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A: countable relational structure with underlying set D
Topology on DP: base open sets

Q((a1,b1), ..., (an bn)) = {f € DP | f(a)) = b;}
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Algebraic and topological invariants

A: countable relational structure with underlying set D
Topology on DP: base open sets

Q((a1,b1), ..., (an bn)) = {f € DP | f(a)) = b;}

Discrete for finite A, interesting for countably infinite A.
M is closed < M = End(A) for some A.
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The general problem

Question: Does the abstract algebraic structure of Aut(A) / End(A) /
Pol(A) determine its topological structure?

Endomorphism monoids Andras Pongracz



The general problem

Question: Does the abstract algebraic structure of Aut(A) / End(A) /
Pol(A) determine its topological structure?

Question: How much information is captured by these invariants?
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Pol(a) Function clone

Topological clone

Abstract clone

End(&) Transformation monoid

Topological monoid

Abstract monoid

Aut() Permutation group

Topological group

Abstract group
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w-categoricity

A is w-categorical iff it is the only model of its first-order theory up to
isomorphism.
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w-categoricity

A is w-categorical iff it is the only model of its first-order theory up to
isomorphism.

The endpoint-free, dense linear order
Ak

Vx3y : x < YA

Vx3dy : x > yA

VxVydz . x<z<y

= A= (Q;<)
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The automorphism group. ..
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The automorphism group. ..

as a permutation group.

Theorem (Ryll-Nardzewski, Engeler, Svenonius (1959))
A is w-categorical < Aut(A) is oligomorphic.

The endpoint-free, dense linear order
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The automorphism group. ..

as a permutation group.

Theorem (Ryll-Nardzewski, Engeler, Svenonius (1959))
A is w-categorical < Aut(A) is oligomorphic.

The endpoint-free, dense linear order

s,te(Q<)"
Assume s; < --- < Spand ty < -+ < ty.
Then Ja € Aut(Q; <) with a(s;) = t.
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Homogeneous structures

Definition

A is homogeneous if every partial isomorphism f : A — B between
finite substructures of A extends to an automorphism of A.
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Homogeneous structures

Definition
A is homogeneous if every partial isomorphism f : A — B between
finite substructures of A extends to an automorphism of A.

A homogeneous structure A is up to isomorphism uniquely determined
by Age(A) (Fraissé).

Finite total orders — dense linear order (Q; <).

Finite graphs — random graph (V; E).

Finite partially ordered sets — random poset (P; <).
Finite K,-free graphs — Henson graph (Hp; E).

Finite tournaments — random tournament (V; T).

Finite ordered graphs — random ordered graph (D; E, <).
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The automorphism group

Ryll-Nardzewski (1959)
Let A, I be w-categorical. TFAE:
m A and T are first-order interdefinable
m Aut(A) = Aut(l") as permutation groups
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The automorphism group

Ryll-Nardzewski (1959)
Let A, I be w-categorical. TFAE:
m A and T are first-order interdefinable
m Aut(A) = Aut(l") as permutation groups

Ahlbrandt, Ziegler (1986)

Let A, I be w-categorical. TFAE:
m A and T are first-order biinterpretable
m Aut(A) = Aut(I) as topological groups
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Pol(a) Function clone — p. p. interdefinability

Topological clone — p. p. biinterpretability

Abstract clone — ?

End() Transformation monoid — e. p. interdefinability

Topological monoid — e. p. biinterpretability

Abstract monoid — ?

Aut(s) Permutation group — First-order interdefinability
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Groups

A: a countable structure

Automatic continuity

For any closed group G and any homomorphism ¢ : Aut(A) — G, ¢ is
continuous.

Automatic homeomorphicity

For any closed group G and any isomorphism ¢ : Aut(A) — G, ¢ is a
homeomorphism.

Reconstruction

For any closed group G, if there exists an isomorphism

& - Aut(A) — G, then there exists (possibly another) isomorphism
¢ Aut(A) — G which is a homeomorphism.
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Groups

The following groups have automatic homeomorphicity.

[E. B. Rabinovich (1977)] S

[D. Evans (1986)] Aut( V), where V., = GF(q)~ for some finite q.
[J. Truss (1989)] Aut(Q, <)

[W. Hodges, |. Hodkinson, D. Lascar, S. Shelah (1993)] Aut(V, E)
[M. Rubin (1994)] Generic poset, universal tournament, etc.

[S. Barbina, D. Macpherson (2004)] Random k-uniform hypergraphs,
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Groups

The following groups have automatic homeomorphicity.

[E. B. Rabinovich (1977)] S

[D. Evans (1986)] Aut( V), where V., = GF(q)~ for some finite q.
[J. Truss (1989)] Aut(Q, <)

[W. Hodges, |. Hodkinson, D. Lascar, S. Shelah (1993)] Aut(V, E)
[M. Rubin (1994)] Generic poset, universal tournament, etc.

[S. Barbina, D. Macpherson (2004)] Random k-uniform hypergraphs,
Henson digraphs, etc.

Fact: It is consistent with ZF that for every countable structure A the
topological group Aut(A) has automatic continuity/ automatic
homeomorphicity/ reconstruction.
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Automatic continuity for monoids

M. Bodirsky, M. Pinsker, AP (2013)

Let M be a closed submonoid of DP. Suppose that M contains a
submonoid A such that NV is not closed in M, and

(M\N)oM C (M\N), Mo(M\N)C (M\N). Then M does not
have automatic continuity.
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Automatic continuity for monoids

M. Bodirsky, M. Pinsker, AP (2013)

Let M be a closed submonoid of DP. Suppose that M contains a
submonoid A such that NV is not closed in M, and

(M\N)oM C (M\N), Mo(M\N)C (M\N). Then M does not
have automatic continuity.

v

M. Bodirsky, M. Pinsker, AP (2013)

There exists an w-categorical structure A whose endomorphism
monoid has a discontinuous automorphism.

Reconstruction?
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From groups to monoids

Proposition

Let M and M’ be closed submonoids of DP with dense subsets of
invertibles G and G'. Let £ : G — G’ be a continuous isomorphism.
Then ¢ extends to an isomorphism & : M — M’ which is a
homeomorphism.
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From groups to monoids

Proposition

Let M be a closed submonoid of DP whose group of invertible
elements G is dense in M and has automatic homeomorphicity.
Assume that the only injective endomorphism of M that fixes every
element of G is the identity function id,, on M. Then M has automatic
homeomorphicity.

v
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Automatic homeomorphicity of monoids

Theorem

Let A be a countable homogeneous relational structure such that
Aut(A) has no algebraicity and with the joint extension property such

that Aut(A) has automatic homeomorphicity. Then the monoid Aut(A)
of self-embeddings of A has automatic homeomaorphicity.
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Automatic homeomorphicity of monoids

Theorem

Let A be a countable homogeneous relational structure such that
Aut(A) has no algebraicity and with the joint extension property such

that Aut(A) has automatic homeomorphicity. Then the monoid Aut(A)
of self-embeddings of A has automatic homeomaorphicity.

(V, E), random tournament, random hypergraphs, (w, =)
X (Q, <), Henson graphs, generic poset
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Clones

Polymorphisms: “higher-ary endomorphisms”

Projections are always polymorphisms, and polymorphisms are closed
under composition.

Such objects are called clones.

Clone homomorphisms: preserve arities, map =" to «/', compatible
with composition, i.e., {(fo (91, gn)) = §(F) o (£(91).- - £(gn)))
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Let H be the closed clone generated by
m all unary injections, and
m a binary injection f: w? — w.

‘H consists of all injections w” — w (almost...)

Given an isomorphism ¢ : H — C. If g : w¥ — w is bijective, then any
k-ary h € H is of the form a0 g.

Sequences (hp)nen € HK) are sequences (o o g)nen.
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Horn clone

Let H be the closed clone generated by
m all unary injections, and
m a binary injection f: w? — w.

‘H consists of all injections w” — w (almost...)

Given an isomorphism ¢ : H — C. If g : w¥ — w is bijective, then any
k-ary h € H is of the form a0 g.

Sequences (hp)nen € HK) are sequences (o o g)nen.
lim £(hn) = lim(¢(an)) © £(g) = £(lim(an) o g) = £(lim hp)
Proposition

Every isomorphism ¢ : H — C is continuous.
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m for every U € U a function fyy € U,

such that for all converging sequences (9')ic., in C
(say in some U € U, and say of arity n)
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Gate coverings

Definition

A gate covering of a topological clone C consists of
m an open covering U of C;
m for every U € U a function fyy € U,

such that for all converging sequences (9')ic., in C
(say in some U € U, and say of arity n)

there exist unary (o/)jcy and (8)jens - - - , (Bh)ien in C with
mg'(x1,...,xp) = ' (fu(B(xy),...,5(xn))) and
B (o')ieny and (5)ien, - - -, (Bp)ien CONverge.
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Gate coverings Il

M. Bodirsky, M. Pinsker, AP (2013)

If C is a closed subclone of O such that
m C acts transitively;
m C(") has automatic homeomorphicity;
m C has a gate covering;

Then C has automatic homeomorphicity.
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Gate coverings Il

M. Bodirsky, M. Pinsker, AP (2013)

If C is a closed subclone of O such that
m C acts transitively;
m C(") has automatic homeomorphicity;
m C has a gate covering;

Then C has automatic homeomorphicity.

Proposition
‘H has automatic homeomorphicity.
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Gate coverings Il

M. Bodirsky, M. Pinsker, AP (2013)

If C is a closed subclone of O such that
m C acts transitively;
m C(") has automatic homeomorphicity;
m C has a gate covering;

Then C has automatic homeomorphicity.

Proposition
‘H has automatic homeomorphicity.

Theorem
Pol(V, E) has automatic homeomorphicity.
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Pol(V, E) has automatic homeomorphicity

Every isomorphism ¢ : End(V, E) — M is continuous.
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Pol(V, E) has automatic homeomorphicity

Every isomorphism ¢ : End(V, E) — M is continuous.
Pol(V, E) N H has automatic homeomorphicity.

Every f € Pol(V, E) decomposes as f = ho g with h € End(V, E),
g€ Pol(V,E)NH.

Moreover, if (f;)jen is Cauchy, then 3 decompositions f; = h; o g; with
h; € End(V, E), g; € Pol(V, E) n'’H Cauchy sequences.
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Pol(V, E) has automatic homeomorphicity

Every isomorphism ¢ : End(V, E) — M is continuous.
Pol(V, E) N H has automatic homeomorphicity.

Every f € Pol(V, E) decomposes as f = ho g with h € End(V, E),
g€ Pol(V,E)NH.

Moreover, if (f;)jen is Cauchy, then 3 decompositions f; = h; o g; with
h; € End(V, E), g; € Pol(V, E) n'’H Cauchy sequences.

All isomorphisms ¢ : Pol(V, E) — C are continuous.
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Open problems

3 w-categorical A with a discontinuous automorphism of End(A).
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Open problems

3 w-categorical A with a discontinuous automorphism of End(A).
Problem 1 Is there a homogeneous structure A in a finite relational
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Open problems

3 w-categorical A with a discontinuous automorphism of End(A).
Problem 1 Is there a homogeneous structure A in a finite relational
language such that End(A) (or Pol(A)) does not have reconstruction?

Problem 2 Does Pol(H,, E) have reconstruction for (any) n > 37
Problem 3 Does Aut(P, <) have automatic continuity?
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