} = L \subseteq Z(L) \subseteq W_{\varphi}(L)$, which gives the following:

Proposition

There exist morphisms $\mathcal{I}(\overline{m}S \to \overline{S}_E \to \overline{S}_E \to S$ of A-generated semigroups.

3 3 4

Two cases:

- E(S) is a subsemigroup of S
- \bigcirc S is locally group
- If E(S) is a subsemigroup of S, then Reg(S) is a subsemigroup of S (well known).

Proposition

If $\operatorname{Reg}(\mathcal{I} \boxtimes S)$ is a subsemigroup of $\mathcal{I} \boxtimes S$, then $\mathcal{I} \boxtimes S = \tilde{S}_E = \bar{S}_E$.

Corollary

If E(S) is a subsemigroup of S or S is locally group, then $\mathcal{I} \widehat{m}S = \widetilde{S}_E = \overline{S}_E.$

Thank you!

< ∃ >

э