

Faithful representations of diagram monoids

Marianne Johnson
University of Manchester

Joint work with

James East (right) and Mark Kambites (left)
(with many thanks to James for sharing a version of these slides)

Faithful linear and relational representations of diagram monoids

- ▶ JE, MJ, MK
- ▶ arXiv:2512.????? (?)

Joint work with

James East (right) and Mark Kambites (left)
(with many thanks to James for sharing a version of these slides)

Faithful linear and relational representations of diagram monoids

- ▶ JE, MJ, MK
- ▶ arXiv:2512.????? (?)

Main theorem

The partition monoid \mathcal{P}_n has a faithful 2^n -dimensional matrix representation over any AI semiring.

Joint work with

James East (right) and Mark Kambites (left)
(with many thanks to James for sharing a version of these slides)

Faithful linear and relational representations of diagram monoids

- ▶ JE, MJ, MK
- ▶ arXiv:2512.????? (?)

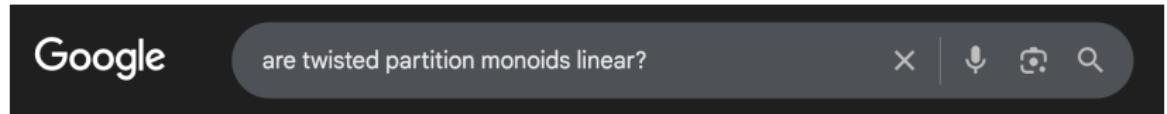
Main theorem

The partition monoid \mathcal{P}_n has a faithful 2^n -dimensional matrix representation over any AI (additively idempotent) semiring.

A Joke from James...

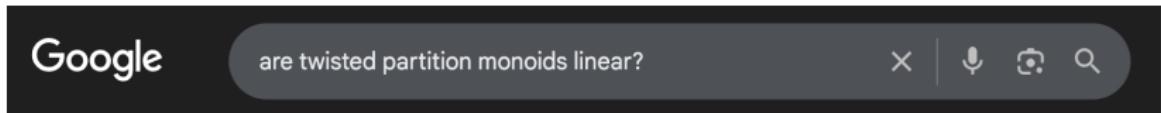
A Joke from James...

“AI...”



A Joke from James...

“AI...”

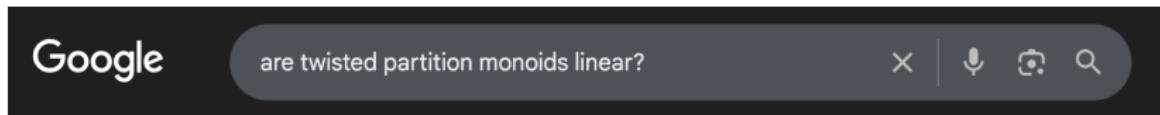


AI Overview

No, twisted partition monoids are generally not linear

A Joke from James...

“AI...”



❖ AI Overview

No, twisted partition monoids are generally not linear

Theorem

Twisted partition monoids are linear.

Basic idea — representation theory

We **represent** abstract objects by concrete ones.

Abstract groups:

- ▶ permutation groups,
- ▶ matrix groups (over fields).

Basic idea — representation theory

We **represent** abstract objects by concrete ones.

Abstract groups:

- ▶ permutation groups,
- ▶ matrix groups (over fields).

Abstract semigroups:

- ▶ (partial) transformation semigroups,

Basic idea — representation theory

We **represent** abstract objects by concrete ones.

Abstract groups:

- ▶ permutation groups,
- ▶ matrix groups (over fields).

Abstract semigroups:

- ▶ (partial) transformation semigroups, or relation semigroups, or...

Basic idea — representation theory

We **represent** abstract objects by concrete ones.

Abstract groups:

- ▶ permutation groups,
- ▶ matrix groups (over fields).

Abstract semigroups:

- ▶ (partial) transformation semigroups, or relation semigroups, or...
- ▶ matrix semigroups (over fields)

Basic idea — representation theory

We **represent** abstract objects by concrete ones.

Abstract groups:

- ▶ permutation groups,
- ▶ matrix groups (over fields).

Abstract semigroups:

- ▶ (partial) transformation semigroups, or relation semigroups, or...
- ▶ matrix semigroups (over fields or rings)

Basic idea — representation theory

We **represent** abstract objects by concrete ones.

Abstract groups:

- ▶ permutation groups,
- ▶ matrix groups (over fields).

Abstract semigroups:

- ▶ (partial) transformation semigroups, or relation semigroups, or...
- ▶ matrix semigroups (over fields or rings or semirings).

Basic idea — representation theory

We **represent** abstract objects by concrete ones.

Abstract groups:

- ▶ permutation groups,
- ▶ matrix groups (over fields).

Abstract semigroups:

- ▶ (partial) transformation semigroups, or relation semigroups, or...
- ▶ matrix semigroups (over fields or rings or semirings).

A representation of a semigroup S by **transformations** (**matrices**) is a morphism $\varphi : S \rightarrow \mathcal{T}_X$ for some X (respectively, with co-domain $M_n(R)$ for some natural number n and some semiring R).

Basic idea — representation theory

We **represent** abstract objects by concrete ones.

Abstract groups:

- ▶ permutation groups,
- ▶ matrix groups (over fields).

Abstract semigroups:

- ▶ (partial) transformation semigroups, or relation semigroups, or...
- ▶ matrix semigroups (over fields or rings or semirings).

A representation of a semigroup S by **transformations** (**matrices**) is a morphism $\varphi : S \rightarrow \mathcal{T}_X$ for some X (respectively, with co-domain $M_n(R)$ for some natural number n and some semiring R).

Say that a representation is **faithful** if the morphism is injective.

Basic idea — transformation/matrix representations

For a positive integer n , let $\mathbf{n} = \{1, \dots, n\}$.

Basic idea — transformation/matrix representations

For a positive integer n , let $\mathbf{n} = \{1, \dots, n\}$.

$\mathcal{T}_n = \{\text{functions } \mathbf{n} \rightarrow \mathbf{n}\}$ is a semigroup under composition.
(The full transformation semigroup of rank n .)

Basic idea — transformation/matrix representations

For a positive integer n , let $\mathbf{n} = \{1, \dots, n\}$.

$\mathcal{T}_n = \{\text{functions } \mathbf{n} \rightarrow \mathbf{n}\}$ is a semigroup under composition.
(The full transformation semigroup of rank n .)

- ▶ Any finite semigroup embeds in some \mathcal{T}_n .

Basic idea — transformation/matrix representations

For a positive integer n , let $\mathbf{n} = \{1, \dots, n\}$.

$\mathcal{T}_n = \{\text{functions } \mathbf{n} \rightarrow \mathbf{n}\}$ is a semigroup under composition.

(The full transformation semigroup of rank n .)

- ▶ Any finite semigroup embeds in some \mathcal{T}_n .
- ▶ \mathcal{T}_n embeds in the matrix semigroup $M_n(R)$ for any semiring R .

Basic idea — transformation/matrix representations

For a positive integer n , let $\mathbf{n} = \{1, \dots, n\}$.

$\mathcal{T}_n = \{\text{functions } \mathbf{n} \rightarrow \mathbf{n}\}$ is a semigroup under composition.
(The full transformation semigroup of rank n .)

- ▶ Any finite semigroup embeds in some \mathcal{T}_n .
- ▶ \mathcal{T}_n embeds in the matrix semigroup $M_n(R)$ for any semiring R .
(Think of $f \in \mathcal{T}_n$ acting on the standard basis of R^n .)

Basic idea — transformation/matrix representations

For a positive integer n , let $\mathbf{n} = \{1, \dots, n\}$.

$\mathcal{T}_n = \{\text{functions } \mathbf{n} \rightarrow \mathbf{n}\}$ is a semigroup under composition.
(The full transformation semigroup of rank n .)

- ▶ Any finite semigroup embeds in some \mathcal{T}_n .
- ▶ \mathcal{T}_n embeds in the matrix semigroup $M_n(R)$ for any semiring R .
(Think of $f \in \mathcal{T}_n$ acting on the standard basis of R^n .)
- ▶ So given R , any finite semigroup embeds in *some* $M_n(R)$.

Basic idea — transformation/matrix representations

For a positive integer n , let $\mathbf{n} = \{1, \dots, n\}$.

$\mathcal{T}_n = \{\text{functions } \mathbf{n} \rightarrow \mathbf{n}\}$ is a semigroup under composition.
(The full transformation semigroup of rank n .)

- ▶ Any finite semigroup embeds in some \mathcal{T}_n .
- ▶ \mathcal{T}_n embeds in the matrix semigroup $M_n(R)$ for any semiring R .
(Think of $f \in \mathcal{T}_n$ acting on the standard basis of R^n .)
- ▶ So given R , any finite semigroup embeds in *some* $M_n(R)$.
- ▶ An infinite semigroup *might* embed in some $M_n(R)$.

Basic idea — transformation/matrix representations

For a positive integer n , let $\mathbf{n} = \{1, \dots, n\}$.

$\mathcal{T}_n = \{\text{functions } \mathbf{n} \rightarrow \mathbf{n}\}$ is a semigroup under composition.
(The full transformation semigroup of rank n .)

- ▶ Any finite semigroup embeds in some \mathcal{T}_n .
- ▶ \mathcal{T}_n embeds in the matrix semigroup $M_n(R)$ for any semiring R .
(Think of $f \in \mathcal{T}_n$ acting on the standard basis of R^n .)
- ▶ So given R , any finite semigroup embeds in *some* $M_n(R)$.
- ▶ An infinite semigroup *might* embed in some $M_n(R)$.

Today: matrix representations of:

- ▶ **partition monoids** (finite),
- ▶ **twisted partition monoids** (finite or infinite).

Partition monoids — \mathcal{P}_n

Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.

Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.

$\begin{array}{ccccccc} 1 & 2 & 3 & 4 & 5 & 6 & \} 6 \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \end{array}$

$\begin{array}{ccccccc} \bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \} 6' \\ 1' & 2' & 3' & 4' & 5' & 6' & \end{array}$

Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.
- ▶ The **partition monoid** of rank n is

$$\mathcal{P}_n = \{\text{set partitions of } \mathbf{n} \cup \mathbf{n}'\}$$

1 2 3 4 5 6 }6

• • • • • • }6'

1' 2' 3' 4' 5' 6'

Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.
- ▶ The **partition monoid** of rank n is

$$\mathcal{P}_n = \{\text{set partitions of } \mathbf{n} \cup \mathbf{n}'\}$$

- ▶ E.g.: $a = \left\{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\} \right\} \in \mathcal{P}_6$

$\begin{matrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \end{matrix} \} 6$

$\begin{matrix} \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ 1' & 2' & 3' & 4' & 5' & 6' \end{matrix} \} 6'$

Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.
- ▶ The **partition monoid** of rank n is

$$\begin{aligned}\mathcal{P}_n &= \{\text{set partitions of } \mathbf{n} \cup \mathbf{n}'\} \\ &\equiv \{\text{graphs on vertex set } \mathbf{n} \cup \mathbf{n}'\}.\end{aligned}$$

- ▶ E.g.: $a = \left\{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\} \right\} \in \mathcal{P}_6$

$\begin{array}{ccccccc} 1 & 2 & 3 & 4 & 5 & 6 & \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \} 6 \end{array}$

$\begin{array}{ccccccc} & & & & & & \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \} 6' \\ 1' & 2' & 3' & 4' & 5' & 6' & \end{array}$

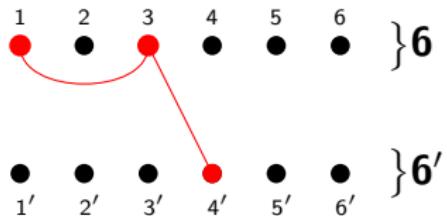
Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.
- ▶ The **partition monoid** of rank n is

$$\mathcal{P}_n = \{\text{set partitions of } \mathbf{n} \cup \mathbf{n}'\}$$

$$\equiv \{\text{graphs on vertex set } \mathbf{n} \cup \mathbf{n}'\}.$$

- ▶ E.g.: $a = \left\{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\} \right\} \in \mathcal{P}_6$



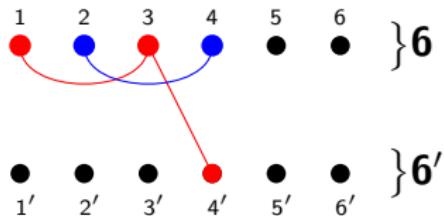
Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.
- ▶ The **partition monoid** of rank n is

$$\mathcal{P}_n = \{\text{set partitions of } \mathbf{n} \cup \mathbf{n}'\}$$

$$\equiv \{\text{graphs on vertex set } \mathbf{n} \cup \mathbf{n}'\}.$$

- ▶ E.g.: $a = \left\{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\} \right\} \in \mathcal{P}_6$



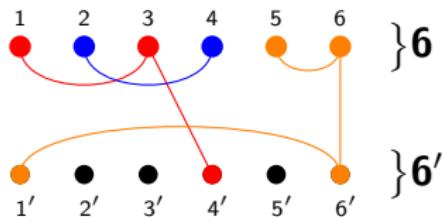
Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.
- ▶ The **partition monoid** of rank n is

$$\mathcal{P}_n = \{\text{set partitions of } \mathbf{n} \cup \mathbf{n}'\}$$

$$\equiv \{\text{graphs on vertex set } \mathbf{n} \cup \mathbf{n}'\}.$$

- ▶ E.g.: $a = \left\{ \{\mathbf{1}, \mathbf{3}, \mathbf{4}'\}, \{\mathbf{2}, \mathbf{4}\}, \{\mathbf{5}, \mathbf{6}, \mathbf{1}', \mathbf{6}'\}, \{\mathbf{2}', \mathbf{3}'\}, \{\mathbf{5}'\} \right\} \in \mathcal{P}_6$



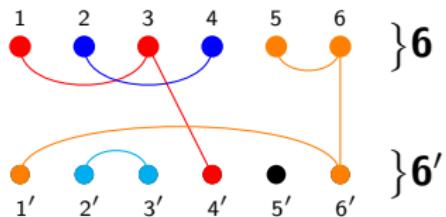
Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.
- ▶ The **partition monoid** of rank n is

$$\mathcal{P}_n = \{\text{set partitions of } \mathbf{n} \cup \mathbf{n}'\}$$

$$\equiv \{\text{graphs on vertex set } \mathbf{n} \cup \mathbf{n}'\}.$$

- ▶ E.g.: $a = \left\{ \{\mathbf{1}, \mathbf{3}, \mathbf{4}'\}, \{\mathbf{2}, \mathbf{4}\}, \{\mathbf{5}, \mathbf{6}, \mathbf{1}', \mathbf{6}'\}, \{\mathbf{2}', \mathbf{3}'\}, \{\mathbf{5}'\} \right\} \in \mathcal{P}_6$



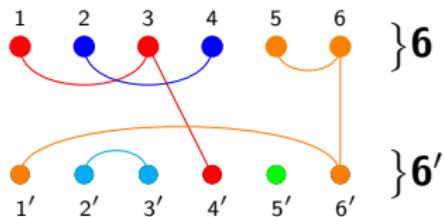
Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.
- ▶ The **partition monoid** of rank n is

$$\mathcal{P}_n = \{\text{set partitions of } \mathbf{n} \cup \mathbf{n}'\}$$

$$\equiv \{\text{graphs on vertex set } \mathbf{n} \cup \mathbf{n}'\}.$$

- ▶ E.g.: $a = \left\{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\} \right\} \in \mathcal{P}_6$



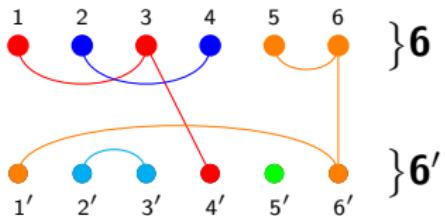
Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.
- ▶ The **partition monoid** of rank n is

$$\mathcal{P}_n = \{\text{set partitions of } \mathbf{n} \cup \mathbf{n}'\}$$

$$\equiv \{(\text{equiv. classes of}) \text{ graphs on vertex set } \mathbf{n} \cup \mathbf{n}'\}.$$

- ▶ E.g.: $a = \left\{ \{\mathbf{1}, \mathbf{3}, \mathbf{4}'\}, \{\mathbf{2}, \mathbf{4}\}, \{\mathbf{5}, \mathbf{6}, \mathbf{1}', \mathbf{6}'\}, \{\mathbf{2}', \mathbf{3}'\}, \{\mathbf{5}'\} \right\} \in \mathcal{P}_6$



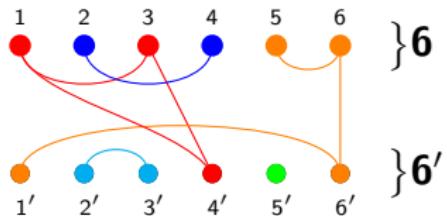
Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.
- ▶ The **partition monoid** of rank n is

$$\mathcal{P}_n = \{\text{set partitions of } \mathbf{n} \cup \mathbf{n}'\}$$

$$\equiv \{(\text{equiv. classes of}) \text{ graphs on vertex set } \mathbf{n} \cup \mathbf{n}'\}.$$

- ▶ E.g.: $a = \left\{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\} \right\} \in \mathcal{P}_6$



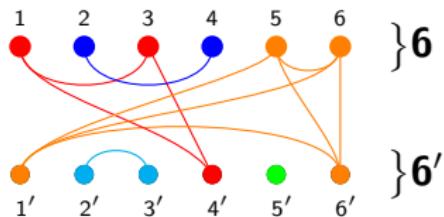
Partition monoids — \mathcal{P}_n

- ▶ Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}$, where $n \geq 0$.
- ▶ The **partition monoid** of rank n is

$$\mathcal{P}_n = \{\text{set partitions of } \mathbf{n} \cup \mathbf{n}'\}$$

$$\equiv \{(\text{equiv. classes of}) \text{ graphs on vertex set } \mathbf{n} \cup \mathbf{n}'\}.$$

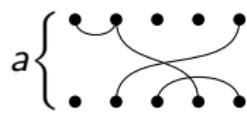
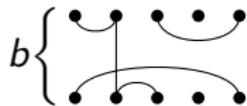
- ▶ E.g.: $a = \left\{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\} \right\} \in \mathcal{P}_6$



Partition monoids — product in \mathcal{P}_n

Partition monoids — product in \mathcal{P}_n

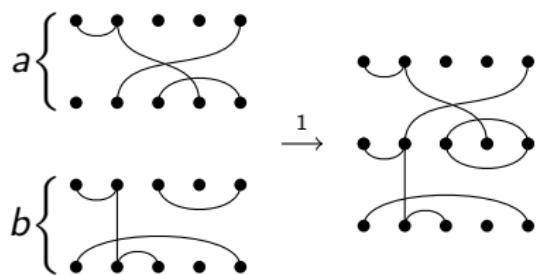
To calculate the product of $a, b \in \mathcal{P}_n$:



Partition monoids — product in \mathcal{P}_n

To calculate the product of $a, b \in \mathcal{P}_n$:

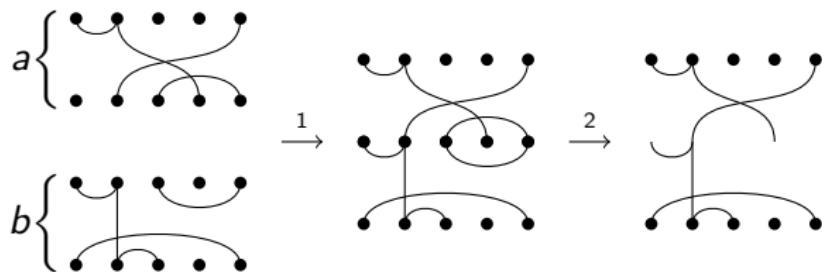
- (1) connect a to b ,



Partition monoids — product in \mathcal{P}_n

To calculate the product of $a, b \in \mathcal{P}_n$:

- (1) connect a to b ,
- (2) remove middle vertices and floating components,



Partition monoids — product in \mathcal{P}_n

To calculate the product of $a, b \in \mathcal{P}_n$:

- (1) connect a to b ,
- (2) remove middle vertices and floating components,
- (3) tidy up.

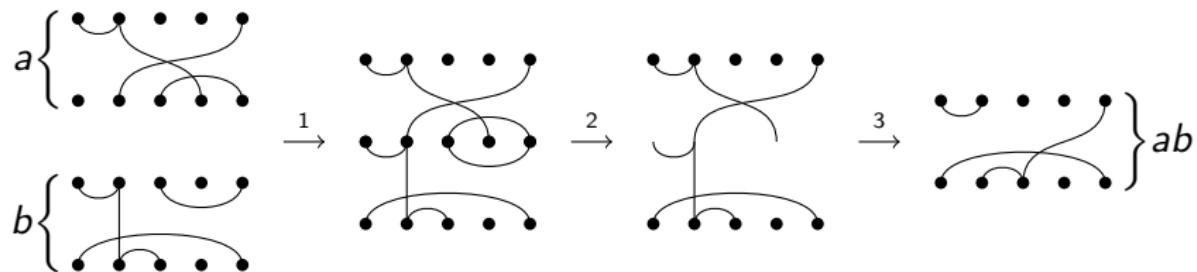
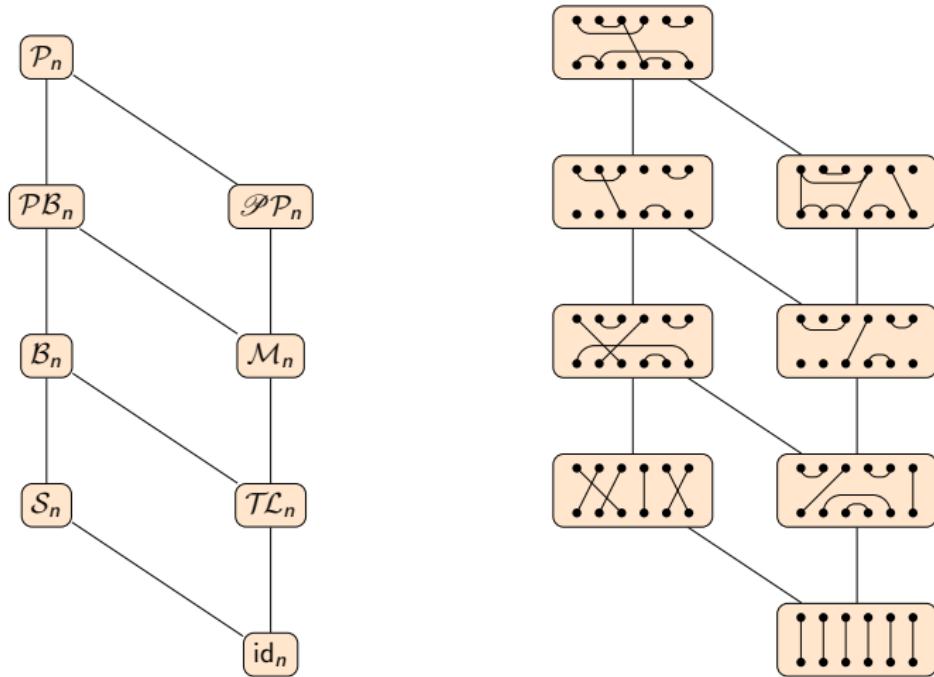
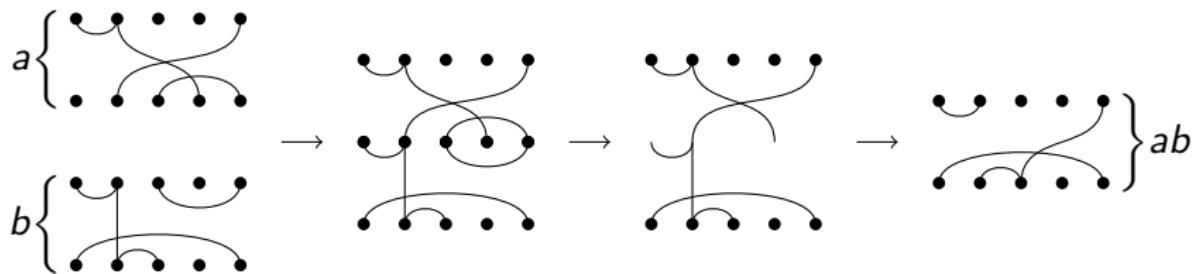


Diagram monoids — submonoids of \mathcal{P}_n

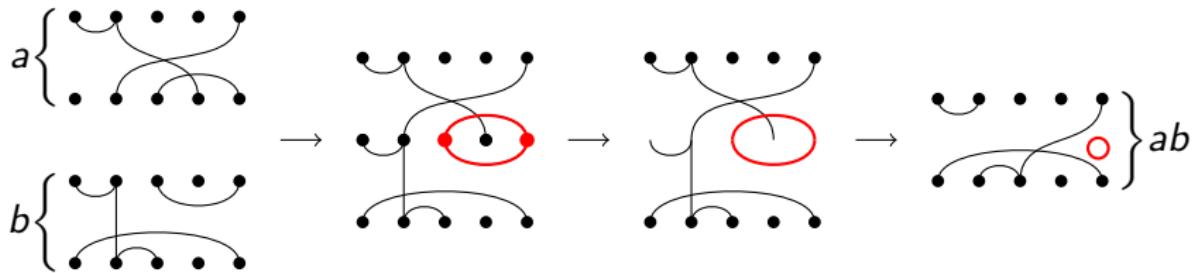


- ▶ Brauer, Temperley–Lieb (a.k.a. Jones), Motzkin, and more.....

Twisted partition monoids — \mathcal{P}_n^Φ

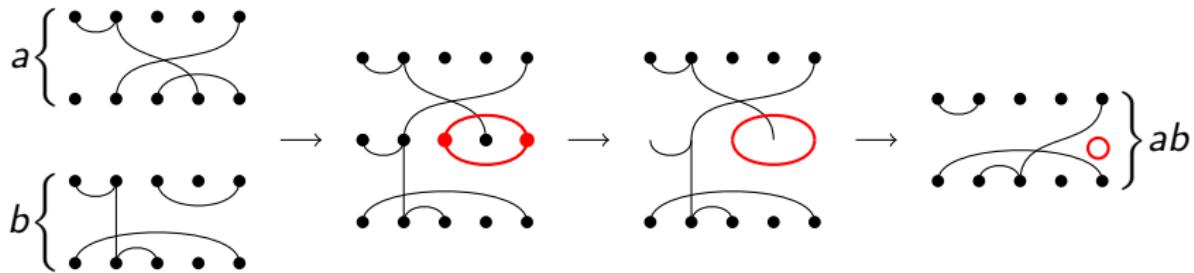


Twisted partition monoids — \mathcal{P}_n^Φ



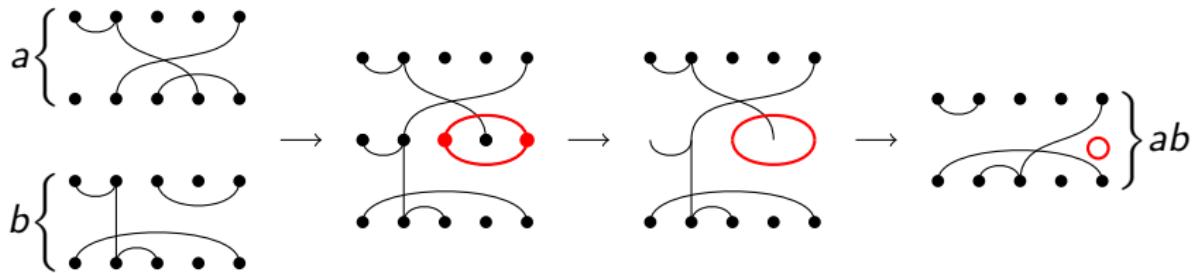
- ▶ **Floating components** are very important in applications!

Twisted partition monoids — \mathcal{P}_n^Φ



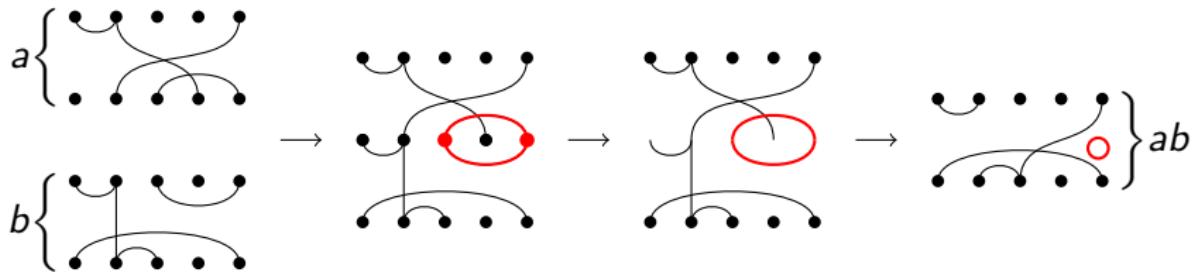
- ▶ **Floating components** are very important in applications!
- ▶ The twisted partition monoid \mathcal{P}_n^Φ remembers them.

Twisted partition monoids — \mathcal{P}_n^Φ



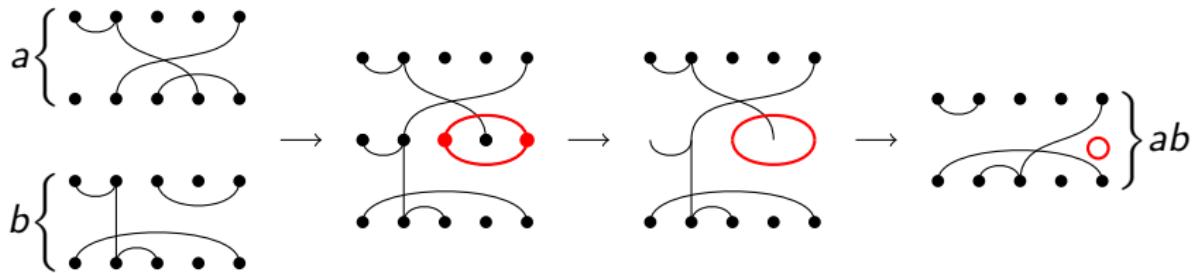
- ▶ **Floating components** are very important in applications!
- ▶ The twisted partition monoid \mathcal{P}_n^Φ remembers them.

Twisted partition monoids — \mathcal{P}_n^Φ



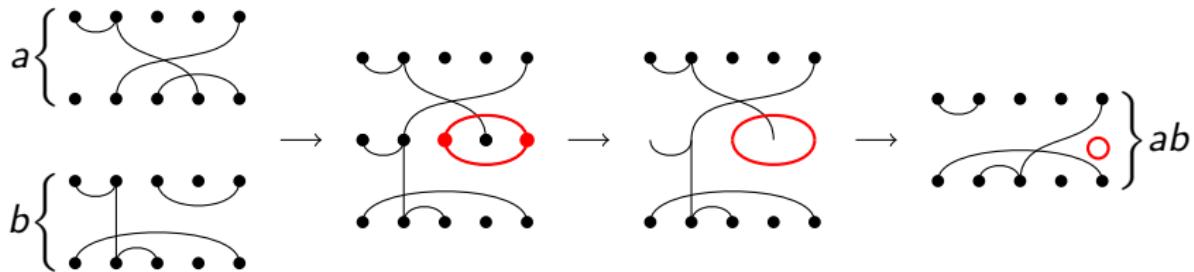
- ▶ **Floating components** are very important in applications!
- ▶ The twisted partition monoid \mathcal{P}_n^Φ remembers them.
- ▶ As a set, $\mathcal{P}_n^\Phi = \mathbb{N} \times \mathcal{P}_n = \{(i, a) : i \in \mathbb{N}, a \in \mathcal{P}_n\}$.

Twisted partition monoids — \mathcal{P}_n^Φ



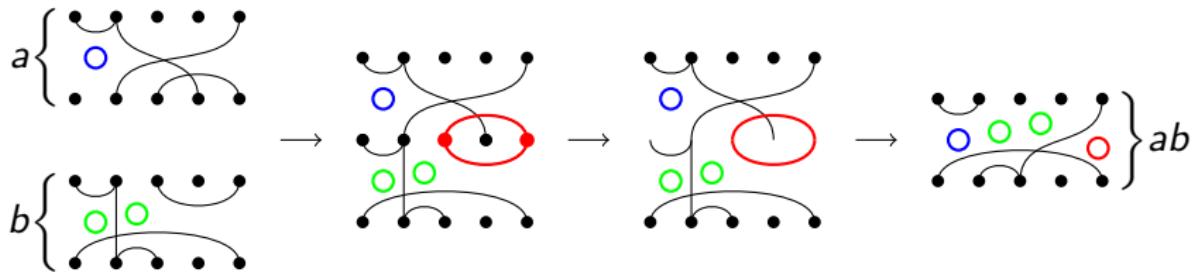
- ▶ **Floating components** are very important in applications!
- ▶ The twisted partition monoid \mathcal{P}_n^Φ remembers them.
- ▶ As a set, $\mathcal{P}_n^\Phi = \mathbb{N} \times \mathcal{P}_n = \{(i, a) : i \in \mathbb{N}, a \in \mathcal{P}_n\}$.
 - ▶ Think of (i, a) as “ a with i floating components”.

Twisted partition monoids — \mathcal{P}_n^Φ



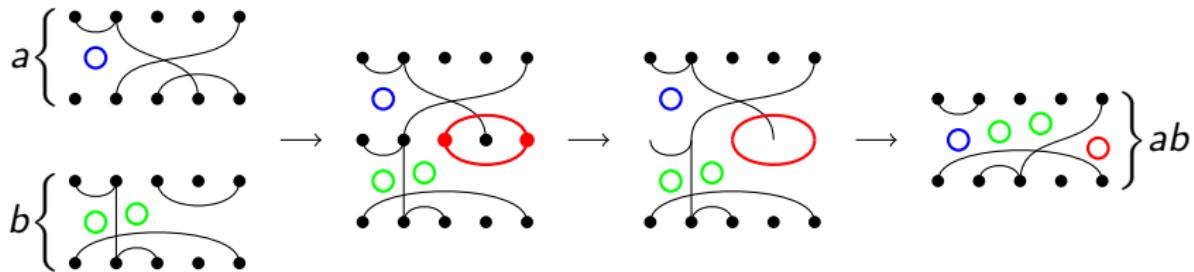
- ▶ **Floating components** are very important in applications!
- ▶ The twisted partition monoid \mathcal{P}_n^Φ remembers them.
- ▶ As a set, $\mathcal{P}_n^\Phi = \mathbb{N} \times \mathcal{P}_n = \{(i, a) : i \in \mathbb{N}, a \in \mathcal{P}_n\}$.
 - ▶ Think of (i, a) as “ a with i floating components”.
 - ▶ So above, $(0, a) \cdot (0, b) = (1, ab)$.

Twisted partition monoids — \mathcal{P}_n^Φ



- ▶ **Floating components** are very important in applications!
- ▶ The twisted partition monoid \mathcal{P}_n^Φ remembers them.
- ▶ As a set, $\mathcal{P}_n^\Phi = \mathbb{N} \times \mathcal{P}_n = \{(i, a) : i \in \mathbb{N}, a \in \mathcal{P}_n\}$.
 - ▶ Think of (i, a) as “ a with i floating components”.
 - ▶ So above, $(0, a) \cdot (0, b) = (1, ab)$.
 - ▶ Similarly, $(1, a) \cdot (2, b) = (4, ab)$.

Twisted partition monoids — \mathcal{P}_n^Φ



- ▶ **Floating components** are very important in applications!
- ▶ The twisted partition monoid \mathcal{P}_n^Φ remembers them.
- ▶ As a set, $\mathcal{P}_n^\Phi = \mathbb{N} \times \mathcal{P}_n = \{(i, a) : i \in \mathbb{N}, a \in \mathcal{P}_n\}$.
 - ▶ Think of (i, a) as “ a with i floating components”.
 - ▶ So above, $(0, a) \cdot (0, b) = (1, ab)$.
 - ▶ Similarly, $(1, a) \cdot (2, b) = (4, ab)$.
- ▶ Product in \mathcal{P}_n^Φ is given by $(i, a) \cdot (j, b) = (i + j + \Phi(a, b), ab)$, where $\Phi(a, b) = \#$ floating components when forming ab .

Twisted partition monoids — \mathcal{P}_n^Φ and $\mathcal{P}_{n,d}^\Phi$

$\mathcal{P}_n^\Phi = \mathbb{N} \times \mathcal{P}_n$ is:

- ▶ (countably) infinite,

Twisted partition monoids — \mathcal{P}_n^Φ and $\mathcal{P}_{n,d}^\Phi$

$\mathcal{P}_n^\Phi = \mathbb{N} \times \mathcal{P}_n$ is:

- ▶ (countably) infinite,
- ▶ but approximated by a sequence of finite monoids:

$$\mathcal{P}_n^\Phi = \lim_{d \rightarrow \infty} \mathcal{P}_{n,d}^\Phi,$$

Twisted partition monoids — \mathcal{P}_n^Φ and $\mathcal{P}_{n,d}^\Phi$

$\mathcal{P}_n^\Phi = \mathbb{N} \times \mathcal{P}_n$ is:

- ▶ (countably) infinite,
- ▶ but approximated by a sequence of finite monoids:

$$\mathcal{P}_n^\Phi = \lim_{d \rightarrow \infty} \mathcal{P}_{n,d}^\Phi,$$

where in $\mathcal{P}_{n,d}^\Phi$, we allow at most d floating components

Twisted partition monoids — \mathcal{P}_n^Φ and $\mathcal{P}_{n,d}^\Phi$

$\mathcal{P}_n^\Phi = \mathbb{N} \times \mathcal{P}_n$ is:

- ▶ (countably) infinite,
- ▶ but approximated by a sequence of finite monoids:

$$\mathcal{P}_n^\Phi = \lim_{d \rightarrow \infty} \mathcal{P}_{n,d}^\Phi,$$

where in $\mathcal{P}_{n,d}^\Phi$, we allow at most d floating components and pairs (i, a) with $i > d$ are all equated to a zero, $\mathbf{0}$.

As a set, $\mathcal{P}_{n,d}^\Phi = \{0, 1, \dots, d\} \times \mathcal{P}_n \cup \{\mathbf{0}\}$.

Twisted partition monoids — \mathcal{P}_n^Φ and $\mathcal{P}_{n,d}^\Phi$

$\mathcal{P}_n^\Phi = \mathbb{N} \times \mathcal{P}_n$ is:

- ▶ (countably) infinite,
- ▶ but approximated by a sequence of finite monoids:

$$\mathcal{P}_n^\Phi = \lim_{d \rightarrow \infty} \mathcal{P}_{n,d}^\Phi,$$

where in $\mathcal{P}_{n,d}^\Phi$, we allow at most d floating components and pairs (i, a) with $i > d$ are all equated to a zero, $\mathbf{0}$.

As a set, $\mathcal{P}_{n,d}^\Phi = \{0, 1, \dots, d\} \times \mathcal{P}_n \cup \{\mathbf{0}\}$.

Product is the same as in \mathcal{P}_n^Φ when possible:

Twisted partition monoids — \mathcal{P}_n^Φ and $\mathcal{P}_{n,d}^\Phi$

$\mathcal{P}_n^\Phi = \mathbb{N} \times \mathcal{P}_n$ is:

- ▶ (countably) infinite,
- ▶ but approximated by a sequence of finite monoids:

$$\mathcal{P}_n^\Phi = \lim_{d \rightarrow \infty} \mathcal{P}_{n,d}^\Phi,$$

where in $\mathcal{P}_{n,d}^\Phi$, we allow at most d floating components and pairs (i, a) with $i > d$ are all equated to a zero, $\mathbf{0}$.

As a set, $\mathcal{P}_{n,d}^\Phi = \{0, 1, \dots, d\} \times \mathcal{P}_n \cup \{\mathbf{0}\}$.

Product is the same as in \mathcal{P}_n^Φ when possible:

$$(i, a) \cdot (j, b) = \begin{cases} (i + j + \Phi(a, b), ab) & \text{if } i + j + \Phi(a, b) \leq d, \\ \mathbf{0} & \text{otherwise.} \end{cases}$$

Matrix representations of (twisted) diagram monoids

Problem

Can we find matrix representations of the above monoids?

Matrix representations of (twisted) diagram monoids

Problem

Can we find matrix representations of the above monoids?

- ▶ We'd like to find 'nice' reps.

Matrix representations of (twisted) diagram monoids

Problem

Can we find matrix representations of the above monoids?

- ▶ We'd like to find 'nice' reps..... of 'small' dimension.

Matrix representations of (twisted) diagram monoids

Problem

Can we find matrix representations of the above monoids?

- ▶ We'd like to find 'nice' reps..... of 'small' dimension.
- ▶ As above, any rep $\mathcal{P}_n \rightarrow \mathcal{T}_k$ gives a rep $\mathcal{P}_n \rightarrow M_k(R)$.

Matrix representations of (twisted) diagram monoids

Problem

Can we find matrix representations of the above monoids?

- ▶ We'd like to find 'nice' reps..... of 'small' dimension.
- ▶ As above, any rep $\mathcal{P}_n \rightarrow \mathcal{T}_k$ gives a rep $\mathcal{P}_n \rightarrow M_k(R)$.

Theorem (Reinis Cirpons, James East, James Mitchell, 2024)

The least k such that \mathcal{P}_n embeds in \mathcal{T}_k is

$$k = 1 + \frac{b_{n+2} - b_{n+1} + b_n}{2},$$

where b_n is the n th Bell number.

Can we do better? (Note: these numbers are BIG!)

Main results

Main results

Theorem

1. \mathcal{P}_n embeds in $M_{2^n}(R)$ for any AI semiring R .

Main results

Theorem

1. \mathcal{P}_n embeds in $M_{2^n}(R)$ for any AI semiring R .
(Taking $R = \mathbb{B} = \{0, 1\}$ leads to *relational representations*.)

Main results

Theorem

1. \mathcal{P}_n embeds in $M_{2^n}(R)$ for any AI semiring R .
(Taking $R = \mathbb{B} = \{0, 1\}$ leads to *relational representations*.)
2. \mathcal{P}_n^Φ embeds in $M_{2^n}(\mathbb{Z})$.

Main results

Theorem

1. \mathcal{P}_n embeds in $M_{2^n}(R)$ for any AI semiring R .
(Taking $R = \mathbb{B} = \{0, 1\}$ leads to *relational representations*.)
2. \mathcal{P}_n^Φ embeds in $M_{2^n}(\mathbb{Z})$.
3. $\mathcal{P}_{n,d}^\Phi$ embeds in $M_{2^n}(\mathbb{Z}_{2^{d+1}})$.

Immediately, **all diagram monoids of rank n introduced earlier** have a 2^n dimensional matrix representation over a suitable semiring. Smaller representations exist in some cases:

Main results

Theorem

1. \mathcal{P}_n embeds in $M_{2^n}(R)$ for any AI semiring R .
(Taking $R = \mathbb{B} = \{0, 1\}$ leads to *relational representations*.)
2. \mathcal{P}_n^Φ embeds in $M_{2^n}(\mathbb{Z})$.
3. $\mathcal{P}_{n,d}^\Phi$ embeds in $M_{2^n}(\mathbb{Z}_{2^{d+1}})$.

Immediately, **all diagram monoids of rank n introduced earlier** have a 2^n dimensional matrix representation over a suitable semiring. Smaller representations exist in some cases:

Theorem

4. For n odd, \mathcal{B}_n embeds in $M_{2^{n-1}}(R)$ for any AI semiring R .

Main results

Theorem

1. \mathcal{P}_n embeds in $M_{2^n}(R)$ for any AI semiring R .
(Taking $R = \mathbb{B} = \{0, 1\}$ leads to *relational representations*.)
2. \mathcal{P}_n^Φ embeds in $M_{2^n}(\mathbb{Z})$.
3. $\mathcal{P}_{n,d}^\Phi$ embeds in $M_{2^n}(\mathbb{Z}_{2^{d+1}})$.

Immediately, **all diagram monoids of rank n introduced earlier** have a 2^n dimensional matrix representation over a suitable semiring. Smaller representations exist in some cases:

Theorem

4. For n odd, \mathcal{B}_n embeds in $M_{2^{n-1}}(R)$ for any AI semiring R .
5. \mathcal{TL}_n embeds in $M_{f_n}(R)$ for any AI semiring R (f_n = Fibonacci).

Main result

Theorem

1. \mathcal{P}_n embeds in $M_{2^n}(R)$ for any AI semiring R .

Main result

Theorem

1. \mathcal{P}_n embeds in $M_{2^n}(R)$ for any AI semiring R .

Why 2^n ?

Main result

Theorem

1. \mathcal{P}_n embeds in $M_{2^n}(R)$ for any AI semiring R .

Why 2^n ? Subsets!

Main result

Theorem

1. \mathcal{P}_n embeds in $M_{2^n}(R)$ for any AI semiring R .

Why 2^n ? Subsets!

A partition $a \in \mathcal{P}_n$ maps to a 2^n -dimensional 0-1 matrix \bar{a} with:

Main result

Theorem

1. \mathcal{P}_n embeds in $M_{2^n}(R)$ for any AI semiring R .

Why 2^n ? Subsets!

A partition $a \in \mathcal{P}_n$ maps to a 2^n -dimensional 0-1 matrix \bar{a} with:

- ▶ Rows and columns indexed by subsets of n ,

Main result

Theorem

1. \mathcal{P}_n embeds in $M_{2^n}(R)$ for any AI semiring R .

Why 2^n ? Subsets!

A partition $a \in \mathcal{P}_n$ maps to a 2^n -dimensional 0-1 matrix \bar{a} with:

- ▶ Rows and columns indexed by subsets of n ,
- ▶ Non-zero entries encoding the **blocks** of a ...

Main result

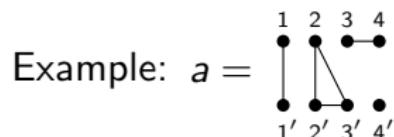
Theorem

1. \mathcal{P}_n embeds in $M_{2^n}(R)$ for any AI semiring R .

Why 2^n ? Subsets!

A partition $a \in \mathcal{P}_n$ maps to a 2^n -dimensional 0-1 matrix \bar{a} with:

- ▶ Rows and columns indexed by subsets of \mathbf{n} ,
- ▶ Non-zero entries encoding the **blocks** of a ...



Main result

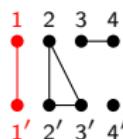
Theorem

1. \mathcal{P}_n embeds in $M_{2^n}(R)$ for any AI semiring R .

Why 2^n ? Subsets!

A partition $a \in \mathcal{P}_n$ maps to a 2^n -dimensional 0-1 matrix \bar{a} with:

- ▶ Rows and columns indexed by subsets of \mathbf{n} ,
- ▶ Non-zero entries encoding the **blocks** of a ...

Example: $a =$  has blocks $\{1, 1'\}$

Main result

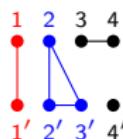
Theorem

1. \mathcal{P}_n embeds in $M_{2^n}(R)$ for any AI semiring R .

Why 2^n ? Subsets!

A partition $a \in \mathcal{P}_n$ maps to a 2^n -dimensional 0-1 matrix \bar{a} with:

- ▶ Rows and columns indexed by subsets of n ,
- ▶ Non-zero entries encoding the **blocks** of a ...

Example: $a =$  has blocks $\{1, 1'\}$, $\{2, 2', 3'\}$

Main result

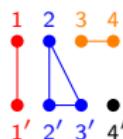
Theorem

1. \mathcal{P}_n embeds in $M_{2^n}(R)$ for any AI semiring R .

Why 2^n ? Subsets!

A partition $a \in \mathcal{P}_n$ maps to a 2^n -dimensional 0-1 matrix \bar{a} with:

- ▶ Rows and columns indexed by subsets of \mathbf{n} ,
- ▶ Non-zero entries encoding the **blocks** of a ...

Example: $a =$  has blocks $\{1, 1'\}$, $\{2, 2', 3'\}$, $\{3, 4\}$

Main result

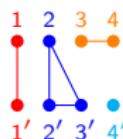
Theorem

1. \mathcal{P}_n embeds in $M_{2^n}(R)$ for any AI semiring R .

Why 2^n ? Subsets!

A partition $a \in \mathcal{P}_n$ maps to a 2^n -dimensional 0-1 matrix \bar{a} with:

- ▶ Rows and columns indexed by subsets of \mathbf{n} ,
- ▶ Non-zero entries encoding the **blocks** of a ...

Example: $a =$  has blocks $\{1, 1'\}$, $\{2, 2', 3'\}$, $\{3, 4\}$, $\{4'\}$.

Main result

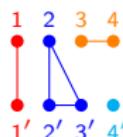
Theorem

1. \mathcal{P}_n embeds in $M_{2^n}(R)$ for any AI semiring R .

Why 2^n ? Subsets!

A partition $a \in \mathcal{P}_n$ maps to a 2^n -dimensional 0-1 matrix \bar{a} with:

- ▶ Rows and columns indexed by subsets of \mathbf{n} ,
- ▶ Non-zero entries encoding the **blocks** of a ...

Example: $a =$  has blocks $\{1, 1'\}$, $\{2, 2', 3'\}$, $\{3, 4\}$, $\{4'\}$.

Each block has the form $X \cup Y'$ for some $X, Y \subseteq \mathbf{n}$.

Main result

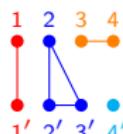
Theorem

1. \mathcal{P}_n embeds in $M_{2^n}(R)$ for any AI semiring R .

Why 2^n ? Subsets!

A partition $a \in \mathcal{P}_n$ maps to a 2^n -dimensional 0-1 matrix \bar{a} with:

- ▶ Rows and columns indexed by subsets of \mathbf{n} ,
- ▶ Non-zero entries encoding the **blocks** of a ...

Example: $a =$  has blocks $\{1, 1'\}$, $\{2, 2', 3'\}$, $\{3, 4\}$, $\{4'\}$.

Each block has the form $X \cup Y'$ for some $X, Y \subseteq \mathbf{n}$.

We set $\bar{a}_{X, Y} = 1$ if and only if $X \cup Y'$ is a *union* of blocks.

Main result

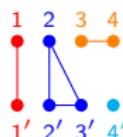
Theorem

1. \mathcal{P}_n embeds in $M_{2^n}(R)$ for any AI semiring R .

Why 2^n ? Subsets!

A partition $a \in \mathcal{P}_n$ maps to a 2^n -dimensional 0-1 matrix \bar{a} with:

- ▶ Rows and columns indexed by subsets of \mathbf{n} ,
- ▶ Non-zero entries encoding the **blocks** of a ...

Example: $a =$  has blocks $\{1, 1'\}$, $\{2, 2', 3'\}$, $\{3, 4\}$, $\{4'\}$.

Each block has the form $X \cup Y'$ for some $X, Y \subseteq \mathbf{n}$.

We set $\bar{a}_{X, Y} = 1$ if and only if $X \cup Y'$ is a *union* of blocks.

E.g. $1 = \bar{a}_{\{1\}, \{1\}}$

Main result

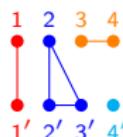
Theorem

1. \mathcal{P}_n embeds in $M_{2^n}(R)$ for any AI semiring R .

Why 2^n ? Subsets!

A partition $a \in \mathcal{P}_n$ maps to a 2^n -dimensional 0-1 matrix \bar{a} with:

- ▶ Rows and columns indexed by subsets of \mathbf{n} ,
- ▶ Non-zero entries encoding the **blocks** of a ...

Example: $a =$  has blocks $\{1, 1'\}$, $\{2, 2', 3'\}$, $\{3, 4\}$, $\{4'\}$.

Each block has the form $X \cup Y'$ for some $X, Y \subseteq \mathbf{n}$.

We set $\bar{a}_{X, Y} = 1$ if and only if $X \cup Y'$ is a *union* of blocks.

E.g. $1 = \bar{a}_{\{1\}, \{1\}} = \bar{a}_{\{2\}, \{2, 3\}}$

Main result

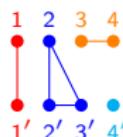
Theorem

1. \mathcal{P}_n embeds in $M_{2^n}(R)$ for any AI semiring R .

Why 2^n ? Subsets!

A partition $a \in \mathcal{P}_n$ maps to a 2^n -dimensional 0-1 matrix \bar{a} with:

- ▶ Rows and columns indexed by subsets of \mathbf{n} ,
- ▶ Non-zero entries encoding the **blocks** of a ...

Example: $a =$ 

has blocks $\{1, 1'\}$, $\{2, 2', 3'\}$, $\{3, 4\}$, $\{4'\}$.

Each block has the form $X \cup Y'$ for some $X, Y \subseteq \mathbf{n}$.

We set $\bar{a}_{X,Y} = 1$ if and only if $X \cup Y'$ is a *union* of blocks.

E.g. $1 = \bar{a}_{\{1\}, \{1\}} = \bar{a}_{\{2\}, \{2,3\}} = \bar{a}_{\{3,4\}, \emptyset}$

Main result

Theorem

1. \mathcal{P}_n embeds in $M_{2^n}(R)$ for any AI semiring R .

Why 2^n ? Subsets!

A partition $a \in \mathcal{P}_n$ maps to a 2^n -dimensional 0-1 matrix \bar{a} with:

- ▶ Rows and columns indexed by subsets of \mathbf{n} ,
- ▶ Non-zero entries encoding the **blocks** of a ...

Example: $a =$

has blocks $\{1, 1'\}$, $\{2, 2', 3'\}$, $\{3, 4\}$, $\{4'\}$.

Each block has the form $X \cup Y'$ for some $X, Y \subseteq \mathbf{n}$.

We set $\bar{a}_{X,Y} = 1$ if and only if $X \cup Y'$ is a *union* of blocks.

E.g. $1 = \bar{a}_{\{1\},\{1\}} = \bar{a}_{\{2\},\{2,3\}} = \bar{a}_{\{3,4\},\emptyset} = \bar{a}_{\emptyset,\{4\}}$

Main result

Theorem

1. \mathcal{P}_n embeds in $M_{2^n}(R)$ for any AI semiring R .

Why 2^n ? Subsets!

A partition $a \in \mathcal{P}_n$ maps to a 2^n -dimensional 0-1 matrix \bar{a} with:

- ▶ Rows and columns indexed by subsets of n ,
- ▶ Non-zero entries encoding the **blocks** of a...

Example: $a =$ has blocks $\{1, 1'\}$, $\{2, 2', 3'\}$, $\{3, 4\}$, $\{4'\}$.

Each block has the form $X \cup Y'$ for some $X, Y \subseteq \mathbf{n}$.

We set $\bar{a}_{X,Y} = 1$ if and only if $X \cup Y'$ is a *union* of blocks.

$$\text{E.g. } 1 = \bar{a}_{\{1\}, \{1\}} = \bar{a}_{\{2\}, \{2,3\}} = \bar{a}_{\{3,4\}, \emptyset} = \bar{a}_{\emptyset, \{4\}} = \bar{a}_{\{1,3,4\}, \{1,4\}} \dots$$

The mapping

For $a \in \mathcal{P}_n$ define $\bar{a} \in M_{2^n}(R)$ by

$$\bar{a}_{X,Y} = \begin{cases} 1 & \text{if } X \cup Y' \text{ is a union of blocks of } a, \\ 0 & \text{otherwise.} \end{cases}$$

The mapping

For $a \in \mathcal{P}_n$ define $\bar{a} \in M_{2^n}(R)$ by

$$\bar{a}_{X,Y} = \begin{cases} 1 & \text{if } X \cup Y' \text{ is a union of blocks of } a, \\ 0 & \text{otherwise.} \end{cases}$$

The mapping

For $a \in \mathcal{P}_n$ define $\bar{a} \in M_{2^n}(R)$ by

$$\bar{a}_{X,Y} = \begin{cases} 1 & \text{if } X \cup Y' \text{ is a union of blocks of } a, \\ 0 & \text{otherwise.} \end{cases}$$

- ▶ $a =$

The mapping

For $a \in \mathcal{P}_n$ define $\bar{a} \in M_{2^n}(R)$ by

$$\bar{a}_{X,Y} = \begin{cases} 1 & \text{if } X \cup Y' \text{ is a union of blocks of } a, \\ 0 & \text{otherwise.} \end{cases}$$

► $a = \begin{array}{c} \bullet \\ \square \\ \bullet \end{array} \mapsto \bar{a} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

The mapping

For $a \in \mathcal{P}_n$ define $\bar{a} \in M_{2^n}(R)$ by

$$\bar{a}_{X,Y} = \begin{cases} 1 & \text{if } X \cup Y' \text{ is a union of blocks of } a, \\ 0 & \text{otherwise.} \end{cases}$$

- ▶ $a = \begin{array}{c} \bullet & \bullet \\ \parallel & \parallel \\ \bullet & \bullet \end{array} \mapsto \bar{a} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
- ▶ $a^2 = a$

The mapping

For $a \in \mathcal{P}_n$ define $\bar{a} \in M_{2^n}(R)$ by

$$\bar{a}_{X,Y} = \begin{cases} 1 & \text{if } X \cup Y' \text{ is a union of blocks of } a, \\ 0 & \text{otherwise.} \end{cases}$$

- ▶ $a = \begin{array}{c} \bullet & \bullet \\ \square & \square \\ \bullet & \bullet \end{array} \mapsto \bar{a} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
- ▶ $a^2 = a$
- ▶ $\bar{a}^2 = \bar{a}$

The mapping

For $a \in \mathcal{P}_n$ define $\bar{a} \in M_{2^n}(R)$ by

$$\bar{a}_{X,Y} = \begin{cases} 1 & \text{if } X \cup Y' \text{ is a union of blocks of } a, \\ 0 & \text{otherwise.} \end{cases}$$

- ▶ $a = \begin{array}{c} \bullet & \bullet \\ \square & \square \\ \bullet & \bullet \end{array} \mapsto \bar{a} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ ▶ $b = \begin{array}{cc} \bullet & \bullet \\ \bullet & \bullet \end{array}$
- ▶ $a^2 = a$
- ▶ $\bar{a}^2 = \bar{a}$

The mapping

For $a \in \mathcal{P}_n$ define $\bar{a} \in M_{2^n}(R)$ by

$$\bar{a}_{X,Y} = \begin{cases} 1 & \text{if } X \cup Y' \text{ is a union of blocks of } a, \\ 0 & \text{otherwise.} \end{cases}$$

- ▶ $a = \begin{array}{c} \bullet & \bullet \\ \square & \square \\ \bullet & \bullet \end{array} \mapsto \bar{a} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
- ▶ $b = \begin{array}{c} \bullet & \bullet \\ \square & \square \\ \bullet & \bullet \end{array} \mapsto \bar{b} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$
- ▶ $a^2 = a$
- ▶ $\bar{a}^2 = \bar{a}$

The mapping

For $a \in \mathcal{P}_n$ define $\bar{a} \in M_{2^n}(R)$ by

$$\bar{a}_{X,Y} = \begin{cases} 1 & \text{if } X \cup Y' \text{ is a union of blocks of } a, \\ 0 & \text{otherwise.} \end{cases}$$

- ▶ $a = \begin{array}{c} \bullet \\ \square \\ \bullet \end{array} \mapsto \bar{a} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
- ▶ $b = \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \mapsto \bar{b} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$
- ▶ $a^2 = a$
- ▶ $\bar{a}^2 = \bar{a}$

The mapping

For $a \in \mathcal{P}_n$ define $\bar{a} \in M_{2^n}(R)$ by

$$\bar{a}_{X,Y} = \begin{cases} 1 & \text{if } X \cup Y' \text{ is a union of blocks of } a, \\ 0 & \text{otherwise.} \end{cases}$$

- ▶ $a = \begin{array}{c} \bullet \\ \square \\ \bullet \end{array} \mapsto \bar{a} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
- ▶ $b = \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \mapsto \bar{b} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$
- ▶ $a^2 = a$
- ▶ $b^2 = b$
- ▶ $\bar{a}^2 = \bar{a}$
- ▶ $\bar{b}^2 = 4\bar{b}$

The mapping

For $a \in \mathcal{P}_n$ define $\bar{a} \in M_{2^n}(R)$ by

$$\bar{a}_{X,Y} = \begin{cases} 1 & \text{if } X \cup Y' \text{ is a union of blocks of } a, \\ 0 & \text{otherwise.} \end{cases}$$

- ▶ $a = \begin{array}{c} \bullet & \bullet \\ \square & \square \\ \bullet & \bullet \end{array} \mapsto \bar{a} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
- ▶ $b = \begin{array}{c} \bullet & \bullet \\ \square & \square \\ \bullet & \bullet \end{array} \mapsto \bar{b} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$
- ▶ $a^2 = a$
- ▶ $b^2 = b$
- ▶ $\bar{a}^2 = \bar{a}$
- ▶ $\bar{b}^2 = 4\bar{b} = \bar{b}$ if $1 + 1 = 1!$

Main result

For $a \in \mathcal{P}_n$ define $\bar{a} \in M_{2^n}(R)$ by

$$\bar{a}_{X,Y} = \begin{cases} 1 & \text{if } X \cup Y' \text{ is a union of blocks of } a, \\ 0 & \text{otherwise.} \end{cases}$$

Proposition

1. If R is AI, then $\bar{a}\bar{b} = \overline{ab}$ for $a, b \in \mathcal{P}_n$.

Main result

For $a \in \mathcal{P}_n$ define $\bar{a} \in M_{2^n}(R)$ by

$$\bar{a}_{X,Y} = \begin{cases} 1 & \text{if } X \cup Y' \text{ is a union of blocks of } a, \\ 0 & \text{otherwise.} \end{cases}$$

Proposition

1. If R is AI, then $\bar{a}\bar{b} = \bar{ab}$ for $a, b \in \mathcal{P}_n$.
So $a \mapsto \bar{a}$ is a representation $\mathcal{P}_n \rightarrow M_{2^n}(R)$.

Main result

For $a \in \mathcal{P}_n$ define $\bar{a} \in M_{2^n}(R)$ by

$$\bar{a}_{X,Y} = \begin{cases} 1 & \text{if } X \cup Y' \text{ is a union of blocks of } a, \\ 0 & \text{otherwise.} \end{cases}$$

Proposition

1. If R is AI, then $\bar{a}\bar{b} = \bar{ab}$ for $a, b \in \mathcal{P}_n$.
So $a \mapsto \bar{a}$ is a representation $\mathcal{P}_n \rightarrow M_{2^n}(R)$.
2. If $R = \mathbb{Z}$, then $\bar{a}\bar{b} = 2^{\Phi(a,b)}\bar{ab}$ for $a, b \in \mathcal{P}_n$.

Main result

For $a \in \mathcal{P}_n$ define $\bar{a} \in M_{2^n}(R)$ by

$$\bar{a}_{X,Y} = \begin{cases} 1 & \text{if } X \cup Y' \text{ is a union of blocks of } a, \\ 0 & \text{otherwise.} \end{cases}$$

Proposition

1. If R is AI, then $\bar{a}\bar{b} = \bar{ab}$ for $a, b \in \mathcal{P}_n$.
So $a \mapsto \bar{a}$ is a representation $\mathcal{P}_n \rightarrow M_{2^n}(R)$.

2. If $R = \mathbb{Z}$, then $\bar{a}\bar{b} = 2^{\Phi(a,b)}\bar{ab}$ for $a, b \in \mathcal{P}_n$.
So $(i, a) \mapsto 2^i \bar{a}$ is a representation $\mathcal{P}_n^\Phi \rightarrow M_{2^n}(\mathbb{Z})$.

Main result

For $a \in \mathcal{P}_n$ define $\bar{a} \in M_{2^n}(R)$ by

$$\bar{a}_{X,Y} = \begin{cases} 1 & \text{if } X \cup Y' \text{ is a union of blocks of } a, \\ 0 & \text{otherwise.} \end{cases}$$

Proposition

1. If R is AI, then $\bar{a}\bar{b} = \bar{ab}$ for $a, b \in \mathcal{P}_n$.
So $a \mapsto \bar{a}$ is a representation $\mathcal{P}_n \rightarrow M_{2^n}(R)$.
2. If $R = \mathbb{Z}$, then $\bar{a}\bar{b} = 2^{\Phi(a,b)}\bar{ab}$ for $a, b \in \mathcal{P}_n$.
So $(i, a) \mapsto 2^i \bar{a}$ is a representation $\mathcal{P}_n^\Phi \rightarrow M_{2^n}(\mathbb{Z})$.
3. And $(i, a) \mapsto 2^i \bar{a}$ is a representation $\mathcal{P}_{n,d}^\Phi \rightarrow M_{2^n}(\mathbb{Z}_{2^{d+1}})$.

Main result

For $a \in \mathcal{P}_n$ define $\bar{a} \in M_{2^n}(R)$ by

$$\bar{a}_{X,Y} = \begin{cases} 1 & \text{if } X \cup Y' \text{ is a union of blocks of } a, \\ 0 & \text{otherwise.} \end{cases}$$

Proposition

1. If R is AI, then $\bar{a}\bar{b} = \bar{ab}$ for $a, b \in \mathcal{P}_n$.
So $a \mapsto \bar{a}$ is a representation $\mathcal{P}_n \rightarrow M_{2^n}(R)$.
2. If $R = \mathbb{Z}$, then $\bar{a}\bar{b} = 2^{\Phi(a,b)}\bar{ab}$ for $a, b \in \mathcal{P}_n$.
So $(i, a) \mapsto 2^i \bar{a}$ is a representation $\mathcal{P}_n^\Phi \rightarrow M_{2^n}(\mathbb{Z})$.
3. And $(i, a) \mapsto 2^i \bar{a}$ is a representation $\mathcal{P}_{n,d}^\Phi \rightarrow M_{2^n}(\mathbb{Z}_{2^{d+1}})$.

The map $a \mapsto \bar{a}$ is injective (for any R),

Main result

For $a \in \mathcal{P}_n$ define $\bar{a} \in M_{2^n}(R)$ by

$$\bar{a}_{X,Y} = \begin{cases} 1 & \text{if } X \cup Y' \text{ is a union of blocks of } a, \\ 0 & \text{otherwise.} \end{cases}$$

Proposition

1. If R is AI, then $\bar{a}\bar{b} = \bar{ab}$ for $a, b \in \mathcal{P}_n$.
So $a \mapsto \bar{a}$ is a representation $\mathcal{P}_n \rightarrow M_{2^n}(R)$.
2. If $R = \mathbb{Z}$, then $\bar{a}\bar{b} = 2^{\Phi(a,b)}\bar{ab}$ for $a, b \in \mathcal{P}_n$.
So $(i, a) \mapsto 2^i \bar{a}$ is a representation $\mathcal{P}_n^\Phi \rightarrow M_{2^n}(\mathbb{Z})$.
3. And $(i, a) \mapsto 2^i \bar{a}$ is a representation $\mathcal{P}_{n,d}^\Phi \rightarrow M_{2^n}(\mathbb{Z}_{2^{d+1}})$.

The map $a \mapsto \bar{a}$ is injective (for any R), so the above representations are **faithful**.

Main corollaries — Brauer and Temperley–Lieb

Main corollaries — Brauer and Temperley–Lieb

- ▶ Partition monoid: $\mathcal{P}_n = \{\text{partitions of } \mathbf{n} \cup \mathbf{n}'\}.$

Main corollaries — Brauer and Temperley–Lieb

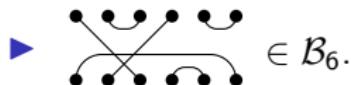
- ▶ Partition monoid: $\mathcal{P}_n = \{\text{partitions of } \mathbf{n} \cup \mathbf{n}'\}.$
- ▶ Brauer monoid: $\mathcal{B}_n = \{a \in \mathcal{P}_n : \text{each block of } a \text{ has size 2}\}.$

Main corollaries — Brauer and Temperley–Lieb

- ▶ Partition monoid: $\mathcal{P}_n = \{\text{partitions of } \mathbf{n} \cup \mathbf{n}'\}$.
- ▶ Brauer monoid: $\mathcal{B}_n = \{a \in \mathcal{P}_n : \text{each block of } a \text{ has size 2}\}$.
- ▶ Temperley–Lieb monoid: $\mathcal{TL}_n = \{a \in \mathcal{B}_n : a \text{ is planar}\}$.

Main corollaries — Brauer and Temperley–Lieb

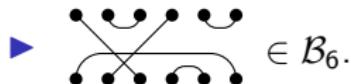
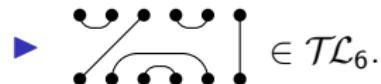
- ▶ Partition monoid: $\mathcal{P}_n = \{\text{partitions of } \mathbf{n} \cup \mathbf{n}'\}$.
- ▶ Brauer monoid: $\mathcal{B}_n = \{a \in \mathcal{P}_n : \text{each block of } a \text{ has size 2}\}$.
- ▶ Temperley–Lieb monoid: $\mathcal{TL}_n = \{a \in \mathcal{B}_n : a \text{ is planar}\}$.



$$\in \mathcal{B}_6.$$

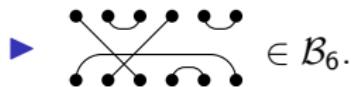
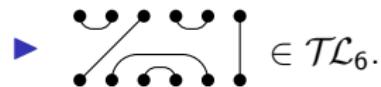
Main corollaries — Brauer and Temperley–Lieb

- ▶ Partition monoid: $\mathcal{P}_n = \{\text{partitions of } \mathbf{n} \cup \mathbf{n}'\}.$
- ▶ Brauer monoid: $\mathcal{B}_n = \{a \in \mathcal{P}_n : \text{each block of } a \text{ has size 2}\}.$
- ▶ Temperley–Lieb monoid: $\mathcal{TL}_n = \{a \in \mathcal{B}_n : a \text{ is planar}\}.$



Main corollaries — Brauer and Temperley–Lieb

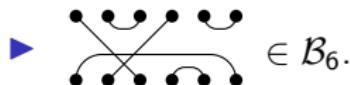
- ▶ Partition monoid: $\mathcal{P}_n = \{\text{partitions of } \mathbf{n} \cup \mathbf{n}'\}.$
- ▶ Brauer monoid: $\mathcal{B}_n = \{a \in \mathcal{P}_n : \text{each block of } a \text{ has size 2}\}.$
- ▶ Temperley–Lieb monoid: $\mathcal{TL}_n = \{a \in \mathcal{B}_n : a \text{ is planar}\}.$



Observation: If $a \in \mathcal{B}_n$, and if $\bar{a}_{X,Y} = 1$, then $|X| \equiv |Y| \pmod{2}$.

Main corollaries — Brauer and Temperley–Lieb

- ▶ Partition monoid: $\mathcal{P}_n = \{\text{partitions of } \mathbf{n} \cup \mathbf{n}'\}.$
- ▶ Brauer monoid: $\mathcal{B}_n = \{a \in \mathcal{P}_n : \text{each block of } a \text{ has size 2}\}.$
- ▶ Temperley–Lieb monoid: $\mathcal{TL}_n = \{a \in \mathcal{B}_n : a \text{ is planar}\}.$

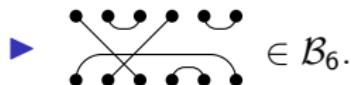


Observation: If $a \in \mathcal{B}_n$, and if $\bar{a}_{X,Y} = 1$, then $|X| \equiv |Y| \pmod{2}$.

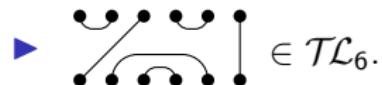
So $\bar{a} = \begin{bmatrix} \bar{a}_{\text{even}} & 0 \\ 0 & \bar{a}_{\text{odd}} \end{bmatrix}.$

Main corollaries — Brauer and Temperley–Lieb

- ▶ Partition monoid: $\mathcal{P}_n = \{\text{partitions of } \mathbf{n} \cup \mathbf{n}'\}$.
- ▶ Brauer monoid: $\mathcal{B}_n = \{a \in \mathcal{P}_n : \text{each block of } a \text{ has size 2}\}$.
- ▶ Temperley–Lieb monoid: $\mathcal{TL}_n = \{a \in \mathcal{B}_n : a \text{ is planar}\}$.



$$\in \mathcal{B}_6.$$



$$\in \mathcal{TL}_6.$$

Observation: If $a \in \mathcal{B}_n$, and if $\bar{a}_{X,Y} = 1$, then $|X| \equiv |Y| \pmod{2}$.

So $\bar{a} = \begin{bmatrix} \bar{a}_{\text{even}} & 0 \\ 0 & \bar{a}_{\text{odd}} \end{bmatrix}$. and $a \mapsto \bar{a}_{\text{even}}$ and $a \mapsto \bar{a}_{\text{odd}}$ are reps of \mathcal{B}_n and \mathcal{TL}_n in $M_{2^{n-1}}(\mathbb{B})$.

Main corollaries — Brauer and Temperley–Lieb

- ▶ Partition monoid: $\mathcal{P}_n = \{\text{partitions of } \mathbf{n} \cup \mathbf{n}'\}$.
- ▶ Brauer monoid: $\mathcal{B}_n = \{a \in \mathcal{P}_n : \text{each block of } a \text{ has size 2}\}$.
- ▶ Temperley–Lieb monoid: $\mathcal{TL}_n = \{a \in \mathcal{B}_n : a \text{ is planar}\}$.

$$\blacktriangleright \begin{array}{c} \bullet & \bullet & \bullet & \bullet \\ \diagup & \diagdown & \diagup & \diagdown \\ \bullet & \bullet & \bullet & \bullet \\ \diagdown & \diagup & \diagdown & \diagup \\ \bullet & \bullet & \bullet & \bullet \end{array} \in \mathcal{B}_6.$$

$$\blacktriangleright \begin{array}{c} \bullet & \bullet & \bullet & \bullet \\ \diagup & \diagdown & \diagup & \diagdown \\ \bullet & \bullet & \bullet & \bullet \\ \diagdown & \diagup & \diagdown & \diagup \\ \bullet & \bullet & \bullet & \bullet \\ \diagup & \diagdown & \diagup & \diagdown \\ \bullet & \bullet & \bullet & \bullet \end{array} \in \mathcal{TL}_6.$$

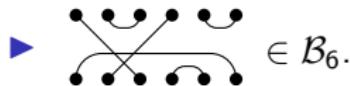
Observation: If $a \in \mathcal{B}_n$, and if $\bar{a}_{X,Y} = 1$, then $|X| \equiv |Y| \pmod{2}$.

So $\bar{a} = \begin{bmatrix} \bar{a}_{\text{even}} & 0 \\ 0 & \bar{a}_{\text{odd}} \end{bmatrix}$. and $a \mapsto \bar{a}_{\text{even}}$ and $a \mapsto \bar{a}_{\text{odd}}$ are reps of \mathcal{B}_n and \mathcal{TL}_n in $M_{2^{n-1}}(\mathbb{B})$.

- ▶ Both are faithful for \mathcal{B}_n when n is odd

Main corollaries — Brauer and Temperley–Lieb

- ▶ Partition monoid: $\mathcal{P}_n = \{\text{partitions of } \mathbf{n} \cup \mathbf{n}'\}$.
- ▶ Brauer monoid: $\mathcal{B}_n = \{a \in \mathcal{P}_n : \text{each block of } a \text{ has size 2}\}$.
- ▶ Temperley–Lieb monoid: $\mathcal{TL}_n = \{a \in \mathcal{B}_n : a \text{ is planar}\}$.



$$\in \mathcal{B}_6.$$

$$\in \mathcal{TL}_6.$$

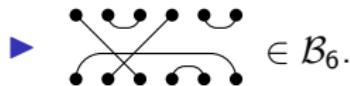
Observation: If $a \in \mathcal{B}_n$, and if $\bar{a}_{X,Y} = 1$, then $|X| \equiv |Y| \pmod{2}$.

So $\bar{a} = \begin{bmatrix} \bar{a}_{\text{even}} & 0 \\ 0 & \bar{a}_{\text{odd}} \end{bmatrix}$. and $a \mapsto \bar{a}_{\text{even}}$ and $a \mapsto \bar{a}_{\text{odd}}$ are reps of \mathcal{B}_n and \mathcal{TL}_n in $M_{2^{n-1}}(\mathbb{B})$.

- ▶ Both are faithful for \mathcal{B}_n when n is odd (but not for n even).

Main corollaries — Brauer and Temperley–Lieb

- ▶ Partition monoid: $\mathcal{P}_n = \{\text{partitions of } \mathbf{n} \cup \mathbf{n}'\}$.
- ▶ Brauer monoid: $\mathcal{B}_n = \{a \in \mathcal{P}_n : \text{each block of } a \text{ has size 2}\}$.
- ▶ Temperley–Lieb monoid: $\mathcal{TL}_n = \{a \in \mathcal{B}_n : a \text{ is planar}\}$.



Observation: If $a \in \mathcal{B}_n$, and if $\bar{a}_{X,Y} = 1$, then $|X| \equiv |Y| \pmod{2}$.

So $\bar{a} = \begin{bmatrix} \bar{a}_{\text{even}} & 0 \\ 0 & \bar{a}_{\text{odd}} \end{bmatrix}$. and $a \mapsto \bar{a}_{\text{even}}$ and $a \mapsto \bar{a}_{\text{odd}}$ are reps of \mathcal{B}_n and \mathcal{TL}_n in $M_{2^{n-1}}(\mathbb{B})$.

- ▶ Both are faithful for \mathcal{B}_n when n is odd (but not for n even).
- ▶ Both are faithful for \mathcal{TL}_n (for any n).

But we can do better for \mathcal{TL}_n !

Temperley–Lieb

Temperley–Lieb

Theorem

There is a faithful rep $\mathcal{TL}_n \rightarrow M_{f_n}(\mathbb{B})$: $a \mapsto \underline{a}$, where f_n is the n th Fibonacci number.

Temperley–Lieb

Theorem

There is a faithful rep $\mathcal{TL}_n \rightarrow M_{f_n}(\mathbb{B})$: $a \mapsto \underline{a}$, where f_n is the n th Fibonacci number.

Matrix \underline{a} is the restriction of \bar{a} to ‘even-gap’ subsets of \mathbf{n} :

Temperley–Lieb

Theorem

There is a faithful rep $\mathcal{TL}_n \rightarrow M_{f_n}(\mathbb{B}) : a \mapsto \underline{a}$, where f_n is the n th Fibonacci number.

Matrix \underline{a} is the restriction of \bar{a} to ‘even-gap’ subsets of \mathbf{n} :

- ▶ An even-gap subset $X = \{x_1 < x_2 < \dots < x_k\} \subseteq \mathbf{n}$ satisfies:
 - ▶ $x_i \equiv i \pmod{2}$,
 - ▶ $x_k \equiv n \pmod{2}$.

For example $\{3, 8, 9, 10, 17, 18\}$ is an even gap susbet of **20**:
 $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\}$.

Temperley–Lieb

Theorem

There is a faithful rep $\mathcal{TL}_n \rightarrow M_{f_n}(\mathbb{B}) : a \mapsto \underline{a}$, where f_n is the n th Fibonacci number.

Matrix \underline{a} is the restriction of \bar{a} to ‘even-gap’ subsets of \mathbf{n} :

- ▶ An even-gap subset $X = \{x_1 < x_2 < \dots < x_k\} \subseteq \mathbf{n}$ satisfies:
 - ▶ $x_i \equiv i \pmod{2}$,
 - ▶ $x_k \equiv n \pmod{2}$.

For example $\{3, 8, 9, 10, 17, 18\}$ is an even gap susbet of **20**:
 $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\}$.

The proof is pretty involved!

Temperley–Lieb

Theorem

There is a faithful rep $\mathcal{TL}_n \rightarrow M_{f_n}(\mathbb{B}) : a \mapsto \underline{a}$, where f_n is the n th Fibonacci number.

Matrix \underline{a} is the restriction of \bar{a} to ‘even-gap’ subsets of \mathbf{n} :

- ▶ An even-gap subset $X = \{x_1 < x_2 < \dots < x_k\} \subseteq \mathbf{n}$ satisfies:
 - ▶ $x_i \equiv i \pmod{2}$,
 - ▶ $x_k \equiv n \pmod{2}$.

For example $\{3, 8, 9, 10, 17, 18\}$ is an even gap susbet of **20**:
 $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\}$.

The proof is pretty involved! There is no decomp $\bar{a} = \begin{bmatrix} \underline{a} & 0 \\ 0 & ? \end{bmatrix}$.

Summary

Monoid	Dimension of our faithful rep
$\mathcal{P}_n, \mathcal{P}_n^\Phi, \mathcal{P}_{n,d}^\Phi$	2^n
$\mathcal{B}_n, \mathcal{B}_n^\Phi, \mathcal{B}_{n,d}^\Phi$	2^n or 2^{n-1}
$\mathcal{TL}_n, \mathcal{TL}_n^\Phi, \mathcal{TL}_{n,d}^\Phi$	$f_n, 2^{n-1}, 2^{n-1}$

Summary

Monoid	Dimension of our faithful rep
$\mathcal{P}_n, \mathcal{P}_n^\Phi, \mathcal{P}_{n,d}^\Phi$	2^n
$\mathcal{B}_n, \mathcal{B}_n^\Phi, \mathcal{B}_{n,d}^\Phi$	2^n or 2^{n-1}
$\mathcal{TL}_n, \mathcal{TL}_n^\Phi, \mathcal{TL}_{n,d}^\Phi$	$f_n, 2^{n-1}, 2^{n-1}$

Obvious Open Question

Are the above dimensions minimal?

Summary

Monoid	Dimension of our faithful rep
$\mathcal{P}_n, \mathcal{P}_n^\Phi, \mathcal{P}_{n,d}^\Phi$	2^n
$\mathcal{B}_n, \mathcal{B}_n^\Phi, \mathcal{B}_{n,d}^\Phi$	2^n or 2^{n-1}
$\mathcal{TL}_n, \mathcal{TL}_n^\Phi, \mathcal{TL}_{n,d}^\Phi$	$f_n, 2^{n-1}, 2^{n-1}$

Obvious Open Question

Are the above dimensions minimal?

E.g. does \mathcal{P}_n embed in $M_k(R)$ for some $k < 2^n$?

Summary

Monoid	Dimension of our faithful rep
$\mathcal{P}_n, \mathcal{P}_n^\Phi, \mathcal{P}_{n,d}^\Phi$	2^n
$\mathcal{B}_n, \mathcal{B}_n^\Phi, \mathcal{B}_{n,d}^\Phi$	2^n or 2^{n-1}
$\mathcal{TL}_n, \mathcal{TL}_n^\Phi, \mathcal{TL}_{n,d}^\Phi$	$f_n, 2^{n-1}, 2^{n-1}$

Obvious Open Question

Are the above dimensions minimal?

E.g. does \mathcal{P}_n embed in $M_k(R)$ for some $k < 2^n$?

- ▶ Thanks for listening! :-)