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Faithful linear and relational representations of diagram monoids

> JE, MJ, MK > arXiv:2512.77777 (?)

Main theorem

The partition monoid P, has a faithful 2”-dimensional matrix
representation over any Al (additively idempotent) semiring.
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A Joke from James...
“Al

Google are twisted partition monoids linear?

4 Al Overview

No, twisted partition monoids are generally not linear

Twisted partition monoids are linear.
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Basic idea — representation theory

We represent abstract objects by concrete ones.

Abstract groups:
P> permutation groups,

» matrix groups (over fields).

Abstract semigroups:
> (partial) transformation semigroups, or relation semigroups, or...

> matrix semigroups (over fields or rings or semirings).

A representation of a semigroup S by transformations (matrices) is
a morphism ¢ : S — Tx for some X (respectively, with co-domain
M,(R) for some natural number n and some semiring R).

Say that a representation is faithful if the morphism is injective.
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Basic idea — transformation/matrix representations
For a positive integer n, let n = {1,..., n}.

Tn = {functions n — n} is a semigroup under composition.
(The full transformation semigroup of rank n.)

» Any finite semigroup embeds in some 7.

» 7, embeds in the matrix semigroup M,(R) for any semiring R.
(Think of f € T, acting on the standard basis of R".)

» So given R, any finite semigroup embeds in some M,(R).
» An infinite semigroup might embed in some M,(R).

Today: matrix representations of:
» partition monoids (finite),

> twisted partition monoids (finite or infinite).
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» The partition monoid of rank n is
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» The partition monoid of rank n is
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> Letn={1,...,n}and n’ ={1',...,n"}, where n > 0.
» The partition monoid of rank n is
P, = {set partitions of nUn’}

= {graphs on vertex set nUn'}.
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Partition monoids — product in P,

To calculate the product of a, b € P,:
(1) connect a to b,

(2) remove middle vertices and floating components,

(3) tidy up.

b{ﬁ#ﬁiﬁi%}ab
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Twisted partition monoids — P?
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» Floating components are very important in applications!
» The twisted partition monoid P remembers them.
> Asaset, PY =NxP,={(i,a): i €N, ae P,}.

» Think of (i,a) as “a with i floating components”.

> So above, (0,a) - (0, b) = (1, ab).

> Similarly, (1,a)-(2,b) = (4, ab).

» Product in P is given by (i,a) - (j, b) = (i +j + ®(a, b), ab),
where ®(a, b) = # floating components when forming ab.
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Twisted partition monoids — Py and Py,
P =Nx P, is:
» (countably) infinite,
» but approximated by a sequence of finite monoids:

P = lim P?,
d—oo ’

where in 77¢d we allow at most d floating components
and pairs (i, a) with i > d are all equated to a zero, 0.

As a set, Pq’d ={0,1,...,d} xP, U {0}.
Product is the same as in 73,? when possible:
) ) (i+j+®(a,b),ab) ifi+j+ P(a,b) <d,
(i,a)- (s b) = .
0 otherwise.
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Matrix representations of (twisted) diagram monoids

Can we find matrix representations of the above monoids?

> We'd like to find ‘nice’ reps...... of ‘small’ dimension.

> As above, any rep P, — T gives a rep P, — Mk (R).

Theorem (Reinis Cirpons, James East, James Mitchell, 2024)

The least k such that P, embeds in T is

n — Mn bn
k:1+b+2 f32+1+ ’

where b, is the nth Bell number.

Can we do better? (Note: these numbers are BIG!)
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Main results

1. P, embeds in Man(R) for any Al semiring R.
(Taking R =B = {0, 1} leads to relational representations.)

2. P® embeds in Man(Z).

3. Py embeds in Man(Zpa:1).

Immediately, all diagram monoids of rank n introduced earlier
have a 2" dimensional matrix representation over a suitable
semiring. Smaller representations exist in some cases:

Theorem

4. For n odd, B, embeds in My,—1(R) for any Al semiring R.
5. TL, embeds in M (R) for any Al semiring R (f, = Fibonacci).
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Main result

1. Pn embeds in Man(R) for any Al semiring R.

Why 277 Subsets!

A partition a € P, maps to a 2"-dimensional 0-1 matrix a with:
» Rows and columns indexed by subsets of n,

» Non-zero entries encoding the blocks of a...
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Main result

1. Pn embeds in Man(R) for any Al semiring R.

Why 277 Subsets!

A partition a € P, maps to a 2"-dimensional 0-1 matrix a with:
» Rows and columns indexed by subsets of n,

» Non-zero entries encoding the blocks of a...

2 3 4

Example: a = has blocks {1,1'}, {2,2",3'}

[ )
1ol 3l 4!
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Main result

1. Pn embeds in Man(R) for any Al semiring R.

Why 277 Subsets!

A partition a € P, maps to a 2"-dimensional 0-1 matrix a with:
» Rows and columns indexed by subsets of n,

» Non-zero entries encoding the blocks of a...

12
Example: a = I}x has blocks {1,1'}, {2,2/,3'}, .
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Main result

1. Pn embeds in Man(R) for any Al semiring R.

Why 277 Subsets!

A partition a € P, maps to a 2"-dimensional 0-1 matrix a with:
» Rows and columns indexed by subsets of n,

» Non-zero entries encoding the blocks of a...

12
Example: a = I h has blocks {1,1'}, {2,2/,3'}, .
1/ 2/ 3/ :/

Each block has the form X U Y’ for some X, Y C n.

We set ax,y = 1 if and only if X U Y” is a union of blocks.

Eg 1=23p}0) =303 = 3340 = 30,40



Main result

1. Pn embeds in Man(R) for any Al semiring R.

Why 277 Subsets!

A partition a € P, maps to a 2"-dimensional 0-1 matrix a with:
» Rows and columns indexed by subsets of n,

» Non-zero entries encoding the blocks of a...

12
Example: a = I h has blocks {1,1'}, {2,2/,3'}, .
1/ 2/ 3/ :/

Each block has the form X U Y’ for some X, Y C n.

We set ax,y = 1 if and only if X U Y” is a union of blocks.

Eg 1=23p}0) =30),(23) = 33430 = 30,(4) = 31,341, {14)
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Main result
For a € P, define 3 € Man(R) by

B 1 if XU Y’ is a union of blocks of a,
ax,y = .
0 otherwise.

Proposition

1. If R is Al, then ab = ab for a, b € P,,.
So a > @ is a representation P, — Man(R).

2. If R =Z, then ab = 2%(@b)3p for a, b € P,.
So (i,a) ~ 23 is a representation Py — Man(Z).
3. And (i,a) = 23 is a representation P, — Man(Zpa11).

The map a — 3 is injective (for any R), so the above
representations are faithful.
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Main corollaries — Brauer and Temperley—Lieb

> Partition monoid: P, = {partitions of nUn'}.

» Brauer monoid: B, = {a € P, : each block of a has size 2}.

» Temperley—Lieb monoid: 7L, = {a € B, : a is planar}.

Nty . 7 < I

Observation: If a € B,,, and if 3ax,y = 1, then |[X| = |Y]| mod 2.

Soa= [aeven ,0 ] . and a > 3even and a > 3gqq are reps of B,
0 3odd

and TL, in Mys—1(B).
» Both are faithful for B, when n is odd (but not for n even).
» Both are faithful for 7L, (for any n).

But we can do better for TL£,!
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Theorem

There is a faithful rep 7L, — Mg, (B) : a — a, where f, is the nth
Fibonacci number.

Matrix a is the restriction of a to ‘even-gap’ subsets of n:
» An even-gap subset X = {x1 < xp < -+ < xx} C n satisfies:

» x; =i mod 2, » x, = n mod 2.

For example {3,8,9,10,17,18} is an even gap susbet of 20:
{ ) 737 ) ) ) ’87 97 107 ) ) ) b ) 717’ 187 ) }

The proof is pretty involved! There is no decomp 2 = [8 g]
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Monoid Dimension of our faithful rep
P, Py, Py 2"
B,, B?, Bf;d 2" or 271
TLn, TLY, TLY 4 f,, 2n=1 on-1

Obvious Open Question

Are the above dimensions minimal?
E.g. does P, embed in My(R) for some k < 2"?

» Thanks for listening! :-)



