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Algebraic invariants

Automorphism group

< Endomorphism monoid < Polymorphism clone

Purely algebraic?
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Algebraic and topological invariants

∆: countable relational structure with underlying set D
Topology on DD: base open sets

Ω((a1,b1), . . . , (an,bn)) = {f ∈ DD | f (ai) = bi}

Discrete for finite ∆, interesting for countably infinite ∆.

M is closed⇔ M = End(∆) for some ∆.
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The general problem

Question: Does the abstract algebraic structure of Aut(∆) / End(∆) /
Pol(∆) determine its topological structure?

Question: How much information is captured by these invariants?
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Permutation group

Topological group

Abstract group

Transformation monoid

Topological monoid

Abstract monoid

Function clone

Topological clone

Abstract clone

Aut(  )

End(  )

Pol(  )

Endomorphism monoids András Pongrácz



ω-categoricity

∆ is ω-categorical iff it is the only model of its first-order theory up to
isomorphism.

The endpoint-free, dense linear order

∆ |=
∀x∃y : x < y∧
∀x∃y : x > y∧
∀x∀y∃z : x < z < y
⇒ ∆ ∼= (Q;<)
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The automorphism group. . .

as a permutation group.

Theorem (Ryll-Nardzewski, Engeler, Svenonius (1959))

∆ is ω-categorical⇔ Aut(∆) is oligomorphic.

The endpoint-free, dense linear order

s, t ∈ (Q;<)n

Assume s1 < · · · < sn and t1 < · · · < tn.
Then ∃α ∈ Aut(Q;<) with α(si) = ti .
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Homogeneous structures

Definition
∆ is homogeneous if every partial isomorphism f : A→ B between
finite substructures of ∆ extends to an automorphism of ∆.

A homogeneous structure ∆ is up to isomorphism uniquely determined
by Age(∆) (Fraïssé).

Finite total orders→ dense linear order (Q;<).
Finite graphs→ random graph (V ; E).
Finite partially ordered sets→ random poset (P;≤).
Finite Kn-free graphs→ Henson graph (Hn; E).
Finite tournaments→ random tournament (V ; T ).
Finite ordered graphs→ random ordered graph (D; E , <).
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The automorphism group

Ryll-Nardzewski (1959)
Let ∆, Γ be ω-categorical. TFAE:

∆ and Γ are first-order interdefinable
Aut(∆) ∼= Aut(Γ) as permutation groups

Ahlbrandt, Ziegler (1986)
Let ∆, Γ be ω-categorical. TFAE:

∆ and Γ are first-order biinterpretable
Aut(∆) ∼= Aut(Γ) as topological groups
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Permutation group — First-order interdefinability

Topological group — F.-o. biinterpretability

Abstract group — ?

Transformation monoid — e. p. interdefinability

Topological monoid — e. p. biinterpretability

Abstract monoid — ?

Function clone — p. p. interdefinability

Topological clone — p. p. biinterpretability

Abstract clone — ?

Aut(  )

End(  )

Pol(  )
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Groups

∆: a countable structure

Automatic continuity

For any closed group G and any homomorphism ξ : Aut(∆)→ G, ξ is
continuous.

Automatic homeomorphicity

For any closed group G and any isomorphism ξ : Aut(∆)→ G, ξ is a
homeomorphism.

Reconstruction
For any closed group G, if there exists an isomorphism
ξ : Aut(∆)→ G, then there exists (possibly another) isomorphism
ξ′ : Aut(∆)→ G which is a homeomorphism.
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Groups

The following groups have automatic homeomorphicity.
[E. B. Rabinovich (1977)] S∞

[D. Evans (1986)] Aut(V∞), where V∞ = GF (q)ω for some finite q.
[J. Truss (1989)] Aut(Q, <)

[W. Hodges, I. Hodkinson, D. Lascar, S. Shelah (1993)] Aut(V ,E)

[M. Rubin (1994)] Generic poset, universal tournament, etc.
[S. Barbina, D. Macpherson (2004)] Random k -uniform hypergraphs,
Henson digraphs, etc.
Fact: It is consistent with ZF that for every countable structure ∆ the
topological group Aut(∆) has automatic continuity/ automatic
homeomorphicity/ reconstruction.
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Automatic continuity for monoids

M. Bodirsky, M. Pinsker, AP (2013)

LetM be a closed submonoid of DD. Suppose thatM contains a
submonoid N such that N is not closed inM, and
(M\N ) ◦M ⊆ (M\N ),M◦ (M\N ) ⊆ (M\N ). ThenM does not
have automatic continuity.

M. Bodirsky, M. Pinsker, AP (2013)
There exists an ω-categorical structure ∆ whose endomorphism
monoid has a discontinuous automorphism.

Reconstruction?
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From groups to monoids

Proposition

LetM andM′ be closed submonoids of DD with dense subsets of
invertibles G and G′. Let ξ : G → G′ be a continuous isomorphism.
Then ξ extends to an isomorphism ξ̄ :M→M′ which is a
homeomorphism.
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From groups to monoids

Proposition

LetM be a closed submonoid of DD whose group of invertible
elements G is dense inM and has automatic homeomorphicity.
Assume that the only injective endomorphism ofM that fixes every
element of G is the identity function idM onM. ThenM has automatic
homeomorphicity.
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Automatic homeomorphicity of monoids

Theorem
Let ∆ be a countable homogeneous relational structure such that
Aut(∆) has no algebraicity and with the joint extension property such
that Aut(∆) has automatic homeomorphicity. Then the monoid Aut(∆)
of self-embeddings of ∆ has automatic homeomorphicity.

X (V ,E), random tournament, random hypergraphs, (ω,=)

X (Q, <), Henson graphs, generic poset
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Clones

Polymorphisms: “higher-ary endomorphisms”

Projections are always polymorphisms, and polymorphisms are closed
under composition.

Such objects are called clones.

Clone homomorphisms: preserve arities, map πn
i to πn

i , compatible
with composition, i.e., ξ(f ◦ (g1, . . . ,gn)) = ξ(f ) ◦ (ξ(g1), . . . , ξ(gn)))
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Permutation group — First-order interdefinability

Topological group — F.-o. biinterpretability

Abstract group — ?

Transformation monoid — e. p. interdefinability

Topological monoid — e. p. biinterpretability

Abstract monoid — ?

Function clone — p. p. interdefinability

Topological clone — p. p. biinterpretability

Abstract clone — ?

Aut(  )

End(  )

Pol(  ) M. Bodirsky, J. Nesetril

M. Bodirsky, M. Pinsker

M. Bodirsky, M. Pinsker

M. Bodirsky, M. Junker

C. Ryll-Nardzewski

G. Ahlbrandt, M. Ziegler
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Horn clone

Let H be the closed clone generated by
all unary injections, and
a binary injection f : ω2 → ω.

H consists of all injections ωn → ω (almost. . . )
Given an isomorphism ξ : H → C. If g : ωk → ω is bijective, then any
k -ary h ∈ H is of the form α ◦ g.
Sequences (hn)n∈N ⊆ H(k) are sequences (αn ◦ g)n∈N.
lim ξ(hn) = lim(ξ(αn)) ◦ ξ(g) = ξ(lim(αn) ◦ g) = ξ(lim hn)

Proposition
Every isomorphism ξ : H → C is continuous.
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Gate coverings

Definition
A gate covering of a topological clone C consists of

an open covering U of C;
for every U ∈ U a function fU ∈ U;

such that for all converging sequences (g i)i∈ω in C
(say in some U ∈ U , and say of arity n)
there exist unary (αi)i∈N and (β i

1)i∈N, . . . , (β
i
n)i∈N in C with

g i(x1, . . . , xn) = αi(fU(β i(x1), . . . , β i(xn))) and
(αi)i∈N and (β i

1)i∈N, . . . , (β
i
n)i∈N converge.
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Gate coverings II

M. Bodirsky, M. Pinsker, AP (2013)
If C is a closed subclone of O such that
C acts transitively;
C(1) has automatic homeomorphicity;
C has a gate covering;

Then C has automatic homeomorphicity.

Proposition
H has automatic homeomorphicity.

Theorem
Pol(V ,E) has automatic homeomorphicity.
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Pol(V ,E) has automatic homeomorphicity

Every isomorphism ξ : End(V ,E)→M is continuous.

Pol(V ,E) ∩H has automatic homeomorphicity.

Every f ∈ Pol(V ,E) decomposes as f = h ◦ g with h ∈ End(V ,E),
g ∈ Pol(V ,E) ∩H.

Moreover, if (fi)i∈N is Cauchy, then ∃ decompositions fi = hi ◦ gi with
hi ∈ End(V ,E), gi ∈ Pol(V ,E) ∩H Cauchy sequences.

All isomorphisms ξ : Pol(V ,E)→ C are continuous.
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Open problems

∃ ω-categorical ∆ with a discontinuous automorphism of End(∆).

Problem 1 Is there a homogeneous structure ∆ in a finite relational
language such that End(∆) (or Pol(∆)) does not have reconstruction?

Problem 2 Does Pol(Hn,E) have reconstruction for (any) n ≥ 3?

Problem 3 Does Aut(P,≤) have automatic continuity?
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