Malcev expansions of finite semigroups

Mário J.J. Branco[∗] , Univ. Lisbon, Portugal Joint work with Joana Matos, ISCTE-IUL, Portugal

York - 4 December 2024

∗ Supported by Fundação para a Ciência e a Tecnologia (FCT) through project UIDB/04621/2020 of CEMAT at Faculdade de Ciências, Universidade de Lisboa.

Preliminaries

Alphabet – non-empty set (finite or infinite) \overline{A} Letter $-$ element of A Word (non-empty) – finite sequence of letters $a_1a_2 \ldots a_n$ with $n \geq 1$

A^+ – free semigroup over A , that is the set of all words with multiplication

$$
(a_1a_2\ldots a_n)\cdot (b_1b_2\ldots b_p)=a_1a_2\ldots a_nb_1b_2\ldots b_p
$$

 $\mathcal{A}^*=\mathcal{A}^+\cup\{1\}$ – free monoid over \mathcal{A}

 A is a generating set of A^+ .

Proposition

Any map $A \rightarrow S$, where S is a semigroup, can be extended to a unique morphism $A^+ \to S$.

 Ω

イロメ イ押メ イヨメ イヨメーヨ

Identity (in A^+) – formal equality $u = v$, where $u, v \in A^+$

A semigroup S satisfies an identity $u = v$ over A if $u\varphi = v\varphi$ for all morphisms $\varphi\colon \mathcal{A}^+ \to \mathcal{S}$

Variety (of semigroups): class of semigroups closed under the formation of homomorphic images, subsemigroups, and direct products (with finitely or infinitely many factors).

For a set Σ of identities.

 $[\Sigma]$ – class of the semigroups that satisfy all the identities of Σ

Theorem (Birkhoff, 1935)

A class V of semigroups is a variety if and only if $V = [\Sigma]$ for some set Σ of identities.

Examples: $S = [x = x] - (all)$ semigroups $\mathcal{I} = [x = y]$ – trivial semigroups $B = [x^2 = x]$ – bands (i.e. every element is idempotent) $\mathcal{SL} = [x^2 = x, xy = yx]$ – semilattices $\mathcal{LZ} = [xy = x] - \text{left}$ zero semigroups $RB = [xyz = x]$ - rectangular bands - ← ロ → ← 中 → ← コ → → コ → → コ → QQ Mário Branco [Malcev expansions of nite semigroups](#page-0-0) 4 December 2024 3 / 27

A-generated semigroup: pair (S, φ) , where S is a semigroup and $\varphi\colon \mathsf{A}^+\to \mathsf{S}$ is a surjective morphism (so S is generated as semigroup by $A\varphi$).

Morphism of A-generated semigroups from (T, ψ) to (S, φ) : semigroup morphism $\eta\colon\thinspace\overline{T}\to S$ respecting generators, that is $\psi\eta=\varphi$:

Malcev expansion

The Malcev expansion was formally introduced in: Elston, Semigroup expansions using the derived category, kernel and Malcev products, J. Pure Appl. Algebra 136 (1999), 231-265.

 V – variety of semigroups

For a surjective morphism $\eta\colon\thinspace\mathcal{T}\to\mathcal{S}$ such that $(e)\eta^{-1}\in\mathcal{V}$ for any $e \in E(S)$, we say that

- the subsemigroups $(e)\eta^{-1}$ of $\mathcal T$ are the Malcev kernels of $\eta.$
- \bullet *n* is a *V*-morphism.
- \bullet T is a Malcev product of a semigroup S by V.

Analogously for A-generated semigroups, in which case η respects generators.

We want the Malcev expansion of an A-generated semigroup (S, φ) over V to be the "largest" A-generated Malcev product (T, ψ) of (S, φ) .

(□) (何) (日) (日) (日) (0 Q (V

Given an A-generated semigroup (S, φ) , that is a surjective morphism

$$
\varphi\colon \mathsf{A}^+\to \mathsf{S}
$$

how to define such a largest (T, ψ) ?

Note that we immediately have

 $T \simeq A^+/\!\equiv_\psi$, so a quotient of A^+ .

$$
\bullet\ \equiv_\psi\ \subseteq\ \equiv_\varphi
$$

 \bullet η has Malcev kernels in $\mathcal V$.

Elston gives the following definition for an A-generated semigroup (S, φ) :

The Malcev expansion of (S, φ) by $\mathcal V$ is the semigroup $\mathcal V\widehat{\mathcal W}S = A^+/\mu_{\varphi}$, where μ_{φ} is the congruence on A^{+} generated by imposing the identities of V on each $(e)\varphi^{-1}$ for e an idempotent of S.

Let us give this definition in two more precise ways.

Let $\varphi\colon A^+\to S$ be a surjective morphism.

1) [McCammond, Steinberg, Rhodes, 2011] ${\cal V} \widehat{\textbf{\textit{m}}} {\cal S} = A^+/\mu_{\varphi}$, where μ_{φ} is the intersection of all congruences \sim on A^+ contained in \equiv_φ whose natural morphism $A^+/\!\sim\,\to S$ has Malcev kernels in \mathcal{V} (\equiv_{φ} is one of such congruences).

2) [Pin, 2006; McCammond, Steinberg, Rhodes, 2011] Suppose that $V = [\Sigma]$, with Σ a set of identities over an alphabet B. $V\widehat{m}S = \mathsf{Smg}\langle A \mid R\rangle$, where $R=\big\{\mu\sigma=\nu\sigma\colon\ u=\nu\in\Sigma$ and $\sigma\colon B^+\to A^+$ is a morphism such that $B^+\sigma\subseteq$ $e\varphi^{-1}$ for some $e\in E(S)\}$ Thus $\mathcal{V} \widehat{m} \mathcal{S} = A^+/\mu_{\varphi}$, where μ_{φ} is the congruence on A^+ generated by $R.$

 \blacktriangleright It can be proved that this definition does not depend on the choosen set Σ.

It follows that, for an A-generated semigroup (A, φ) ,

•
$$
\mathcal{I} \textcircled{n} S = \text{Smg}\langle A \mid \{u = v : u\varphi = v\varphi = u^2\varphi\}\rangle
$$

 $(\mathcal{I} = [x = y])$

- $\mathcal{L}\mathcal{Z}\widehat{m}S = \mathsf{Smg}\langle A \mid \{uv = u: u\varphi = v\varphi = u^2\varphi\}\rangle$ $(\mathcal{L}Z = |xy = x|)$
- $RB@S = Smg\langle A \mid \{uvu = u: u\varphi = v\varphi = u^2\varphi\}\rangle$ $(RB = |xyz = x|)$

Remark: From above, $\mathcal{I} /\hspace{-0.1cm}mS = A^+/\mu_\varphi$, where μ_φ is the congruence on A^+ generated by the relation

$$
M_{\varphi} = \left\{ (u, v) \in E(S) \varphi^{-1} \times E(S) \varphi^{-1} : u\varphi = v\varphi \right\}
$$

4 ロ > 4 何 > 4 ヨ > 4 ヨ > ニヨー つんぺ

Examples:

\n- \n
$$
G = \text{Smg}\langle a: a^4 = a \rangle = \{g, g^2, 1\}
$$
 - cyclic group of order 3\n $A = \{a\}$ \n $\varphi: A^+ \to G$ the natural morphism\n $(a\varphi = g)$ \n $\mapsto 1\varphi^{-1} = \{a^3, a^6, a^9, \ldots\}$ \n $\mapsto \mathcal{I}\textcircled{m}G = \text{Smg}\langle a: a^3 = a^6 \rangle$, which has exactly 5 elements:\n
	\n- a, a^2, a^3, a^4, a^5
	\n- $\mapsto \mathcal{I}\textcircled{m}G$ is not a monoid
	\n\n
\n- \n $G = \text{Smg}\langle a: a^4 = a \rangle = \{g, g^2, 1\}$ - cyclic group of order 3\n $A = \{a, b\}$ \n $\varphi: A^+ \to G$ the morphism such that\n $a\varphi = b\varphi = g$ \n $\mapsto 1\varphi^{-1} = \{u \in A^+ : |u| \text{ is multiple of 3}\}$ \n $\mapsto \mathcal{I}\textcircled{m}G$ has exactly 9 elements:\n
	\n- $a, b, a^2, ab, ba, b^2, a^3, a^4, a^5$
	\n\n
\n

 $2QQ$

メロトメ 御 トメ き トメ き トー き

Example:

 $G = \mathsf{Smg}\langle a \colon a^4 = a \rangle = \{g, g^2, 1\}$ – cyclic group of order 3 $G^I - G$ with an extra identity *I* adjoined $A = \{a, b\}$ $\varphi\colon A^+\to G$ the morphism such that $a\varphi=g$ and $b\varphi=I$ $\blacktriangleright I\varphi^{-1} = \{b^n : n \in \mathbb{N}\} = b^+$ $1\varphi^{-1} = (b^*ab^*ab^*ab^*)^+$ \triangleright $\mathcal{I}(\widehat{m})$ G has exactly 16 elements: $a, a^2, a^3, a^4, a^5, b,$ *ba*, ab, bab $(|u|_b \neq 0$ and $|u|_a = 1)$ ba², aba, a²b, baba, ba²b, abab, babab $(|u|_b \neq 0$ and $|u|_a = 2)$

4 ロ > 4 何 > 4 ヨ > 4 ヨ > ニヨー つんぺ

Properties:

- For an A-generated semigroup (S, φ) ,
	- ▶ there is a morphism π_S : $\mathcal{V} \text{m}$ $S \rightarrow S$ of A-generated semigroups:

where $\alpha_{\mathcal{S}}$ is the canonical morphism.

 \blacktriangleright π_S is a $\mathcal V$ -morphism, that is $e\varphi^{-1}\in \mathcal V$ for any $e\in E(S).$

Properties:

• The correspondence

$$
S\,\longmapsto\, \mathcal{V} \textit{m} S
$$

defines an expansion (in sense of Birget-Rhodes) of the category of A-generated semigroups:

Properties:

 \bullet $V(m)S$ is the largest Malcev product A-generated semigroup of S:

If (T, ψ) is an A-generated semigroup and $\eta \colon (T, \psi) \to (S, \varphi)$ is a V-morphism, then there exists a morphism $\gamma: (\mathcal{V} \mathcal{M} S, \alpha_S) \to (T, \psi)$ such that the following diagram commutes:

 Ω

- \bullet A semigroup S is locally finite if every finitely generated subsemigroup of S is finite.
- \bullet V is locally finite if all of its semigroups are locally finite.
- ▶ Every variety of bands and every variety generated by a single semigroup is locally finite.

A – finite alphabet

Theorem (Brown, 1971)

Let S be a locally finite semigroup and $\eta: \mathcal{T} \to \mathcal{S}$ be a surjective morphism such that $e\eta^{-1}$ is a locally finite subsemigroup of τ for any $e\in E(S).$ Then T is locally finite.

Corollary

If S is a finite A-generated semigroup and V is locally finite, then $V(m)S$ is finite.

Remark:

- \bullet Idempotent-pure morphisms are precisely the β -morphisms.
- Lawson, Margolis, Steinberg (2006) study $\mathcal{B}(m)S$ when S is an inverse semigroup.

Our focus: $V = I$ – trivial variety.

A crucial result:

Proposition

Let S and T be finite semigroups and let $\eta: T \to S$ be a surjective I -morphism.

Then η is injective on regular elements.

Corollary

Let S and T be finite semigroups and let $\eta\colon T\to S$ be a surjective I -morphism.

Then, for each regular J -class J of S, there exists a unique regular J -class K of T such that $K\eta = J$. In this situation, K is a subsemigroup of T if and only if J is a subsemigroup of S.

The Malcev expansion by the variety $\mathcal I$ is stable:

Proposition

For any A-generated semigroup (S, φ) , one has $\mathcal{I}(\widehat{m})(\mathcal{I}(\widehat{m})S) = \mathcal{I}(\widehat{m})S$.

$I(m)S$, for S locally group

A finite semigroup S is locally group if eSe is a subgroup of S for any $e \in E(S)$.

Proposition

Let S be a finite semigroup and let I be its minimal ideal. The following are equivalent:

- \bullet S is locally group.
- \bullet $E(S) \subseteq I$
- \bigcirc Reg(S) = 1
- \blacktriangleright Finite groups, finite unipotent semigroups and finite simple semigroups are locally groups.
- If S is locally group, then $\mathcal{I}(\widehat{m})$ S is locally group.

In general, $\mathcal{I}(\widehat{m})S \not\simeq S$ when S is locally group.

 $2Q$

 \overline{m}) \overline{m}

If (S, φ) is an A-generated semigroup, let

 $\mathsf{Red}(\varphi) = \{u \in A^+ \colon \ \forall v \in \mathsf{Fact}(u), \ u\varphi \not\in E(S)\}$

Associative multiplication in $\text{Red}(\varphi) \cup \text{Reg}(S)$: for $u, v \in \text{Red}(\varphi)$ and s, $t \in \text{Reg}(S)$,

$$
u \cdot v = \begin{cases} uv & \text{if } uv \in \text{Red}(\varphi) \\ (uv)\varphi & \text{otherwise} \end{cases}
$$

$$
u \cdot s = (u\varphi)s, \quad s \cdot u = s(u\varphi)
$$

$$
s \cdot t = st \text{ (product in } S)
$$

Generating morphism $\psi\colon A^+\to \mathsf{Red}(\varphi)\cup \mathsf{Reg}(\mathcal{S})$ defined by

$$
u\psi = \left\{ \begin{array}{ll} u & \text{if } u \in \text{Red}(\varphi) \\ u\varphi & \text{otherwise} \end{array} \right.
$$

Proposition

For every finite locally group A-generated semigroup (S, φ) , one has the following, where $T = Red(\varphi) \cup Reg(S)$:

- \bullet \mathcal{I} m $\mathcal{S} \simeq \mathcal{T}$
- Reg(S) is the minimal ideal of T and $T/Reg(S)$ is nilpotent.

L-factorization expansion

 $L \subseteq A^+$

 (S, φ) a finite A-generated semigroup

Let $W_{\varphi}(L)$ be the smallest subset X of A^+ such that

$$
\bullet \ \ L \subseteq X
$$

• for any
$$
u, w \in A^*
$$
 and $v \in A^+$,

$$
uv, vw \in X \implies uvw \in X
$$

3 for any $x, y \in X$ such that $x\varphi = y\varphi$ and $u, v \in A^*$,

$$
uxv \in X \implies uyv \in X
$$

Let $Z(L)$ be the smallest subset X of A^+ satisfying conditions $\bf{0}$ and $\bf{0}$.

 Ω

A sequence (u_1, u_2, \ldots, u_n) of words of A^* is a factorization of length n . If $u = u_1u_2 \ldots u_n$, we say that (u_1, u_2, \ldots, u_n) is a factorization of u.

• A condition concerning a factorization (u_0, x, u_1) : (C) $x \in W_{\varphi}(L)$ and, for all $y \in Suf(u_0)$ and $z \in Pref(u_1)$, $yxz \in W_{\varphi}(L) \implies y = z = 1$

This says that the factor x is "locally maximal" on u_0xu_1 relatively to $W_{\varphi}(L)$.

• For each $i \in \mathbb{N}$, a condition concerning a factorization $(u_0, x_1, u_1, \ldots, x_n, u_n)$ of odd length: (C_i) If $n \geq i$, the factorization $(u_0x_1u_1 \ldots x_{i-1}u_{i-1}, x_i, u_ix_{i+1}u_{i+1} \ldots x_nu_n)$ satisfies (C) .

A factorization $(u_0, x_1, u_1, \ldots, x_n, u_n)$ is an *L*-factorization if satisfies $(C_1), (C_2), \ldots, (C_n)$ and $u_0, u_1, \ldots, u_n \in A^+ \setminus A^*LA^* \cup \{1\}.$

Proposition

Each word of A^+ has a unique L-factorization.

→●●

 2990

• Two factorizations

$$
\underline{u}=(u_0,x_1,u_1,\ldots,x_n,u_n) \text{ and } \underline{v}=(v_0,y_1,v_1,\ldots,y_m,v_m)
$$

are φ -equivalent if $n = m$, $u_0 = v_0$, $u_1 = v_1, \ldots, u_n = v_n$ and $x_1\varphi = y_1\varphi, \ldots, x_n\varphi = y_n\varphi.$

Binary relation $\theta_\varphi(\boldsymbol{L})$ on A^+ : $u \theta_{\varphi}(L)$ v if and only if the L-factorizations of u and v are φ -equivalent.

Proposition

The relation $\theta_{\varphi}(L)$ is a congruence on A^{+} , which is generated by the relation $\{(u, v) \in W_{\varphi}(L) \times W_{\varphi}(L): u\varphi = v\varphi\}.$

Let $\rho_{\varphi}(L)$ be the congruence on A^+ generated by

$$
\{(u,v)\in Z(L)\times Z(L):\ u\varphi=v\varphi\}
$$

4 ロ > 4 何 > 4 ヨ > 4 ヨ > ニヨー つんぺ

Proposition

The correspondences

$$
S \,\longmapsto\, \tilde{S}_{\varphi}(L) = A^+/\theta_{\varphi}(L)
$$

and

$$
S\,\longmapsto\,\bar{S}_{\varphi}(L)=A^+/\rho_{\varphi}(L)
$$

define expansions on the category of A-generated semigroups, which are both stable.

Recall that $\mathcal{I} \textcirc \mathcal{S} = A^+/\mu_{\varphi}$, with μ_{φ} the congruence on A^+ generated by −1

$$
M_{\varphi} = \left\{ (u, v) \in E(S)\varphi^{-1} \times E(S)\varphi^{-1} : u\varphi = v\varphi \right\}
$$

 Ω

E-factorization expansion

 (S, φ) an A-generated semigroup Let

\n- \n
$$
L = (E(S))\varphi^{-1} \subseteq A^+
$$
\n
\n- \n
$$
\tilde{S}_E = A^+ / \theta_\varphi(L), \quad \tilde{\varphi}_E \colon A^+ \to \tilde{S}_E \text{ the canonical morphism}
$$
\n
\n- \n
$$
\bar{S}_E = A^+ / \rho_\varphi(L), \quad \bar{\varphi}_E \colon A^+ \to \bar{S}_E \text{ the canonical morphism}
$$
\n
\n

 $(\mathit{E}(S)) \varphi^{-1} = L \, \subseteq \, Z(L) \, \subseteq \, \mathcal{W}_{\varphi}(L)$, which gives the following:

Proposition

There exist morphisms $\mathcal{I}(\widehat{m})S \to \bar{S}_E \to \tilde{S}_E \to S$ of A-generated semigroups.

 Ω

Two cases:

- \bullet $E(S)$ is a subsemigroup of S
- 2 S is locally group
- If $E(S)$ is a subsemigroup of S, then Reg(S) is a subsemigroup of S (well known).

Proposition

If Reg(Imessal) is a subsemigroup of Imes, then $\mathcal{I} \textit{m}$ S $= \tilde{S}_{E} = \bar{S}_{E}$.

Corollary

If $E(S)$ is a subsemigroup of S or S is locally group, then $\mathcal{I} \widehat{\boldsymbol{\mathcal{m}}} \boldsymbol{S} = \tilde{\mathcal{S}}_{\boldsymbol{\mathcal{E}}} = \bar{\mathcal{S}}_{\boldsymbol{\mathcal{E}}}.$

 Ω

Thank you!

 \mathbf{p}

 \rightarrow \Rightarrow \rightarrow

◆ロ → ◆伊

 $2Q$

B