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Basic idea — representation theory

We represent abstract objects by concrete ones.

Abstract groups:

▶ permutation groups,

▶ matrix groups (over fields).

Abstract semigroups:

▶ (partial) transformation semigroups, or relation semigroups, or...

▶ matrix semigroups (over fields or rings or semirings).

A representation of a semigroup S by transformations (matrices) is
a morphism φ : S → TX for some X (respectively, with co-domain
Mn(R) for some natural number n and some semiring R).
Say that a representation is faithful if the morphism is injective.
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Basic idea — transformation/matrix representations

For a positive integer n, let n = {1, . . . , n}.

Tn = {functions n → n} is a semigroup under composition.
(The full transformation semigroup of rank n.)

▶ Any finite semigroup embeds in some Tn.
▶ Tn embeds in the matrix semigroup Mn(R) for any semiring R.

(Think of f ∈ Tn acting on the standard basis of Rn.)

▶ So given R, any finite semigroup embeds in some Mn(R).

▶ An infinite semigroup might embed in some Mn(R).

Today: matrix representations of:

▶ partition monoids (finite),

▶ twisted partition monoids (finite or infinite).
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Partition monoids — Pn

▶ Let n = {1, . . . , n} and n′ = {1′, . . . , n′}, where n ≥ 0.

▶ The partition monoid of rank n is

Pn =
{
set partitions of n ∪ n′

}
≡

{
graphs on vertex set n ∪ n′

}
.

▶ E.g.: a =
{
, , , ,

}
∈ P6

1 2 3 4 5 6
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}
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}
6′
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Partition monoids — product in Pn

To calculate the product of a, b ∈ Pn:

(1) connect a to b,

(2) remove middle vertices and floating components,

(3) tidy up.

a

{

b

{ 1 2

}
ab

3
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Diagram monoids — submonoids of Pn

Pn

PBn

Bn

Sn

PPn

Mn

TLn

idn

▶ Brauer, Temperley–Lieb (a.k.a. Jones), Motzkin, and more......



Twisted partition monoids — PΦ
n

a

{

b

{
}
ab

▶ Floating components are very important in applications!

▶ The twisted partition monoid PΦ
n remembers them.

▶ As a set, PΦ
n = N× Pn =

{
(i , a) : i ∈ N, a ∈ Pn

}
.

▶ Think of (i , a) as “a with i floating components”.

▶ So above, (0, a) · (0, b) = (1, ab).

▶ Similarly, (1, a) · (2, b) = (4, ab).

▶ Product in PΦ
n is given by (i , a) · (j , b) = (i + j +Φ(a, b), ab),

where Φ(a, b) = # floating components when forming ab.
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Twisted partition monoids — PΦ
n and PΦ

n,d

PΦ
n = N× Pn is:

▶ (countably) infinite,

▶ but approximated by a sequence of finite monoids:

PΦ
n = lim
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PΦ
n,d ,

where in PΦ
n,d , we allow at most d floating components

and pairs (i , a) with i > d are all equated to a zero, 0.

As a set, PΦ
n,d = {0, 1, . . . , d} × Pn ∪ {0}.

Product is the same as in PΦ
n when possible:

(i , a) · (j , b) =

{
(i + j +Φ(a, b), ab) if i + j +Φ(a, b) ≤ d ,

0 otherwise.
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Matrix representations of (twisted) diagram monoids

Problem

Can we find matrix representations of the above monoids?

▶ We’d like to find ‘nice’ reps...... of ‘small’ dimension.

▶ As above, any rep Pn → Tk gives a rep Pn → Mk(R).

Theorem (Reinis Cirpons, James East, James Mitchell, 2024)

The least k such that Pn embeds in Tk is

k = 1 +
bn+2 − bn+1 + bn

2
,

where bn is the nth Bell number.

Can we do better? (Note: these numbers are BIG!)
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Main results

Theorem

1. Pn embeds in M2n(R) for any AI semiring R.
(Taking R = B = {0, 1} leads to relational representations.)

2. PΦ
n embeds in M2n(Z).

3. PΦ
n,d embeds in M2n(Z2d+1).

Immediately, all diagram monoids of rank n introduced earlier
have a 2n dimensional matrix representation over a suitable
semiring. Smaller representations exist in some cases:

Theorem

4. For n odd, Bn embeds in M2n−1(R) for any AI semiring R.

5. TLn embeds in Mfn(R) for any AI semiring R (fn = Fibonacci).
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Main result

Theorem

1. Pn embeds in M2n(R) for any AI semiring R.

Why 2n? Subsets!

A partition a ∈ Pn maps to a 2n-dimensional 0-1 matrix a with:

▶ Rows and columns indexed by subsets of n,

▶ Non-zero entries encoding the blocks of a...

Example:

a =

has blocks {1, 1′}, {2, 2′, 3′}, {3, 4}, {4′}. Each

block has the form X ∪ Y ′ for some X ,Y ⊆ n.
We set aX ,Y = 1 if and only if X ∪ Y ′ is a union of blocks.

E.g. 1 = a{1},{1} = a{2},{2,3} = a{3,4},∅ = a∅,{4} = a{1,3,4},{1,4}...



Main result

Theorem

1. Pn embeds in M2n(R) for any AI semiring R.

Why 2n?

Subsets!

A partition a ∈ Pn maps to a 2n-dimensional 0-1 matrix a with:

▶ Rows and columns indexed by subsets of n,

▶ Non-zero entries encoding the blocks of a...

Example:

a =

has blocks {1, 1′}, {2, 2′, 3′}, {3, 4}, {4′}. Each

block has the form X ∪ Y ′ for some X ,Y ⊆ n.
We set aX ,Y = 1 if and only if X ∪ Y ′ is a union of blocks.

E.g. 1 = a{1},{1} = a{2},{2,3} = a{3,4},∅ = a∅,{4} = a{1,3,4},{1,4}...



Main result

Theorem

1. Pn embeds in M2n(R) for any AI semiring R.

Why 2n? Subsets!

A partition a ∈ Pn maps to a 2n-dimensional 0-1 matrix a with:

▶ Rows and columns indexed by subsets of n,

▶ Non-zero entries encoding the blocks of a...

Example:

a =

has blocks {1, 1′}, {2, 2′, 3′}, {3, 4}, {4′}. Each

block has the form X ∪ Y ′ for some X ,Y ⊆ n.
We set aX ,Y = 1 if and only if X ∪ Y ′ is a union of blocks.

E.g. 1 = a{1},{1} = a{2},{2,3} = a{3,4},∅ = a∅,{4} = a{1,3,4},{1,4}...



Main result

Theorem

1. Pn embeds in M2n(R) for any AI semiring R.

Why 2n? Subsets!

A partition a ∈ Pn maps to a 2n-dimensional 0-1 matrix a with:

▶ Rows and columns indexed by subsets of n,

▶ Non-zero entries encoding the blocks of a...

Example:

a =

has blocks {1, 1′}, {2, 2′, 3′}, {3, 4}, {4′}. Each

block has the form X ∪ Y ′ for some X ,Y ⊆ n.
We set aX ,Y = 1 if and only if X ∪ Y ′ is a union of blocks.

E.g. 1 = a{1},{1} = a{2},{2,3} = a{3,4},∅ = a∅,{4} = a{1,3,4},{1,4}...



Main result

Theorem

1. Pn embeds in M2n(R) for any AI semiring R.

Why 2n? Subsets!

A partition a ∈ Pn maps to a 2n-dimensional 0-1 matrix a with:

▶ Rows and columns indexed by subsets of n,

▶ Non-zero entries encoding the blocks of a...

Example:

a =

has blocks {1, 1′}, {2, 2′, 3′}, {3, 4}, {4′}. Each

block has the form X ∪ Y ′ for some X ,Y ⊆ n.
We set aX ,Y = 1 if and only if X ∪ Y ′ is a union of blocks.

E.g. 1 = a{1},{1} = a{2},{2,3} = a{3,4},∅ = a∅,{4} = a{1,3,4},{1,4}...



Main result

Theorem

1. Pn embeds in M2n(R) for any AI semiring R.

Why 2n? Subsets!

A partition a ∈ Pn maps to a 2n-dimensional 0-1 matrix a with:

▶ Rows and columns indexed by subsets of n,

▶ Non-zero entries encoding the blocks of a...

Example:

a =

has blocks {1, 1′}, {2, 2′, 3′}, {3, 4}, {4′}. Each

block has the form X ∪ Y ′ for some X ,Y ⊆ n.
We set aX ,Y = 1 if and only if X ∪ Y ′ is a union of blocks.

E.g. 1 = a{1},{1} = a{2},{2,3} = a{3,4},∅ = a∅,{4} = a{1,3,4},{1,4}...



Main result

Theorem

1. Pn embeds in M2n(R) for any AI semiring R.

Why 2n? Subsets!

A partition a ∈ Pn maps to a 2n-dimensional 0-1 matrix a with:

▶ Rows and columns indexed by subsets of n,

▶ Non-zero entries encoding the blocks of a...

Example:

1

1′

2

2′ 3′

3 4

4′

a =

has blocks {1, 1′}, {2, 2′, 3′}, {3, 4}, {4′}.

Each block has the form X ∪ Y ′ for some X ,Y ⊆ n.

We set aX ,Y = 1 if and only if X ∪ Y ′ is a union of blocks.

E.g. 1 = a{1},{1} = a{2},{2,3} = a{3,4},∅ = a∅,{4} = a{1,3,4},{1,4}...



Main result

Theorem

1. Pn embeds in M2n(R) for any AI semiring R.

Why 2n? Subsets!

A partition a ∈ Pn maps to a 2n-dimensional 0-1 matrix a with:

▶ Rows and columns indexed by subsets of n,

▶ Non-zero entries encoding the blocks of a...

Example:

1

1′

2

2′ 3′

3 4

4′

a = has blocks {1, 1′}

, {2, 2′, 3′}, {3, 4}, {4′}.

Each block has the form X ∪ Y ′ for some X ,Y ⊆ n.

We set aX ,Y = 1 if and only if X ∪ Y ′ is a union of blocks.

E.g. 1 = a{1},{1} = a{2},{2,3} = a{3,4},∅ = a∅,{4} = a{1,3,4},{1,4}...



Main result

Theorem

1. Pn embeds in M2n(R) for any AI semiring R.

Why 2n? Subsets!

A partition a ∈ Pn maps to a 2n-dimensional 0-1 matrix a with:

▶ Rows and columns indexed by subsets of n,

▶ Non-zero entries encoding the blocks of a...

Example:

1

1′

2

2′ 3′

3 4

4′

a = has blocks {1, 1′}, {2, 2′, 3′}

, {3, 4}, {4′}.

Each block has the form X ∪ Y ′ for some X ,Y ⊆ n.

We set aX ,Y = 1 if and only if X ∪ Y ′ is a union of blocks.

E.g. 1 = a{1},{1} = a{2},{2,3} = a{3,4},∅ = a∅,{4} = a{1,3,4},{1,4}...



Main result

Theorem

1. Pn embeds in M2n(R) for any AI semiring R.

Why 2n? Subsets!

A partition a ∈ Pn maps to a 2n-dimensional 0-1 matrix a with:

▶ Rows and columns indexed by subsets of n,

▶ Non-zero entries encoding the blocks of a...

Example:

1

1′

2

2′ 3′

3 4

4′

a = has blocks {1, 1′}, {2, 2′, 3′}, {3, 4}

, {4′}.

Each block has the form X ∪ Y ′ for some X ,Y ⊆ n.

We set aX ,Y = 1 if and only if X ∪ Y ′ is a union of blocks.

E.g. 1 = a{1},{1} = a{2},{2,3} = a{3,4},∅ = a∅,{4} = a{1,3,4},{1,4}...



Main result

Theorem

1. Pn embeds in M2n(R) for any AI semiring R.

Why 2n? Subsets!

A partition a ∈ Pn maps to a 2n-dimensional 0-1 matrix a with:

▶ Rows and columns indexed by subsets of n,

▶ Non-zero entries encoding the blocks of a...

Example:

1

1′

2

2′ 3′

3 4

4′

a = has blocks {1, 1′}, {2, 2′, 3′}, {3, 4}, {4′}.

Each block has the form X ∪ Y ′ for some X ,Y ⊆ n.

We set aX ,Y = 1 if and only if X ∪ Y ′ is a union of blocks.

E.g. 1 = a{1},{1} = a{2},{2,3} = a{3,4},∅ = a∅,{4} = a{1,3,4},{1,4}...



Main result

Theorem

1. Pn embeds in M2n(R) for any AI semiring R.

Why 2n? Subsets!

A partition a ∈ Pn maps to a 2n-dimensional 0-1 matrix a with:

▶ Rows and columns indexed by subsets of n,

▶ Non-zero entries encoding the blocks of a...

Example:

1

1′

2

2′ 3′

3 4

4′

a = has blocks {1, 1′}, {2, 2′, 3′}, {3, 4}, {4′}.

Each block has the form X ∪ Y ′ for some X ,Y ⊆ n.

We set aX ,Y = 1 if and only if X ∪ Y ′ is a union of blocks.

E.g. 1 = a{1},{1} = a{2},{2,3} = a{3,4},∅ = a∅,{4} = a{1,3,4},{1,4}...



Main result

Theorem

1. Pn embeds in M2n(R) for any AI semiring R.

Why 2n? Subsets!

A partition a ∈ Pn maps to a 2n-dimensional 0-1 matrix a with:

▶ Rows and columns indexed by subsets of n,

▶ Non-zero entries encoding the blocks of a...

Example:

1

1′

2

2′ 3′

3 4

4′

a = has blocks {1, 1′}, {2, 2′, 3′}, {3, 4}, {4′}.

Each block has the form X ∪ Y ′ for some X ,Y ⊆ n.

We set aX ,Y = 1 if and only if X ∪ Y ′ is a union of blocks.

E.g. 1 = a{1},{1} = a{2},{2,3} = a{3,4},∅ = a∅,{4} = a{1,3,4},{1,4}...



Main result

Theorem

1. Pn embeds in M2n(R) for any AI semiring R.

Why 2n? Subsets!

A partition a ∈ Pn maps to a 2n-dimensional 0-1 matrix a with:

▶ Rows and columns indexed by subsets of n,

▶ Non-zero entries encoding the blocks of a...

Example:

1

1′

2

2′ 3′

3 4

4′

a = has blocks {1, 1′}, {2, 2′, 3′}, {3, 4}, {4′}.

Each block has the form X ∪ Y ′ for some X ,Y ⊆ n.

We set aX ,Y = 1 if and only if X ∪ Y ′ is a union of blocks.

E.g. 1 = a{1},{1}

= a{2},{2,3} = a{3,4},∅ = a∅,{4} = a{1,3,4},{1,4}...



Main result

Theorem

1. Pn embeds in M2n(R) for any AI semiring R.

Why 2n? Subsets!

A partition a ∈ Pn maps to a 2n-dimensional 0-1 matrix a with:

▶ Rows and columns indexed by subsets of n,

▶ Non-zero entries encoding the blocks of a...

Example:

1

1′

2

2′ 3′

3 4

4′

a = has blocks {1, 1′}, {2, 2′, 3′}, {3, 4}, {4′}.

Each block has the form X ∪ Y ′ for some X ,Y ⊆ n.

We set aX ,Y = 1 if and only if X ∪ Y ′ is a union of blocks.

E.g. 1 = a{1},{1} = a{2},{2,3}

= a{3,4},∅ = a∅,{4} = a{1,3,4},{1,4}...



Main result

Theorem

1. Pn embeds in M2n(R) for any AI semiring R.

Why 2n? Subsets!

A partition a ∈ Pn maps to a 2n-dimensional 0-1 matrix a with:

▶ Rows and columns indexed by subsets of n,

▶ Non-zero entries encoding the blocks of a...

Example:

1

1′

2

2′ 3′

3 4

4′

a = has blocks {1, 1′}, {2, 2′, 3′}, {3, 4}, {4′}.

Each block has the form X ∪ Y ′ for some X ,Y ⊆ n.

We set aX ,Y = 1 if and only if X ∪ Y ′ is a union of blocks.

E.g. 1 = a{1},{1} = a{2},{2,3} = a{3,4},∅

= a∅,{4} = a{1,3,4},{1,4}...



Main result

Theorem

1. Pn embeds in M2n(R) for any AI semiring R.

Why 2n? Subsets!

A partition a ∈ Pn maps to a 2n-dimensional 0-1 matrix a with:

▶ Rows and columns indexed by subsets of n,

▶ Non-zero entries encoding the blocks of a...

Example:

1

1′

2

2′ 3′

3 4

4′

a = has blocks {1, 1′}, {2, 2′, 3′}, {3, 4}, {4′}.

Each block has the form X ∪ Y ′ for some X ,Y ⊆ n.

We set aX ,Y = 1 if and only if X ∪ Y ′ is a union of blocks.

E.g. 1 = a{1},{1} = a{2},{2,3} = a{3,4},∅ = a∅,{4}

= a{1,3,4},{1,4}...



Main result

Theorem

1. Pn embeds in M2n(R) for any AI semiring R.

Why 2n? Subsets!

A partition a ∈ Pn maps to a 2n-dimensional 0-1 matrix a with:

▶ Rows and columns indexed by subsets of n,

▶ Non-zero entries encoding the blocks of a...

Example:

1

1′

2

2′ 3′

3 4

4′

a = has blocks {1, 1′}, {2, 2′, 3′}, {3, 4}, {4′}.

Each block has the form X ∪ Y ′ for some X ,Y ⊆ n.

We set aX ,Y = 1 if and only if X ∪ Y ′ is a union of blocks.

E.g. 1 = a{1},{1} = a{2},{2,3} = a{3,4},∅ = a∅,{4} = a{1,3,4},{1,4}...



The mapping

For a ∈ Pn define a ∈ M2n(R) by

aX ,Y =

{
1 if X ∪ Y ′ is a union of blocks of a,

0 otherwise.

▶ a = 7→ a =

[
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

]
▶ a2 = a

▶ a2 = a

▶ b = 7→ b =

[
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

]
▶ b2 = b

▶ b
2
= 4b = b if 1 + 1 = 1!
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Main result

For a ∈ Pn define a ∈ M2n(R) by

aX ,Y =

{
1 if X ∪ Y ′ is a union of blocks of a,

0 otherwise.

Proposition

1. If R is AI, then ab = ab for a, b ∈ Pn.

So a 7→ a is a representation Pn → M2n(R).

2. If R = Z, then ab = 2Φ(a,b)ab for a, b ∈ Pn.
So (i , a) 7→ 2ia is a representation PΦ

n → M2n(Z).

3. And (i , a) 7→ 2ia is a representation PΦ
n,d → M2n(Z2d+1).

The map a 7→ a is injective (for any R), so the above
representations are faithful.
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Main corollaries — Brauer and Temperley–Lieb

▶ Partition monoid: Pn = {partitions of n ∪ n′}.

▶ Brauer monoid: Bn = {a ∈ Pn : each block of a has size 2}.
▶ Temperley–Lieb monoid: TLn = {a ∈ Bn : a is planar}.

▶ ∈ B6. ▶ ∈ TL6.

Observation: If a ∈ Bn, and if aX ,Y = 1, then |X | ≡ |Y | mod 2.

So a =

[
aeven 0
0 aodd

]
. and a 7→ aeven and a 7→ aodd are reps of Bn

and TLn in M2n−1(B).

▶ Both are faithful for Bn when n is odd (but not for n even).

▶ Both are faithful for TLn (for any n).

But we can do better for TLn!
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Temperley–Lieb

Theorem

There is a faithful rep TLn → Mfn(B) : a 7→ a, where fn is the nth
Fibonacci number.

Matrix a is the restriction of a to ‘even-gap’ subsets of n:

▶ An even-gap subset X = {x1 < x2 < · · · < xk} ⊆ n satisfies:

▶ xi ≡ i mod 2, ▶ xk ≡ n mod 2.

For example {3, 8, 9, 10, 17, 18} is an even gap susbet of 20:
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}.

The proof is pretty involved! There is no decomp a =

[
a 0
0 ?

]
.
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Summary

Monoid Dimension of our faithful rep

Pn, PΦ
n , PΦ

n,d 2n

Bn, BΦ
n , BΦ

n,d 2n or 2n−1

TLn, TLΦ
n , TLΦ

n,d fn, 2
n−1, 2n−1

Obvious Open Question

Are the above dimensions minimal?
E.g. does Pn embed in Mk(R) for some k < 2n?

▶ Thanks for listening! :-)
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