

Endomorphism monoids of countably infinite structures

András Pongrácz

School of Science and Technology, Middlesex University

York, 2015

Automorphism group

Algebraic invariants

Automorphism group < Endomorphism monoid

Algebraic invariants

Automorphism group < Endomorphism monoid < Polymorphism clone

Algebraic invariants

Automorphism group < Endomorphism monoid < Polymorphism clone
Purely algebraic?

Algebraic and topological invariants

Δ : countable relational structure with underlying set D

Topology on D^D : base open sets

$$\Omega((a_1, b_1), \dots, (a_n, b_n)) = \{f \in D^D \mid f(a_i) = b_i\}$$

Algebraic and topological invariants

Δ : countable relational structure with underlying set D

Topology on D^Δ : base open sets

$$\Omega((a_1, b_1), \dots, (a_n, b_n)) = \{f \in D^\Delta \mid f(a_i) = b_i\}$$

Discrete for finite Δ ,

Algebraic and topological invariants

Δ : countable relational structure with underlying set D

Topology on D^Δ : base open sets

$$\Omega((a_1, b_1), \dots, (a_n, b_n)) = \{f \in D^\Delta \mid f(a_i) = b_i\}$$

Discrete for finite Δ , interesting for countably infinite Δ .

Algebraic and topological invariants

Δ : countable relational structure with underlying set D

Topology on D^Δ : base open sets

$$\Omega((a_1, b_1), \dots, (a_n, b_n)) = \{f \in D^\Delta \mid f(a_i) = b_i\}$$

Discrete for finite Δ , interesting for countably infinite Δ .

M is closed $\Leftrightarrow M = \text{End}(\Delta)$ for some Δ .

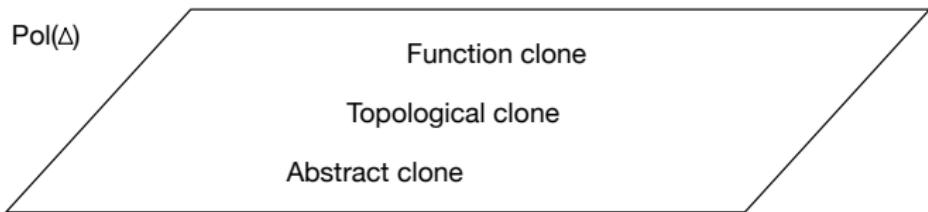
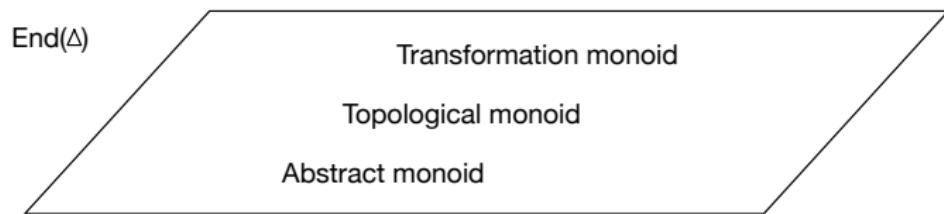
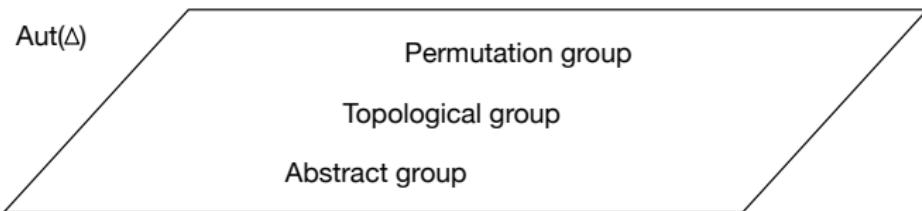
The general problem

Question: Does the abstract algebraic structure of $\text{Aut}(\Delta)$ / $\text{End}(\Delta)$ / $\text{Pol}(\Delta)$ determine its topological structure?

The general problem

Question: Does the abstract algebraic structure of $\text{Aut}(\Delta)$ / $\text{End}(\Delta)$ / $\text{Pol}(\Delta)$ determine its topological structure?

Question: How much information is captured by these invariants?



ω -categoricity

Δ is ω -categorical iff it is the only model of its first-order theory up to isomorphism.

ω -categoricity

Δ is ω -categorical iff it is the only model of its first-order theory up to isomorphism.

The endpoint-free, dense linear order

ω -categoricity

Δ is ω -categorical iff it is the only model of its first-order theory up to isomorphism.

The endpoint-free, dense linear order

$\Delta \models$

ω -categoricity

Δ is ω -categorical iff it is the only model of its first-order theory up to isomorphism.

The endpoint-free, dense linear order

$$\Delta \models$$
$$\forall x \exists y : x < y \wedge$$

ω -categoricity

Δ is ω -categorical iff it is the only model of its first-order theory up to isomorphism.

The endpoint-free, dense linear order

$\Delta \models$

$\forall x \exists y : x < y \wedge$

$\forall x \exists y : x > y \wedge$

ω -categoricity

Δ is ω -categorical iff it is the only model of its first-order theory up to isomorphism.

The endpoint-free, dense linear order

$$\begin{aligned}\Delta \models \\ \forall x \exists y : x < y \wedge \\ \forall x \exists y : x > y \wedge \\ \forall x \forall y \exists z : x < z < y\end{aligned}$$

Δ is ω -categorical iff it is the only model of its first-order theory up to isomorphism.

The endpoint-free, dense linear order

$$\begin{aligned}\Delta \models \\ \forall x \exists y : x < y \wedge \\ \forall x \exists y : x > y \wedge \\ \forall x \forall y \exists z : x < z < y \\ \Rightarrow \Delta \cong (\mathbb{Q}; <)\end{aligned}$$

The automorphism group...

The automorphism group...

as a permutation group.

The automorphism group...

as a permutation group.

Theorem (Ryll-Nardzewski, Engeler, Svenonius (1959))

Δ is ω -categorical $\Leftrightarrow \text{Aut}(\Delta)$ is oligomorphic.

The automorphism group...

as a permutation group.

Theorem (Ryll-Nardzewski, Engeler, Svenonius (1959))

Δ is ω -categorical $\Leftrightarrow \text{Aut}(\Delta)$ is oligomorphic.

The endpoint-free, dense linear order

The automorphism group...

as a permutation group.

Theorem (Ryll-Nardzewski, Engeler, Svenonius (1959))

Δ is ω -categorical $\Leftrightarrow \text{Aut}(\Delta)$ is oligomorphic.

The endpoint-free, dense linear order

$\underline{s}, \underline{t} \in (\mathbb{Q}; <)^n$

The automorphism group...

as a permutation group.

Theorem (Ryll-Nardzewski, Engeler, Svenonius (1959))

Δ is ω -categorical $\Leftrightarrow \text{Aut}(\Delta)$ is oligomorphic.

The endpoint-free, dense linear order

$\underline{s}, \underline{t} \in (\mathbb{Q}; <)^n$

Assume $s_1 < \dots < s_n$ and $t_1 < \dots < t_n$.

The automorphism group...

as a permutation group.

Theorem (Ryll-Nardzewski, Engeler, Svenonius (1959))

Δ is ω -categorical $\Leftrightarrow \text{Aut}(\Delta)$ is oligomorphic.

The endpoint-free, dense linear order

$\underline{s}, \underline{t} \in (\mathbb{Q}; <)^n$

Assume $s_1 < \dots < s_n$ and $t_1 < \dots < t_n$.

Then $\exists \alpha \in \text{Aut}(\mathbb{Q}; <)$ with $\alpha(s_i) = t_i$.

Homogeneous structures

Homogeneous structures

Definition

Δ is homogeneous if every partial isomorphism $f : A \rightarrow B$ between finite substructures of Δ extends to an automorphism of Δ .

Homogeneous structures

Definition

Δ is homogeneous if every partial isomorphism $f : A \rightarrow B$ between finite substructures of Δ extends to an automorphism of Δ .

A homogeneous structure Δ is up to isomorphism uniquely determined by $\text{Age}(\Delta)$ (Fraïssé).

Homogeneous structures

Definition

Δ is homogeneous if every partial isomorphism $f : A \rightarrow B$ between finite substructures of Δ extends to an automorphism of Δ .

A homogeneous structure Δ is up to isomorphism uniquely determined by $\text{Age}(\Delta)$ (Fraïssé).

Finite total orders \rightarrow dense linear order $(\mathbb{Q}; <)$.

Homogeneous structures

Definition

Δ is homogeneous if every partial isomorphism $f : A \rightarrow B$ between finite substructures of Δ extends to an automorphism of Δ .

A homogeneous structure Δ is up to isomorphism uniquely determined by $\text{Age}(\Delta)$ (Fraïssé).

Finite total orders \rightarrow dense linear order $(\mathbb{Q}; <)$.

Finite graphs \rightarrow random graph $(V; E)$.

Homogeneous structures

Definition

Δ is homogeneous if every partial isomorphism $f : A \rightarrow B$ between finite substructures of Δ extends to an automorphism of Δ .

A homogeneous structure Δ is up to isomorphism uniquely determined by $\text{Age}(\Delta)$ (Fraïssé).

Finite total orders \rightarrow dense linear order $(\mathbb{Q}; <)$.

Finite graphs \rightarrow random graph $(V; E)$.

Finite partially ordered sets \rightarrow random poset $(P; \leq)$.

Homogeneous structures

Definition

Δ is homogeneous if every partial isomorphism $f : A \rightarrow B$ between finite substructures of Δ extends to an automorphism of Δ .

A homogeneous structure Δ is up to isomorphism uniquely determined by $\text{Age}(\Delta)$ (Fraïssé).

Finite total orders \rightarrow dense linear order $(\mathbb{Q}; <)$.

Finite graphs \rightarrow random graph $(V; E)$.

Finite partially ordered sets \rightarrow random poset $(P; \leq)$.

Finite K_n -free graphs \rightarrow Henson graph $(H_n; E)$.

Homogeneous structures

Definition

Δ is homogeneous if every partial isomorphism $f : A \rightarrow B$ between finite substructures of Δ extends to an automorphism of Δ .

A homogeneous structure Δ is up to isomorphism uniquely determined by $\text{Age}(\Delta)$ (Fraïssé).

Finite total orders \rightarrow dense linear order $(\mathbb{Q}; <)$.

Finite graphs \rightarrow random graph $(V; E)$.

Finite partially ordered sets \rightarrow random poset $(P; \leq)$.

Finite K_n -free graphs \rightarrow Henson graph $(H_n; E)$.

Finite tournaments \rightarrow random tournament $(V; T)$.

Homogeneous structures

Definition

Δ is homogeneous if every partial isomorphism $f : A \rightarrow B$ between finite substructures of Δ extends to an automorphism of Δ .

A homogeneous structure Δ is up to isomorphism uniquely determined by $\text{Age}(\Delta)$ (Fraïssé).

Finite total orders \rightarrow dense linear order $(\mathbb{Q}; <)$.

Finite graphs \rightarrow random graph $(V; E)$.

Finite partially ordered sets \rightarrow random poset $(P; \leq)$.

Finite K_n -free graphs \rightarrow Henson graph $(H_n; E)$.

Finite tournaments \rightarrow random tournament $(V; T)$.

Finite ordered graphs \rightarrow random ordered graph $(D; E, <)$.

The automorphism group

Ryll-Nardzewski (1959)

Let Δ, Γ be ω -categorical. TFAE:

- Δ and Γ are first-order interdefinable
- $\text{Aut}(\Delta) \cong \text{Aut}(\Gamma)$ as permutation groups

The automorphism group

Ryll-Nardzewski (1959)

Let Δ, Γ be ω -categorical. TFAE:

- Δ and Γ are first-order interdefinable
- $\text{Aut}(\Delta) \cong \text{Aut}(\Gamma)$ as permutation groups

Ahlbrandt, Ziegler (1986)

Let Δ, Γ be ω -categorical. TFAE:

- Δ and Γ are first-order biinterpretable
- $\text{Aut}(\Delta) \cong \text{Aut}(\Gamma)$ as topological groups

$\text{Pol}(\Delta)$

Function clone — p. p. interdefinability

Topological clone — p. p. biinterpretability

Abstract clone — ?

 $\text{End}(\Delta)$

Transformation monoid — e. p. interdefinability

Topological monoid — e. p. biinterpretability

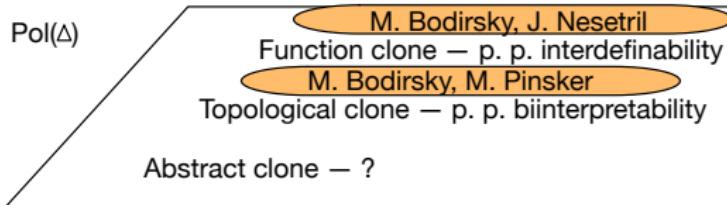
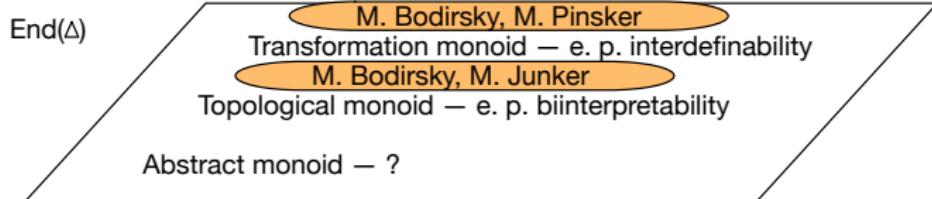
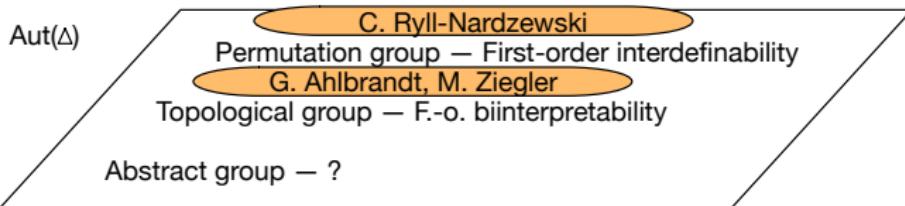
Abstract monoid — ?

 $\text{Aut}(\Delta)$

Permutation group — First-order interdefinability

Topological group — F.-o. biinterpretability

Abstract group — ?



Groups

Groups

Δ : a countable structure

Groups

Δ : a countable structure

Automatic continuity

For any closed group G and any homomorphism $\xi : \text{Aut}(\Delta) \rightarrow G$, ξ is continuous.

Groups

Δ : a countable structure

Automatic continuity

For any closed group G and any homomorphism $\xi : \text{Aut}(\Delta) \rightarrow G$, ξ is continuous.

Automatic homeomorphicity

For any closed group G and any isomorphism $\xi : \text{Aut}(\Delta) \rightarrow G$, ξ is a homeomorphism.

Groups

Δ : a countable structure

Automatic continuity

For any closed group G and any homomorphism $\xi : \text{Aut}(\Delta) \rightarrow G$, ξ is continuous.

Automatic homeomorphicity

For any closed group G and any isomorphism $\xi : \text{Aut}(\Delta) \rightarrow G$, ξ is a homeomorphism.

Reconstruction

For any closed group G , if there exists an isomorphism $\xi : \text{Aut}(\Delta) \rightarrow G$, then there exists (possibly another) isomorphism $\xi' : \text{Aut}(\Delta) \rightarrow G$ which is a homeomorphism.

Groups

Groups

The following groups have automatic homeomorphicity.

Groups

The following groups have automatic homeomorphicity.

[E. B. Rabinovich (1977)] S_∞

Groups

The following groups have automatic homeomorphicity.

[E. B. Rabinovich (1977)] S_∞

[D. Evans (1986)] $\text{Aut}(V_\infty)$, where $V_\infty = GF(q)^\omega$ for some finite q .

Groups

The following groups have automatic homeomorphicity.

[E. B. Rabinovich (1977)] S_∞

[D. Evans (1986)] $\text{Aut}(V_\infty)$, where $V_\infty = GF(q)^\omega$ for some finite q .

[J. Truss (1989)] $\text{Aut}(\mathbb{Q}, <)$

Groups

The following groups have automatic homeomorphicity.

[E. B. Rabinovich (1977)] S_∞

[D. Evans (1986)] $\text{Aut}(V_\infty)$, where $V_\infty = GF(q)^\omega$ for some finite q .

[J. Truss (1989)] $\text{Aut}(\mathbb{Q}, <)$

[W. Hodges, I. Hodkinson, D. Lascar, S. Shelah (1993)] $\text{Aut}(V, E)$

Groups

The following groups have automatic homeomorphicity.

[E. B. Rabinovich (1977)] S_∞

[D. Evans (1986)] $\text{Aut}(V_\infty)$, where $V_\infty = GF(q)^\omega$ for some finite q .

[J. Truss (1989)] $\text{Aut}(\mathbb{Q}, <)$

[W. Hodges, I. Hodkinson, D. Lascar, S. Shelah (1993)] $\text{Aut}(V, E)$

[M. Rubin (1994)] Generic poset, universal tournament, etc.

Groups

The following groups have automatic homeomorphicity.

[E. B. Rabinovich (1977)] S_∞

[D. Evans (1986)] $\text{Aut}(V_\infty)$, where $V_\infty = GF(q)^\omega$ for some finite q .

[J. Truss (1989)] $\text{Aut}(\mathbb{Q}, <)$

[W. Hodges, I. Hodkinson, D. Lascar, S. Shelah (1993)] $\text{Aut}(V, E)$

[M. Rubin (1994)] Generic poset, universal tournament, etc.

[S. Barbina, D. Macpherson (2004)] Random k -uniform hypergraphs, Henson digraphs, etc.

Groups

The following groups have automatic homeomorphicity.

[E. B. Rabinovich (1977)] S_∞

[D. Evans (1986)] $\text{Aut}(V_\infty)$, where $V_\infty = GF(q)^\omega$ for some finite q .

[J. Truss (1989)] $\text{Aut}(\mathbb{Q}, <)$

[W. Hodges, I. Hodkinson, D. Lascar, S. Shelah (1993)] $\text{Aut}(V, E)$

[M. Rubin (1994)] Generic poset, universal tournament, etc.

[S. Barbina, D. Macpherson (2004)] Random k -uniform hypergraphs, Henson digraphs, etc.

Fact: It is consistent with ZF that for every countable structure Δ the topological group $\text{Aut}(\Delta)$ has automatic continuity/ automatic homeomorphicity/ reconstruction.

$\text{Pol}(\Delta)$

M. Bodirsky, J. Nešetřil
Function clone — p. p. interdefinability
M. Bodirsky, M. Pinsker
Topological clone — p. p. biinterpretability

Abstract clone — ?

$\text{End}(\Delta)$

M. Bodirsky, M. Pinsker
Transformation monoid — e. p. interdefinability
M. Bodirsky, M. Junker
Topological monoid — e. p. biinterpretability

Abstract monoid — ?

$\text{Aut}(\Delta)$

C. Ryll-Nardzewski
Permutation group — First-order interdefinability
G. Ahlbrandt, M. Ziegler
Topological group — F.-o. biinterpretability

Abstract group — ?

Automatic continuity for monoids

M. Bodirsky, M. Pinsker, AP (2013)

Let \mathcal{M} be a closed submonoid of D^D . Suppose that \mathcal{M} contains a submonoid \mathcal{N} such that \mathcal{N} is not closed in \mathcal{M} , and $(\mathcal{M} \setminus \mathcal{N}) \circ \mathcal{M} \subseteq (\mathcal{M} \setminus \mathcal{N})$, $\mathcal{M} \circ (\mathcal{M} \setminus \mathcal{N}) \subseteq (\mathcal{M} \setminus \mathcal{N})$. Then \mathcal{M} does not have automatic continuity.

Automatic continuity for monoids

M. Bodirsky, M. Pinsker, AP (2013)

Let \mathcal{M} be a closed submonoid of D^D . Suppose that \mathcal{M} contains a submonoid \mathcal{N} such that \mathcal{N} is not closed in \mathcal{M} , and $(\mathcal{M} \setminus \mathcal{N}) \circ \mathcal{M} \subseteq (\mathcal{M} \setminus \mathcal{N})$, $\mathcal{M} \circ (\mathcal{M} \setminus \mathcal{N}) \subseteq (\mathcal{M} \setminus \mathcal{N})$. Then \mathcal{M} does not have automatic continuity.

M. Bodirsky, M. Pinsker, AP (2013)

There exists an ω -categorical structure Δ whose endomorphism monoid has a discontinuous automorphism.

Automatic continuity for monoids

M. Bodirsky, M. Pinsker, AP (2013)

Let \mathcal{M} be a closed submonoid of D^D . Suppose that \mathcal{M} contains a submonoid \mathcal{N} such that \mathcal{N} is not closed in \mathcal{M} , and $(\mathcal{M} \setminus \mathcal{N}) \circ \mathcal{M} \subseteq (\mathcal{M} \setminus \mathcal{N})$, $\mathcal{M} \circ (\mathcal{M} \setminus \mathcal{N}) \subseteq (\mathcal{M} \setminus \mathcal{N})$. Then \mathcal{M} does not have automatic continuity.

M. Bodirsky, M. Pinsker, AP (2013)

There exists an ω -categorical structure Δ whose endomorphism monoid has a discontinuous automorphism.

Reconstruction?

From groups to monoids

Proposition

Let \mathcal{M} and \mathcal{M}' be closed submonoids of D^D with dense subsets of invertibles \mathcal{G} and \mathcal{G}' . Let $\xi : \mathcal{G} \rightarrow \mathcal{G}'$ be a continuous isomorphism. Then ξ extends to an isomorphism $\bar{\xi} : \mathcal{M} \rightarrow \mathcal{M}'$ which is a homeomorphism.

From groups to monoids

Proposition

Let \mathcal{M} be a closed submonoid of D^D whose group of invertible elements \mathcal{G} is dense in \mathcal{M} and has automatic homeomorphicity. Assume that the only injective endomorphism of \mathcal{M} that fixes every element of \mathcal{G} is the identity function $\text{id}_{\mathcal{M}}$ on \mathcal{M} . Then \mathcal{M} has automatic homeomorphicity.

Automatic homeomorphicity of monoids

Theorem

Let Δ be a countable homogeneous relational structure such that $\text{Aut}(\Delta)$ has no algebraicity and with the joint extension property such that $\text{Aut}(\Delta)$ has automatic homeomorphicity. Then the monoid $\text{Aut}(\Delta)$ of self-embeddings of Δ has automatic homeomorphicity.

Automatic homeomorphicity of monoids

Theorem

Let Δ be a countable homogeneous relational structure such that $\text{Aut}(\Delta)$ has no algebraicity and with the joint extension property such that $\text{Aut}(\Delta)$ has automatic homeomorphicity. Then the monoid $\text{Aut}(\Delta)$ of self-embeddings of Δ has automatic homeomorphicity.

✓ (V, E) , random tournament, random hypergraphs, $(\omega, =)$

Automatic homeomorphicity of monoids

Theorem

Let Δ be a countable homogeneous relational structure such that $\text{Aut}(\Delta)$ has no algebraicity and with the joint extension property such that $\text{Aut}(\Delta)$ has automatic homeomorphicity. Then the monoid $\text{Aut}(\Delta)$ of self-embeddings of Δ has automatic homeomorphicity.

- ✓ (V, E) , random tournament, random hypergraphs, $(\omega, =)$
- ✗ $(\mathbb{Q}, <)$, Henson graphs, generic poset

Clones

Polymorphisms: “higher-ary endomorphisms”

Clones

Polymorphisms: “higher-ary endomorphisms”

Projections are always polymorphisms,

Clones

Polymorphisms: “higher-ary endomorphisms”

Projections are always polymorphisms, and polymorphisms are closed under composition.

Clones

Polymorphisms: “higher-ary endomorphisms”

Projections are always polymorphisms, and polymorphisms are closed under composition.

Such objects are called **clones**.

Clones

Polymorphisms: “higher-ary endomorphisms”

Projections are always polymorphisms, and polymorphisms are closed under composition.

Such objects are called **clones**.

Clone homomorphisms: preserve arities, map π_i^n to π_j^n , compatible with composition, i.e., $\xi(f \circ (g_1, \dots, g_n)) = \xi(f) \circ (\xi(g_1), \dots, \xi(g_n))$

$\text{Pol}(\Delta)$

M. Bodirsky, J. Nešetřil
Function clone — p. p. interdefinability
M. Bodirsky, M. Pinsker
Topological clone — p. p. biinterpretability

Abstract clone — ?

$\text{End}(\Delta)$

M. Bodirsky, M. Pinsker
Transformation monoid — e. p. interdefinability
M. Bodirsky, M. Junker
Topological monoid — e. p. biinterpretability

Abstract monoid — ?

$\text{Aut}(\Delta)$

C. Ryll-Nardzewski
Permutation group — First-order interdefinability
G. Ahlbrandt, M. Ziegler
Topological group — F.-o. biinterpretability

Abstract group — ?

Horn clone

Horn clone

Let \mathcal{H} be the closed clone generated by

Horn clone

Let \mathcal{H} be the closed clone generated by

- all unary injections, and

Horn clone

Let \mathcal{H} be the closed clone generated by

- all unary injections, and
- a binary injection $f: \omega^2 \rightarrow \omega$.

Horn clone

Let \mathcal{H} be the closed clone generated by

- all unary injections, and
- a binary injection $f: \omega^2 \rightarrow \omega$.

\mathcal{H} consists of all injections $\omega^n \rightarrow \omega$

Horn clone

Let \mathcal{H} be the closed clone generated by

- all unary injections, and
- a binary injection $f: \omega^2 \rightarrow \omega$.

\mathcal{H} consists of all injections $\omega^n \rightarrow \omega$ (almost...)

Horn clone

Let \mathcal{H} be the closed clone generated by

- all unary injections, and
- a binary injection $f: \omega^2 \rightarrow \omega$.

\mathcal{H} consists of all injections $\omega^n \rightarrow \omega$ (almost...)

Given an isomorphism $\xi: \mathcal{H} \rightarrow \mathcal{C}$. If $g: \omega^k \rightarrow \omega$ is bijective, then any k -ary $h \in \mathcal{H}$ is of the form $\alpha \circ g$.

Horn clone

Let \mathcal{H} be the closed clone generated by

- all unary injections, and
- a binary injection $f: \omega^2 \rightarrow \omega$.

\mathcal{H} consists of all injections $\omega^n \rightarrow \omega$ (almost...)

Given an isomorphism $\xi: \mathcal{H} \rightarrow \mathcal{C}$. If $g: \omega^k \rightarrow \omega$ is bijective, then any k -ary $h \in \mathcal{H}$ is of the form $\alpha \circ g$.

Sequences $(h_n)_{n \in \mathbb{N}} \subseteq \mathcal{H}^{(k)}$ are sequences $(\alpha_n \circ g)_{n \in \mathbb{N}}$.

Horn clone

Let \mathcal{H} be the closed clone generated by

- all unary injections, and
- a binary injection $f: \omega^2 \rightarrow \omega$.

\mathcal{H} consists of all injections $\omega^n \rightarrow \omega$ (almost...)

Given an isomorphism $\xi: \mathcal{H} \rightarrow \mathcal{C}$. If $g: \omega^k \rightarrow \omega$ is bijective, then any k -ary $h \in \mathcal{H}$ is of the form $\alpha \circ g$.

Sequences $(h_n)_{n \in \mathbb{N}} \subseteq \mathcal{H}^{(k)}$ are sequences $(\alpha_n \circ g)_{n \in \mathbb{N}}$.

$$\lim \xi(h_n) = \lim(\xi(\alpha_n)) \circ \xi(g) = \xi(\lim(\alpha_n) \circ g) = \xi(\lim h_n)$$

Horn clone

Let \mathcal{H} be the closed clone generated by

- all unary injections, and
- a binary injection $f: \omega^2 \rightarrow \omega$.

\mathcal{H} consists of all injections $\omega^n \rightarrow \omega$ (almost...)

Given an isomorphism $\xi: \mathcal{H} \rightarrow \mathcal{C}$. If $g: \omega^k \rightarrow \omega$ is bijective, then any k -ary $h \in \mathcal{H}$ is of the form $\alpha \circ g$.

Sequences $(h_n)_{n \in \mathbb{N}} \subseteq \mathcal{H}^{(k)}$ are sequences $(\alpha_n \circ g)_{n \in \mathbb{N}}$.

$\lim \xi(h_n) = \lim(\xi(\alpha_n)) \circ \xi(g) = \xi(\lim(\alpha_n) \circ g) = \xi(\lim h_n)$

Proposition

Every isomorphism $\xi: \mathcal{H} \rightarrow \mathcal{C}$ is continuous.

Gate coverings

Gate coverings

Definition

A *gate covering* of a topological clone \mathcal{C} consists of

Gate coverings

Definition

A *gate covering* of a topological clone \mathcal{C} consists of

- an open covering \mathcal{U} of \mathcal{C} ;
- for every $U \in \mathcal{U}$ a function $f_U \in U$;

Gate coverings

Definition

A *gate covering* of a topological clone \mathcal{C} consists of

- an open covering \mathcal{U} of \mathcal{C} ;
- for every $U \in \mathcal{U}$ a function $f_U \in U$;

such that for all converging sequences $(g^i)_{i \in \omega}$ in \mathcal{C}
(say in some $U \in \mathcal{U}$, and say of arity n)

Gate coverings

Definition

A *gate covering* of a topological clone \mathcal{C} consists of

- an open covering \mathcal{U} of \mathcal{C} ;
- for every $U \in \mathcal{U}$ a function $f_U \in U$;

such that for all converging sequences $(g^i)_{i \in \omega}$ in \mathcal{C}
(say in some $U \in \mathcal{U}$, and say of arity n)

there exist unary $(\alpha^i)_{i \in \mathbb{N}}$ and $(\beta_1^i)_{i \in \mathbb{N}}, \dots, (\beta_n^i)_{i \in \mathbb{N}}$ in \mathcal{C} with

- $g^i(x_1, \dots, x_n) = \alpha^i(f_U(\beta_1^i(x_1), \dots, \beta_n^i(x_n)))$ and
- $(\alpha^i)_{i \in \mathbb{N}}$ and $(\beta_1^i)_{i \in \mathbb{N}}, \dots, (\beta_n^i)_{i \in \mathbb{N}}$ converge.

Gate coverings II

Gate coverings II

M. Bodirsky, M. Pinsker, AP (2013)

If \mathcal{C} is a closed subclone of \mathcal{O} such that

Gate coverings II

M. Bodirsky, M. Pinsker, AP (2013)

If \mathcal{C} is a closed subclone of \mathcal{O} such that

- \mathcal{C} acts transitively;

Gate coverings II

M. Bodirsky, M. Pinsker, AP (2013)

If \mathcal{C} is a closed subclone of \mathcal{O} such that

- \mathcal{C} acts transitively;
- $\mathcal{C}^{(1)}$ has automatic homeomorphicity;

Gate coverings II

M. Bodirsky, M. Pinsker, AP (2013)

If \mathcal{C} is a closed subclone of \mathcal{O} such that

- \mathcal{C} acts transitively;
- $\mathcal{C}^{(1)}$ has automatic homeomorphicity;
- \mathcal{C} has a gate covering;

Gate coverings II

M. Bodirsky, M. Pinsker, AP (2013)

If \mathcal{C} is a closed subclone of \mathcal{O} such that

- \mathcal{C} acts transitively;
- $\mathcal{C}^{(1)}$ has automatic homeomorphicity;
- \mathcal{C} has a gate covering;

Then \mathcal{C} has automatic homeomorphicity.

Gate coverings II

M. Bodirsky, M. Pinsker, AP (2013)

If \mathcal{C} is a closed subclone of \mathcal{O} such that

- \mathcal{C} acts transitively;
- $\mathcal{C}^{(1)}$ has automatic homeomorphicity;
- \mathcal{C} has a gate covering;

Then \mathcal{C} has automatic homeomorphicity.

Proposition

\mathcal{H} has automatic homeomorphicity.

Gate coverings II

M. Bodirsky, M. Pinsker, AP (2013)

If \mathcal{C} is a closed subclone of \mathcal{O} such that

- \mathcal{C} acts transitively;
- $\mathcal{C}^{(1)}$ has automatic homeomorphicity;
- \mathcal{C} has a gate covering;

Then \mathcal{C} has automatic homeomorphicity.

Proposition

\mathcal{H} has automatic homeomorphicity.

Theorem

$\text{Pol}(V, E)$ has automatic homeomorphicity.

$\text{Pol}(V, E)$ has automatic homeomorphicity

Every isomorphism $\xi : \text{End}(V, E) \rightarrow \mathcal{M}$ is continuous.

Pol(V, E) has automatic homeomorphicity

Every isomorphism $\xi : \text{End}(V, E) \rightarrow \mathcal{M}$ is continuous.

Pol(V, E) $\cap \mathcal{H}$ has automatic homeomorphicity.

Pol(V, E) has automatic homeomorphicity

Every isomorphism $\xi : \text{End}(V, E) \rightarrow \mathcal{M}$ is continuous.

Pol(V, E) $\cap \mathcal{H}$ has automatic homeomorphicity.

Every $f \in \text{Pol}(V, E)$ decomposes as $f = h \circ g$ with $h \in \text{End}(V, E)$,
 $g \in \text{Pol}(V, E) \cap \mathcal{H}$.

Pol(V, E) has automatic homeomorphicity

Every isomorphism $\xi : \text{End}(V, E) \rightarrow \mathcal{M}$ is continuous.

Pol(V, E) $\cap \mathcal{H}$ has automatic homeomorphicity.

Every $f \in \text{Pol}(V, E)$ decomposes as $f = h \circ g$ with $h \in \text{End}(V, E)$, $g \in \text{Pol}(V, E) \cap \mathcal{H}$.

Moreover, if $(f_i)_{i \in \mathbb{N}}$ is Cauchy, then \exists decompositions $f_i = h_i \circ g_i$ with $h_i \in \text{End}(V, E)$, $g_i \in \text{Pol}(V, E) \cap \mathcal{H}$ Cauchy sequences.

Pol(V, E) has automatic homeomorphicity

Every isomorphism $\xi : \text{End}(V, E) \rightarrow \mathcal{M}$ is continuous.

Pol(V, E) $\cap \mathcal{H}$ has automatic homeomorphicity.

Every $f \in \text{Pol}(V, E)$ decomposes as $f = h \circ g$ with $h \in \text{End}(V, E)$, $g \in \text{Pol}(V, E) \cap \mathcal{H}$.

Moreover, if $(f_i)_{i \in \mathbb{N}}$ is Cauchy, then \exists decompositions $f_i = h_i \circ g_i$ with $h_i \in \text{End}(V, E)$, $g_i \in \text{Pol}(V, E) \cap \mathcal{H}$ Cauchy sequences.

All isomorphisms $\xi : \text{Pol}(V, E) \rightarrow \mathcal{C}$ are continuous.

Open problems

\exists ω -categorical Δ with a discontinuous automorphism of $\text{End}(\Delta)$.

Open problems

\exists ω -categorical Δ with a discontinuous automorphism of $\text{End}(\Delta)$.

Problem 1 Is there a homogeneous structure Δ in a finite relational language such that $\text{End}(\Delta)$ (or $\text{Pol}(\Delta)$) does not have reconstruction?

Open problems

\exists ω -categorical Δ with a discontinuous automorphism of $\text{End}(\Delta)$.

Problem 1 Is there a homogeneous structure Δ in a finite relational language such that $\text{End}(\Delta)$ (or $\text{Pol}(\Delta)$) does not have reconstruction?

Problem 2 Does $\text{Pol}(H_n, E)$ have reconstruction for (any) $n \geq 3$?

Open problems

\exists ω -categorical Δ with a discontinuous automorphism of $\text{End}(\Delta)$.

Problem 1 Is there a homogeneous structure Δ in a finite relational language such that $\text{End}(\Delta)$ (or $\text{Pol}(\Delta)$) does not have reconstruction?

Problem 2 Does $\text{Pol}(H_n, E)$ have reconstruction for (any) $n \geq 3$?

Problem 3 Does $\text{Aut}(P, \leq)$ have automatic continuity?