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Theorem (Reidemeister 1927)

Two knots are equivalent < they differ by Reidemeister moves.

b )X X

» Knots are built from small pieces (crossings).

» Equivalence is governed by local moves.
» Useful when defining knot invariants.
» Alexander, Conway, Jones, Kauffman...
» f(knot K) := f(diagram representing K).

» f is well-defined < invariant under local moves.
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Informally, A has presentation (X : R) if:
» X is a generating set for A,
» R is a set of equations (relations) over X: e.g., xy = yx,
» R is complete: every equation over X follows from R.

Formally, A has presentation (X : R) if A= X*/R*":
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» X is a set and X* is the free algebra (of same type as A),
» R C X* x X* and R" is the congruence on X* generated by R.
> i.e., there is a surmorphism X* — A with kernel RY.

» We can use presentations to define homomorphisms ¢ : A — B.
» Define ¢(x) for all x € X.
» For a=xy - xk, define ¢(a) = d(x1) - - - P(xk)-

> Well-defined < ¢(u) = ¢(v) for every relation u = v.
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Theorem (Artin, 1925)

The braid group B, = (01,...,0n-1: R).

oj0j = 00 if|i—j|>1 (Rl)
oi0j0; = 0j0;0;j if |i—j]=1. (R2)
B R AV B
=] X1 1
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A Reidemeister movel!
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» Those examples were groups.
» Presentations for many semigroups are known.
» For an integer n >0, let n = {1,...,n}.
» The full transformation semigroup:

Tn = {functions n — n}.
» The partial transformation semigroup:

PT, = {partial functions n — n}.

» The symmetric inverse semigroup:

T, = {partial bijections n — n}.
» Each contains the symmetric group:

Sp = {bijections n — n}.
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Theorem (Aizenstat, 1958)

The full transformation semigroup 7, = (s1,...,Sp—1,€ : R).
) for all i (R1)
5i5; = S;5; if |i—j|>1 (R2)
SiSjSi = SjsiS; ifi—jl=1 (R3)
sie = es; if i >3 (R4)
e =e=se (R5)
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Theorem (Popova, 1961)

The symmetric inverse semigroup Z, = (s1,...,Sp—1,€ : R).
s?= for all i (R1)
5i5; = S;5; if |i—j|>1 (R2)
SiSjSi = SjsiS; if i—jl=1 (R3)
sie = es; if i >2 (R4)
e?=e (R5)
es1es; = sjesje = ese. (R6)
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Categories

» For us: each category C has object set N = {0,1,2,...}.
» Think of C as a partial monoid...... A set with:

» a partial product xy = xoy (x,y €C),

» domain/range functions d,r: C — N,

» many identity elements ¢, (n € N) with d(¢,) = r(¢n) = n.
» Properties/axioms:

> xy defined & r(x) = d(y),

> d(xy) = d(x) and r(xy) = r(y),

» (xy)z = x(yz) when defined,

> L;mOX =X = X0, when defined.
» Morphism sets: Cpp = {x € C : d(x) = m, r(x) = n}.
» Endomorphism monoids: C, = Cp p.

» Familiar example: M = {all (finite) matrices over R}.
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» Recall: n={1,...,n} for n€ N.

» The full transformation category:
T = {functions m — n: m,n € N}.
» Morphism sets: 7., = {functions m — n}.

» Endomorphism monoids: 7, = 7, , = {functions n — n}.

» The partial transformation category:
PT = {partial functions m — n: m, n € N}.

» Endomorphism monoids: P7T,,.

» The symmetric inverse category:
7 = {partial bijections m — n: m,n € N}.

» Endomorphism monoids: Z,,.
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» My original motivation.
» ForneN,letn={1,...,n}and n' ={1,... 0"}
» For m,n €N, let Py, , = {set partitions of mUn'}

= {equiv-classes of graphs on mUn'}.

> Eg: o= {{1,3,4'},{2,4}, {5.6.1’.5”,{2’},{3’}} € Pos

1/ 2/ 3/ 4’ 5/

» The partition category is P = U Pm,n.
m,neN
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Diagram categories — composition in P
Let & € Pmp and € P, q. To calculate af = a0 € Pr gt

(1) connect bottom of « to top of 3,
(2) remove middle vertices and floating components,

(3) smooth out resulting graph to obtain af.

1 e g
B{ﬁgy;%)i;i;%\}aﬁ

» Endomorphism monoids are partition monoids P, = Py p.

g—— 0

» There are linear/twisted versions as well...
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» The Brauer category B = {partitions with blocks of size 2}:

"
Nl
» The Temperley-Lieb category TL = {planar Brauer partitions}:
N =
AN
» These are subcategories of P.

» Brauer and Temperley-Lieb monoids: B,, and TL,.



Diagram categories — B and TL

» The Brauer category B = {partitions with blocks of size 2}:

AN\l

The Temperley-Lieb category TL = {planar Brauer partitions}:
‘\U e U/’
¢ o ¢

These are subcategories of P.

v

v

v

Brauer and Temperley-Lieb monoids: B, and TL,,.

v

Bm.n = TLmn = @ if mand n have opposite parities!
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Diagram categories — what are they for?

Av
" MAGNETS

makeameme.org|

» knot theory, representation theory, category theory, combinatorics...
> computer science, theoretical physics, biology...
> semigroup theory...

» fun!
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» The categories P, B and TL have another operation, @:

a:%n Y —af
D RN

» P, B and TL are all (strict) tensor categories.
> d(a® §) = d(a) +d(5) and r(a & ) = r(a) + r(5).
a®(foy)=(a®pf) D,

v

> ad=a=1 D,

N
> lm D ln = tmtn, ‘ /B 5
> (aof)@(yod)=(a®7)o(BD).



Diagram categories — tensor operation

» The categories P, B and TL have another operation, @:

a:%n Y —af
D RN

» P, B and TL are all (strict) tensor categories.
> d(a® §) = d(a) +d(5) and r(a & ) = r(a) + r(5).
a®(foy)=(a®pf) D,

> aDlg=a=19D,

v

Q
=2

> im D lp = tmtn, -

(aoB)@®(y0d)=(a®7)o(BDI).

=
%
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Diagram categories — tensor operation

» The categories P, B and TL have another operation, @:

a:%n Y —af
D RN

» P, B and TL are all (strict) tensor categories.
> d(a® §) = d(a) +d(5) and r(a & ) = r(a) + r(5).
a®(foy)=(a®pf) D,

> aDlg=a=19D,

v

o Y
g §

> im D lp = tmtn, -

(aoB)@®(y0d)=(a®7)o(BDI).

v

» The categories T, PT and T are also tensor categories.



Diagram categories — presentations

Theorem (folklore?)

The Temperley-Lieb category 7L = (U,N : R).

NoU=, (R1)
UonN=UsN=NnNaU, (R2)
(leMoUal)y=I=0Nal)o(ldU). (R3)



Diagram categories — presentations

Theorem (folklore?)

The Temperley-Lieb category 7L = (U,N : R).

NoU =, (R1)

UonN=UsN=neoU, (R2)

(leN)o(Uasl=I=Na&l)o(la V). (R3)
UEU nzn, I=1,1:I

o




Diagram categories — presentations

Theorem (folklore?)

The Temperley-Lieb category 7L = (U,N : R).

NoU =, (R1)
UoN=UsN=neUu, (R2)
(leN)o(Uasl=I=Na&l)o(la V). (R3)
L
U= nzn, I=1,1:I
o«
B e« B o« B e«
- e - o - o
& »




Diagram categories — presentations

Theorem (folklore?)

The Temperley-Lieb category 7L = (U,N : R).

NoU =, (R1)
UonN=UsN=neoU, (R2)
(leN)o(Uasl=IlI=Na&l)o(la V). (R3)
L
U= nzn, I=1,1:I

- -




Diagram categories — presentations

Theorem (folklore?)

The Temperley-Lieb category 7L = (U,N : R).

NoU =, (R1)
UonN=UsnN=neoUu, (R2)
(leN)o(Uasl=I=Na&l)o(la V). (R3)
L
U= nzn, I=1,1:I

» (R2) is my favourite relation.



Diagram categories — presentations

Theorem (folklore?)

The Temperley-Lieb category 7L = (U,N : R).

NoU =, (R1)
UonN=UsnN=neoUu, (R2)
(leN)o(Uasl=I=Na&l)o(la V). (R3)
L
U= , I)En, I=1,1:I

» (R2) is my favourite relation.

» But it's actually unnecessary :-(



Diagram categories — presentations

Theorem (folklore?)

The Temperley-Lieb category 7L = (U,N : R).

NoU =, (R1)
UoN=UsN=noU, (R2)
(leMo(Ualy=I=Na&l)o(laU). (R3)
(4
U= , I)En, I=1,1:I

» (R2) is my favourite relation.
» But it's actually unnecessary :-(

» eg, UanN



Diagram categories — presentations

Theorem (folklore?)

The Temperley-Lieb category 7L = (U,N : R).

NoU =, (R1)
UonN=UsnN=neoUu, (R2)
(leN)o(Uasl=I=Na&l)o(la V). (R3)
L
U= nEn, /=L1:I

» (R2) is my favourite relation.
» But it's actually unnecessary :-(

»eg, UDN =(Uoy)®(ooN)



Diagram categories — presentations

Theorem (folklore?)

The Temperley-Lieb category 7L = (U,N : R).

NoU =, (R1)
UonN=UsnN=neoUu, (R2)
(leN)o(Uasl=I=Na&l)o(la V). (R3)
L
U= nEn, /=L1:I

» (R2) is my favourite relation.
» But it's actually unnecessary :-(

»eg, UdN =(Uow)®(ooN)=(Udw)o (o)



Diagram categories — presentations

Theorem (folklore?)

The Temperley-Lieb category 7L = (U,N : R).

NoU =, (R1)
UonN=UsnN=neoUu, (R2)
(leN)o(Uasl=I=Na&l)o(la V). (R3)
L
U= nEn, /=L1:I

» (R2) is my favourite relation.
» But it's actually unnecessary :-(

»eg, UdN =(Uow)®(ooN)=(Udwp)o(to®N)=UonN.
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Theorem (folklore?)

The Temperley-Lieb category 7L = (U,N : R).

NoU =, (R1)
(leN)o(Ual=I=Na&l)o(la V). (R2)

» Can you show that U and 11 (and /) generate TL?

ey
\ / =nNoloUono((leoUal)oU)a Il
e
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The Brauer category B = (X, U,N : R).
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Theorem (cf. Lehrer and Zhang, 2015)

The Brauer category B = (X, U,N : R).

XoX=1Il, NoU=1, XoU=U, NoX=n, (R1)
XlolXoX =IXoXlolX, (R2)
INoU =1=0NlolU, (R3)
IXo Ul =XlolU, (R4)
NiolX=1NoXl. (R5)
X = X, UEU, n= , /EI.
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The partition category P = (X, D, U,N : R).

XoX=I1&l, NolU=.y, (R1)
DoD=D=DoX=XoD, (R2)
(Delho(l®@D)=(®D)o (Do), (R3)
Xeho(laX)o(Xdl)={UdX)o(XDI)o(I®X), (R4)
X@eho(l®@D)o(X®l)={UdX)o(DdI)o(l®X), (R5)
Xo(loaU)=Ua!l, (I&eN)oX=Nal, (R6)
(leMoDo(l®U)=1, Do(l®U®N)oD=D. (R7)

X = , DEH, UE., n= |, I:lel.
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Theorem (Comes, 2017)

The partition category P = (X, U,N,V, A : R).

XoX=I1®l, ANoV=INolU=y, (R1)
XoV=V, NoX=A, (R2)
Xo(laU)=UaIl, (I®&N)oX=Nal, (R3)
Xeho(leaX)o(Xel)=UdX)o(X®I)o(I®X), (R4)
(leaV)oX=(Xalo(l®X)o(Val), (R5)
Xo(leN)=ANdo(ldX)o (X&), (R6)
No(laU)=1=({&N)oV, (R7)
NeNo(laV)=VoA=(UdAN)o(VaI). (R8)

XEX, =" n=_. VEV, /\EI\, I
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Theorem (Comes, 2017)
The partition category P = (X, U,N,V, A : R).

Il
<
Il
o~
>
Il
C 0

‘'

x=X., v ]

» Jellyfish partition categories

» Jonathan Comes
» Algebras and representation theory, to appear.

» The proof relies on some heavy machinery:

» Frobenius algebras and cobordism categories (Abrams, Kock).
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» The Brauer category and invariant theory

» Gus Lehrer and Ruibin Zhang
» J. European Mathematical Society, 2015.
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Theorem (cf. Lehrer and Zhang, 2015)

The Brauer category B = (X, U,N : R).

XEX, U U, N =

» The Brauer category and invariant theory

» Gus Lehrer and Ruibin Zhang
» J. European Mathematical Society, 2015.

» Quite detailed proof from scratch.
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Theorem (folklore?)

The Temperley-Lieb category 7L = (U,N : R).

» Many proofs have been given.

» The level of rigour varies...
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Diagram categories — presentations

Original goal

Find a general framework for presentations of diagram categories.

» Completely rigorous.

» Use known presentations for diagram monoids.

Eventually

» A method that works.

» Key properties axiomatised.
» General results, applicable to many categories.

» P, B, TL, PT,T,Z PO, O, OL, PV, V, IB....
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Categories — presentations

Basic pattern

> Given a tensor category C (over N).

» Check it satisfies some basic structural properties.

v

Find presentations for endomorphism monoids C,,.

v

Theorem A: a (big) category presentation (I : Q) for C.

v

Theorem B: a (small?) tensor category presentation (A : =).

» (A : =) is what we really want.

v

(I : Q) is a means to an end.

v

The Micky-Ricky-Vicky Trick!
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» C is a category over N.

v

There is an integer d > 1 such that

Cmn# @< m=n (mod d).

d=1forC=P. 7117727

v

» d =2 forC =B.
d=1forC=77

v

> Tmpn=90 < m>0=n.



Theorem A — Key assumptions

» (C is a category over N.

» There is an integer d > 1 such that

Cmn# @< m=n (mod d).

d=1forC=P. 7117727

v

d=2forC=B.
»d=1forC=T7

v

> mvn:®®m>0:n.

» Things are a little more complicated for 7 ...
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Theorem A — Key assumptions

We have presentations C, = (X, : R,) for each n.

\{

Tn (Aizenstat), P7, and Z, (Popova),
P, (Halverson and Ram; E),

\4

v

B, (Kudryatseva and Mazorchuk),

\{

TL, (Jones; Kauffman; Borisavljevi¢, Dosen and Petri¢),

V, (Lavers), ZIB, (Easdown and Lavers), PV, (E).

Lemma

We have C = (I'), where I = {\,, pp : n € N} U U Xn.
neN

v
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Theorem A — Key assumptions

We assume that Q is a set of relations over ' such that:

» Each relation holds in C.
» (Q contains:

» each R,,

> Anpn = tn,

> pnAn = w, for some w, € X .

» For all w € X*

g Aawpp~w'  for some w' € X
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Theorem A

If Assumptions 1-4 hold, then C has presentation (I : Q).

» Theorem A applies to many categories.

» P,B,TC, PT,T", I, PO, OF, O, PV, V', IB......

» Most parts of the assumptions are easy to check.
» Exceptions:

» Presentations for endomorphism monoids C,,.

» Forall w e X*

vdr Anwpp~w'  for some w’ € X



Theorem A — applications

The partition category P = (I : Q):

2 2 2
Tj:n = Un, €i:n = €iny  Ti;n = Tizn = Ti;n0isn = Ti;nTi;n,

Oi;n€iin = €i+1;n0iiny  E€iin€it+1;n0i;n = Ein€it1;n,

Ein€jin = Ejin€isny  Ti:nTjin = TjinTi;n,

Oi;n0jin = O0}inOi;ny  Ti:nTjin = Tjin0Oiin, if |i _J| >1,
Oi;n0j:n0i;n = 0};n0i;n0jiny,  Oi;nTj;inOi;n = Oj:nTi;n0j;n, if |’ _Jl = 1,
Oi:n€j;n = €j;nOi:ny  Ti;n€jin = Ej:nTiin, 'fJ 7é i7 i< 17
Ti;:n€j;nTi;n = Ti;ny  Ej;nTi;n€j;n = Ejin, |fJ = i7 i+ ]-v

)\npn = Ln, pn)\n = En+1;n+1,
ei;n)\n = )\,,0,-;,,+1, pne;;,, = 0,-;,,+1p,,, for 6 € {0',6, T}.

o= [XUL == THIT == 11



Theorem A — applications

The Brauer category B = (' : Q):

R

Oi:n0j;n = O0:n0i;n,
0i:n0j;n0j;n = O};n0i:n0j;n,
)\npn = ln,

ei;nAn = >\n9i;n+2v

-2

i:n = Ti;n = Ti;n0i;n = Oi;nTi;ny

Ti;nTj;n = TjinTi;ns  Oi;nTj;n = Tj;nOi:ns if |i 7./' >1,
Oi:nTjinOi;n = O0j:nTi;n0);ny  Ti;n0j:nTi;n = Ti;n, if |’ _Jl =1,
PnAn = Totin+2,

pnBiin = bi:nt2Pn, for 6 € {o,7}.

= [XI1] == 13111



Theorem A — applications

The Brauer category B = (' : Q):

U%,, = tn, 7_"2;" = Ti;n = Ti;nCi;n = Ti:nTi;n»
Oi:n0j;n = O0j:nTi;ny  Ti;nTj;n = TjinTins  Oi;nTj;n = Tj;nOi:ns if |i _Jl >1,
0i:n0j;:n0i;n = O0;n0i:n0j:ns  Oi;nTj;n0i;n = Of;nTi;nO0jins  Ti;nOj;nTi;n = Ti:ns if |i _JI =1,
)\npn = ln, Pn/\n = Tn+1;n+2;

ei;nAn S )\nei;n+2y Pnei;n S 9i;n+2pn7

The Temperley-Lieb category TL = (I' : Q):

for 0 € {o,7}.

2 _ 2l g8 _ T
Tin = Tisns  TinTjin = TinTin i [ = j| > 1, TinTjnTin = Tin if [ = j| = 1,

Anpn = ln, Pn)\n = Tn+1;n+2, 7'i;n)\n = )\n"'i;n+2» PnTi:n = Ti;n4+2Pn-
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Theorem A

If Assumptions 1-4 hold, then C has presentation (I : Q).

» But we really want a tensor presentation.

» We make two further assumptions...
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Theorem B — Key assumptions

Assumption 5

We assume that C is a (strict) tensor category over N.

Assumption 6

We assume that A C C, and = is a set of relations:

» Each relation holds in C.
» There is a morphism '™ — A% : w — w:

» For all x €T, we have x® = x¢.

» Forallxe Aand m,neN, we have t,, D x D 1, = W
for some w € '*.

» For all (u,v) € Q, we have U~ V.
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» e.g., in the Brauer category B:

> Gsg = IXI =148 X
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Theorem B

If Assumptions 1-6 hold, then C has tensor presentation (A : =).

» The main work is establishing the properties of the terms w.
» Finding the definition is easy enough.

» e.g., in the Brauer category B:

> G = X1 = 14 © X ® 12,

e 1113011



Theorem B

If Assumptions 1-6 hold, then C has tensor presentation (A : =).

» The main work is establishing the properties of the terms w.
» Finding the definition is easy enough.

» e.g., in the Brauer category B:

> U583 =1a DX Do,

> Tsg=ta®UDBN Do,

m= ][] 2]



Theorem B

If Assumptions 1-6 hold, then C has tensor presentation (A : =).

» The main work is establishing the properties of the terms w.
» Finding the definition is easy enough.

» e.g., in the Brauer category B:

> 058 =14 O X D12, > Xs =130 U,
> s =B UDN By,
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Theorem B

If Assumptions 1-6 hold, then C has tensor presentation (A : =).

» The main work is establishing the properties of the terms w.
» Finding the definition is easy enough.

» e.g., in the Brauer category B:

> 058 =ta DX Dy, > Ag=18D U,
» T =@ UBN By, » g =15DN.

~= 1A



Theorem B

If Assumptions 1-6 hold, then C has tensor presentation (A : =).

» The main work is establishing the properties of the terms w.
» Finding the definition is easy enough.

» e.g., in the Brauer category B:

> 058 =ta DX Dy, ’XsZLg@U,
> Tsg = ®UDN @iz, > pg=1tg DN.

» There is a Theorem C for categories like T

> Cnpn=2 & m>0=n.



Theorem B — applications

The Temperley-Lieb category 7L = (U, : =).

1oU =,
(leN)o(Uah=I=Na&l)o(la ).

<
Il
Il
Il

“* ,/I.
'Y



Theorem B — applications

The Brauer category B = (X, U,N : =).

XoX=I®l, NoU=1w, XoU=U, NoX=n,
Xeho(leX)o(Xal) = X)o(X®!l)o (Il X),
leMoWUel)=I=Na&l)o(aU),
(leX)o(Ual) =(X&l)o(laU),
NahHo(laX)=UaN)o(XBI).

XEX, UEU, n o / I



Theorem B — applications

The partition category P = (X, D, U,N : =).

XoX=I1®l, olU=u,

DoD=D=DoX=XoD,
(Del)o(leD)=(I®D)o (D),
Jo(l&X)o(X®)={UBX)o(XBI)o (I X),
Jo(l@D)o(Xdl)={UdX)o (D)o (I ®X),

Xo(loU)y=UasIl, (IeMoX=Nal,
(leMoDo(l®U)=1, Do(l®U®N)oD=D.

(

Xl
Xl

x=X. o=[]. u=", n=_, =]



Theorem B — applications

The transformation category 7 = (X, V, /] : =).

XoX=1, XoV=V,
(VeloV=>UadV)oV, (I&N)oV =1,
Xeho(leaX)o(Xdl)={UdX)o(XDI)o (I D X),
NehoX=I1an, (eV)oX=Xa)o(l®dX)o(Val.

XEX, VEV, n=_. /EI.



Theorem B — applications

The partial transformation category P7T = (X, V,U,N : =).

XoX =13, floU=uy,

XoV=V, VolU=UasU,
(VelhoV=(aV)oV, (I&N)oV=I,
Xeho(leaX)o(Xdl)={UdX)o(XDI)o (I D X),
Xo(Ual)=1aU, (NeleX=I1aN,
(leV)oX=(Xal)o(l®aX)o(Val).

x=X. v=l/. v=". n=_, =]



Theorem B — applications

The symmetric inverse category Z = (X, U,/ : =).

XoX =1y, MNolU=.y,
XehNo(laX)o(X®l)=(U®X)o(X®I)o(I®X),
Xo(Uelh=IlaU, (Nel)oX=I1aN.

XEX, W=, n=_. /EI.



Theorem B — applications

Order-preserving transformations: O = (V,/] : =).

(VehoV=>UaV)oV, (aN)oV=I=N&l)oV.

v=)]/. n=_ 1=]



Theorem B — applications

Order-preserving partial transformations: PO = (V, U,/ : =).

NoU=1, VolU=UsU,
(Vel)oV=(UaV)oV, (IeN)oV=I=Na&l)oV.

v=]/. u=". a=_, i=]



Theorem B — applications

Order-preserving partial bijections: OZ = (U, : =).

NoU=.

u= , N= |, /EI.
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» More applications come from (partial) braids/vines.
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» PV = the partial vine category.
» V = the (full) vine category.

» 7B = the partial braid category.



Theorem B — applications

The partial vine category PV = (X, X1,V U,N : Z).

XoX t=X"1oX=1, NolU=uy,
XoV=V, VoU=UaU,
(VeloV=>UaV)oV, (I&N)oV =1,
Xeho(leaX)o(Xdl)={UdX)o(XDI)o (I D X),
Xo(UdN=I1oU, Xo(l®oU)=U®I,
(NehoX=I1en, (I&N)oX=N&I,
(leV)oX=Xao(laX)o(Val),
(VeoX=(U®X)o(Xdl)o(d V).

XE./,X_lzx,VEV,UE.,nE.,I I



Theorem B — applications

The (full) vine category V = (X, X1, Vv, N : ).

XoX1=X1oX=10, XoV=V,
(VehoV=>UaV)oV, (I&N)oV=I,
Xeho(leaX)o(Xadl)={UdX)o(XDI)o (I B X),
NehHoX=1an, (IleMoX=Na&I,
(leV)oX=(Xal)o(l®&X)o(Val),
(VelhoX=(laX)o(Xa®l)o(l® V).

E.//., X_IEX, VEV, nz., /

1l
*—o



Theorem B — applications

The partial braid category ZB = (X, X1, U,N : =).

XoXtT=X"1oX=1, NolU=.,
(Xeho(leaX)o(Xal)=(UdX)o(X®!l)o (Il X),
Xo(Ual)=IlaU, Xo(laU)=UalI,
(NehoX=I1l®n, (I&N)oX=N&I.

<
I

S
S
I

P
<
I
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Theorem B — applications

The partial braid category ZB = (X, X1, U,N : =).

XoXtT=X"1oX=1, NolU=.,
(Xeho(leaX)o(Xal)=(UdX)o(X®!l)o (Il X),
Xo(Ual)=IlaU, Xo(laU)=UalI,
(NehoX=I1l®n, (I&N)oX=N&I.

X, o u=". n=_, 1=]

» PV, V and ZB are braided tensor categories (Joyal+Street).
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The partial braid category ZB = (X, X1, U,N : =).
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» PV, V and ZB are braided tensor categories (Joyal+Street).
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» Can put the braids into the free data of the presentation.
> eg, IB=(U,N:NoU=).



Theorem B — applications

The partial braid category ZB = (X, X1, U,N : =).

XoXtT=X"1oX=1, NolU=.,
(Xeho(leaX)o(Xal)=(UdX)o(X®!l)o (Il X),
Xo(Ual)=IlaU, Xo(laU)=UalI,
(NehoX=I1l®n, (I&N)oX=N&I.

X, o u=". n=_, 1=]

» PV, V and ZB are braided tensor categories (Joyal+Street).

X_./,X

» Can put the braids into the free data of the presentation.

»eg,IB=(U,N:NoU=.)....
...... the bicyclic braided tensor category?!



| could go on... and on...

CATEGORIEZ!HTI




Thank you :-)

» Presentations for tensor categories

» Coming soon to arXiv...



