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Previous versions

Talks is based on:

@ Talk at AbramskyFest (Oxford, June 2013)

@ Joint Maths / Computing Seminar (Oxford, March 2013)

Topic of talk:

Foundations of category theory & “MacLane’s Theorem”
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(The ideas behind) category theory

Category Theory is simply
a calculus of mathematical' structures.

It studies:
@ Mathematical structures.

@ Structure-preserving mappings.

@ Transformations between structures.

Tor logical, or computational, or linguistic, or . ..

www.peter.hines.net



History & prehistory

It arose from work by:
@ Samuel Eilenberg,
@ Saunders MacLane,

in Algebraic Topology.
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History & prehistory

It arose from work by:
@ Samuel Eilenberg,
@ Saunders MacLane,

in Algebraic Topology.

Later applied (despite protests) in other subjects:

Theoretical Computing
Linguistics

Logic

Quantum Mechanics
Foundations of Mathematics
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Precursors to category theory

John von Neumann (1925): Axiomatic theory of classes.
A formalism for working with proper classes:

All sets, all monoids, all lattices, &c.

Later became the von Neumann, Godel, Bernay formalism

@ von Neumann originated the theory. (proto-cat. theory)
@ Godel made it logically consistent.

@ Bernay rewrote it to look like ZFC set theory ....
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Category Theory textbooks

Applications of category theory in various fields

...alarge range of texts.
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Category Theory textbooks

Applications of category theory in various fields

...alarge range of texts.

The underlying theory of categories:

“Categories for the Working Mathematician”
— S. MacLane (1971)

... examples & applications taken from algebraic topology.
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The definition ...

A category C consists of

@ A class of objects, Ob(C).
@ For all objects A, B € Ob(C), a set of arrows C(A, B).

We will work diagrammatically:

An arrow f € C(A, B) is drawn as

A—.B
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The axioms ...

@ Matching arrows can be composed

A—'.B
Aig
C

@ Composition is associative

h(gf) = (hg)f

@ There is an identity 1,4 at each object A
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Examples of categories

@ Monoid

o (Objects:) all monoids.

o (Arrows:) homomorphisms.
@ Set

o (Objects:) all sets.

e (Arrows:) functions.
@ Poset

o (Objects:) all partially ordered sets.

o (Arrows:) order-preserving functions.
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Diagrams in categories

Identities and equations are usually expressed graphically.

A diagram in the category Set

7 X—X2 N

x—abs(x) )
n—n

A diagram commutes when all paths with the same
source / target describe the same arrow.
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The art of diagram-chasing

Commuting diagrams can be pasted along a common edge.

7 X X2 N N

7

x—abs(x) n—n (mod 2)

7

N N {0,1}

n—n (mod 2)

Both the above diagrams commute ...
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The art of diagram-chasing

Commuting diagrams can be pasted along a common edge.

7 X—X2 N

7

Xx—abs(x) n—n (mod 2)

/

N {0,1}

n—n (mod 2)

... this diagram also commutes!
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The art of diagram-chasing

Edges can be deleted in commuting diagrams.

2
XX
N

7

x—abs(x) N— n—n (mod 2)

|

n—n (mod 2)

N

{0, 1}
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The art of diagram-chasing

Edges can be deleted in commuting diagrams.

7 X X2 N

Xx—abs(x) n—n (mod 2)

N {0,1}

n—n (mod 2)

... this is still a commuting diagram.
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Maps between categories

A mapping between categories C and D is a functor I : C — D.

@ Objects of C are mapped to objects of D.

@ Arrows of C are mapped to arrows of D.

A f B Category C
|
r(A) — r(B) Category D
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Functors

Functors must preserve composition and identities.

Fx)=1rx) , T(9f) =T(9)I(F)
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Functors

Functors must preserve composition and identities.

Fx)=1rx) , T(9f) =T(9)I(F)

Functors preserve commutativity of diagrams.

] f V

/

h Kk g commutes in C

/

J

w X
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Functors

Functors must preserve composition and identities.

Fx)=1rxy , T(gf) =T(9)I(f)

Functors preserve commutativity of diagrams.

r(f)

r(v) r(v)
r(h) r(k)/ rg) commutes in D
r(w) r(X)
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Examples of functors (I)

A functor from Set to Monoid.

@ Take a set X.

@ Form the free monoid X* (All finite words over X).

Every function f: X — Y
induces a homomorphism
map(f) : X* — Y*

This is a functor Free : Set — Monoid.
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Examples of functors (ll)

A functor from Top. to Group.

@ Take a pointed topological space T

@ Form its fundamental group m1(T)

Every continuous map
c:S—T

induces a homomorphism
7(f) : m1(S) — 71(T)

This is a functor 7 : Top,. — Group.
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A sweeping generalisation

In general:

@ finding invariants (e.g. fundamental group, Ky group, &c.)
@ using constructors (e.g. monoid semi-ring construction)
@ type re-assignments (e.g. Int — Real)

@ forming algebraic models
(e.g. Brouwer-Heyting-Kolmogorov interpretation)
o ...

are all examples of functors.
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Monoidal Categories
and

MacLane’s Theorem
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Categories with additional structure:

Monoidal Categories = Categories with Tensors. |

A tensor _ ® _on a category is:

a way of combining two objects / arrows
to make a new object / arrow of the same category.

@ Objects: Given X, Y, we can form X @ Y.

@ Arrows: Given f, g, we can form f @ g.
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Properties of tensors:

A tensor is a functor:
® _:CxC-=cC

Functoriality implies:

1/ Types match:
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Properties of tensors:

A tensor is a functor:
® _CxC-=cC

Functoriality implies:

1/ Types match:

f®h

AR X BY
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Properties of tensors:

A tensor is a functor:
®_:CxC—=C
Functoriality implies:

2/ Composition is preserved:

A f B g C

X h Y K Z
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Properties of tensors:

A tensor is a functor:
® _:CxC=¢C
Functoriality implies:

2/ Composition is preserved:

A of c

X kh Z
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Properties of tensors:

A tensor is a functor:
®_:CxC—=C

Functoriality implies:

2/ Composition is preserved:

gf@kh

A X Ce”l
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Properties of tensors:

A tensor is a functor:
®_:CxC—=C
Functoriality implies:

2/ Composition is preserved:

A f B g C

X h Y K Z
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Properties of tensors:

A tensor is a functor:
®_:CxC—=C

Functoriality implies:

2/ Composition is preserved:

foh gk

AR X BeY Ce”Z
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Properties of tensors:

A tensor is a functor:
® _:CxC-=cC

Functoriality implies:

2/ Composition is preserved:

(9®k)(foh)=gf@kh

AR X cCeZ
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Familiar examples

@ Tensor product of Hilbert spaces / bounded linear maps
@ Cartesian product (pairing) of Sets / functions

@ Direct sum of Vector spaces / matrices

@ Disjoint union of Sets / functions

@ Combining Binary trees
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The final conditions

We also require:

@ Associativity

fe(geh) = (fog)®h

@ A unit object / € Ob(C)

X®l =X =I1eX forall objects X € Ob(C)
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Trivial objects

Monoidal categories usually? have a unit object / ¢ Ob(C)

Al = A= 1A forall objects A< Ob(C)

These are trivial objects within a category:
@ The single-element set.
@ The trivial monoid.
@ The empty space.
@ The underlying scalar field.

@ The trivially true proposition.

2Part of the original definition. Later shown not to be essential (Saavedra72 /Kock087/ PH13):
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A problem, and MacLane’s solution

The problem ...

In real-world examples, the condition
fe(goh) = (feg)eh

is almost never satisfied.
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A problem, and MacLane’s solution

The problem ...

In real-world examples, the condition
fe(@geh = (feg)oh

is almost never satisfied.

... and its solution.

MacLane’s theorem lets us pretend that
fe(geh = (feg)oh

with no harmful side-effects.
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Failure of associativity - an example

Associativity often fails, in a trivial way!

The disjoint union of sets

Given sets A, B,

AwB = {(a0)} U {(b1)}

This is not associative ... for ridiculous reasons.
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Non-associativity of disjoint union

@ AW (BwWC) =

{(2.0)} U {(b,01)} U {(c,11)}

® (AUB)WC =

{(2,00)} U {(b,10)} U {(c,1)}

These are not the same set — for annoying syntactical reasons.
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Non-associativity of disjoint union

@ AW (BwWC) =

{(2,0)} U {(b,01)} U {(c,11)}

® (AUB)WC =

{(a,00)} U {(b,10)} U {(c,1)}

These are not the same set — for annoying syntactical reasons.

There is an obvious isomorphism between them ...
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Replacing equality by isomorphism:

@ Strict associativity:

AR (B C)——— (A B)® C

@ Associativity up to isomorphism

TABC

A® (B® C) (A®B)®C

-—

=
TaBC
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How to ignore isomorphisms

Provided the associativity isomorphisms satisfy:
@ naturality

@ A coherence condition

we can ignore them completely.

Natural examples generally satisfy these conditions!
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Naturality

We can ‘push arrows through associativity isomorphisms’

A—Tf—X X

@ ®
<]

< ®
® <

C Z Z

=]

r(f®(g®h) = (feg)® h)r
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Naturality

We can ‘push arrows through associativity isomorphisms’

A A—f—x

® B @ Y
B—— ® ®

C C Z

=]

r(f®(g®h) = (feg)® h)r
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Coherence

MacLane’s coherence condition

The two ways of re-arranging
A®(B®(C®D))

into
(A B)@C)® D

must be identical.
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Coherence

MacLane’s coherence condition

The two ways of re-arranging
A®(B®(C®D))

into
(A B)@C)® D

must be identical.

Also called MacLane’s Pentagon condition

7T =TT (1®7)
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Rebracketing four symbols

A® (B® (C® D))
A® ((B® C)® D)
(A B)® (C® D)
(A (B® C))® D

(A® B)® C)® D
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Yes, there are two paths you can go by, but ...

MacLane’s pentagon

(A® B) @ (C D)
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MacLane’s coherence theorem:

When we have
@ Naturality
© Coherence

every canonical diagram — built up using
T ., _®_ and 1

is guaranteed to commute.
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A consequence:

Given a tensor that is associative up to isomorphism,

TABC

A® (B® C) A® (B C)
7/47510
We can ‘pretend it is strictly associative’

AR (B C)————— A®(B® C)

with no “harmful side-effects”.
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The conclusion

The theory of coherence has written

itself out of existence!

By appealing to MacLane’s theorem ...

We can completely ignore questions of coherence,

naturality, pentagons, canonical diagrams, &c.
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Two common descriptions of MaclLane’s theorem:

@ Every canonical diagram commutes.

@ We can treat

as a strict identity

ARBRC——— A®B®C

with no ‘harmful side-effects’.

www.peter.hines.net



Two inaccurate descriptions of MacLane’s theorem:

Q We-cantreat
TA,B,C

A® (B® C) (A B)® C

=
TA,B,C

ARBRC——— A®B®C
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Two contrary claims:

@ Not every canonical diagram commutes.
(Claim 1)
@ Treating associativity isomorphisms as
strict identities can have major consequences.®

(Claim 2)

Severything collapses to a triviality ...
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A simple example:

The Cantor monoid I/ (single-object category).
@ Single object N.
@ Arrows: all bijections on N.

We have atensor (_x_) U x U — U.

2.f(3) n even,
(fxg)(n) = {
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Properties of the Cantor monoid (I)

The Cantor monoid has only one object —

Nx(NxN)=N=(NxN)xN

(%) : U xU — U is associative up to a natural isomorphism

{ 2n n (mod 2) = 0,

7(n)=< n+1 n(mod4)=1,

n—1

> n (mod 4) = 3.

that satisfies MaclLane’s pentagon condition.

This is not the identity map!
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Properties of the Cantor monoid (ll)

Not all canonical diagrams commute:

N

idxT

T*id

4

This diagram does not commute.
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Properties of the Cantor monoid (ll)

Using an actual number:

1

W

17 n—n+1

On the upper path, 1 — 2.
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Properties of the Cantor monoid (ll)

Taking the right hand path:

n—n

1 # 2, so this diagram does not commute.
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What does MacLane’s thm. actually say?
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A recent (May 2013) report

“Hines uses MacLane’s theorem — the fact
that all canonical diagrams commute — to

construct a large class of examples where ...~

— Anonymous Referee

(Category Theory / Theoretical Computing journal).
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If in doubt ...

... ask the experts:

http://en.wikipedia.org/wiki/Monoidal_category

Gt °°’-‘ “It follows that any diagram whose
K% nJ morphisms are built using [canonical
Dt isomorphisms], identities and tensor
WIKIPEDIA ”
The Free Encyclopedia product commutes.
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Tinker, Tailor, Soldier, Sarcasm

Untangling The Web — N.S.A. guide to internet use

@ Do not as a rule rely on Wikipedia
as your sole source of information.

@ The best thing about Wikipedia are
the external links from entries.
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MacLane, on MacLane’s theorem

Categories for the working mathematician (15! ed.)
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MacLane, on MacLane’s theorem

Categories for the working mathematician (15! ed.)

@ Moreover all diagrams involving [canonical iso.s] must
commute. (p- 158)
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MacLane, on MacLane’s theorem

Categories for the working mathematician (15! ed.)

@ Moreover all diagrams involving [canonical iso.s] must
commute. (p- 158)

@ These three [coherence] diagrams imply that “all” such
diagrams commute. (p. 159)
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MacLane, on MacLane’s theorem

Categories for the working mathematician (15! ed.)

@ Moreover all diagrams involving [canonical iso.s] must
commute. (p- 158)

@ These three [coherence] diagrams imply that “all” such
diagrams commute. (p. 159)

@ We can only prove that every “formal” diagram commutes.
(p- 161)
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What does his theorem say?

MacLane’s coherence theorem for associativity

All diagrams within the image of a certain
functor are guaranteed to commute.

This usually means all canonical diagrams.

In some circumstances, this is not the case.

www.peter.hines.net



Dissecting MacLane’s theorem

— a closer look
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Dissecting MacLane’s theorem

— a closer look

A technicality:

In common with MacLane, we study monogenic categories.

Objects are generated by:
@ Some object S,

@ The tensor (- ® ).

This is not a restriction — S is thought of as a ‘variable symbol’.
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The Source Of the fU nCtOF (Buxus Sempervirens)

This is based on (non-empty) binary trees.

[

RN

X 0
AN
0 X

AN

X X

@ Leaves labelled by x,

@ Branchings labelled by 1.

The rank of a tree is the number of leaves.
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A posetal category of trees

MacLane’s category W.

@ (Objects) All non-empty binary trees.

@ (Arrows) A unique arrow between any two trees
of the same rank.

— write this as (v < u) € W(u, v).

Q (0.)is atensoronW.

© W is posetal — all diagrams over YV commute.
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MacLane’s Substitution Functor

MacLane’s theorem relies on a monoidal
(i.e. tensor-preserving) functor

WSub : (W,0) — (C,®)
This is based on a notion of substitution.

i.e. mapping formal symbols to concrete objects & arrows.
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The functor itself

On objects:

@ WSub(x) = S,
@ WSub(uOv) = WSub(u) @ WSub(v).

An object of WW:
0
7\
X O
RN
0 X
RN
X X
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An inductively defined functor (1)

On objects:

@ WSub(x) = S,

@ WSub(uOv) = WSub(u) @ WSub(v).

An object of C:

/\
/\
/\
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An inductively defined functor (ll)

On arrows:

@ WSub(u <+ u)=1.
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An inductively defined functor (ll)

On arrows:
@ WSub(u <+ u)=1.

@ WSub(alv + alu) =1_@ WSub(v + u).
@ WSub(vOb + ub) = WSub(v «+ u)® 1.
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An inductively defined functor (ll)

On arrows:
@ WSub(u <+ u)=1.

@ WSub(alv + alu) =1_@ WSub(v + u).
@ WSub(vOb + ub) = WSub(v «+ u)® 1.

@ WSub((adb)0c «+ all(bdc)) =7_ .
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An inductively defined functor (ll)

On arrows:
@ WSub(u <+ u)=1.

@ WSub(alv + alu) =1_@ WSub(v + u).
@ WSub(vOb + ub) = WSub(v «+ u)® 1.

@ WSub((adb)0c «+ all(bdc)) =7_ .

The role of the Pentagon

The Pentagon condition — WSub is a monoidal functor.
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The story so far ...

We have a functor WSub : (W,0) — (C, ®).
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The story so far ...

We have a functor WSub : (W, 00) — (C, ®).

@ Every object of C is the image of an object of W
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The story so far ...

We have a functor WSub : (W, 00) — (C, ®).

@ Every object of C is the image of an object of W

@ Every canonical arrow of C is the image of an arrow of W
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The story so far ...

We have a functor WSub : (W, 00) — (C, ®).

@ Every object of C is the image of an object of W
@ Every canonical arrow of C is the image of an arrow of W

@ Every diagram over WV commutes.

www.peter.hines.net



The story so far ...

We have a functor WSub : (W,0) — (C, ®).
@ Every object of C is the image of an object of W
@ Every canonical arrow of C is the image of an arrow of W

@ Every diagram over WV commutes.

As a corollary:

The image of every diagram in (W, [J) commutes in (C, ®).
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The story so far ...

We have a functor WSub : (W,0) — (C, ®).
@ Every object of C is the image of an object of W
@ Every canonical arrow of C is the image of an arrow of W

@ Every diagram over WV commutes.

As a corollary:

The image of every diagram in (W, [J) commutes in (C, ®).

Question: Are all canonical diagrams in the image of WSub?

— This is only the case when YWSub is an embedding!
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“A beautiful (useful) theory slain by
an ugly counterexample”?

A full theory of coherence for associativity is:
@ more mathematically elegant,

@ much more practically useful!
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single-object categories

WSub : (W,O) — (C,®) can never be an

embedding when C has a finite set of objects.

The Cantor monoid has precisely one object

Where did this come from?
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Hilbert's Hotel

A children’s story about infinity.
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Hilbert’s “Grand Hotel”

An infinite corridor, with rooms numbered 0,1,2,3, ...
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Hilbert’s “Grand Hotel”

An infinite corridor, with rooms numbered 0,1,2,3, ...

N < N the successor function.
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Hilbert’s “Grand Hotel”

An infinite corridor, with rooms numbered 0,1,2,3, ...

N < N the successor function.

N= NwN the Cantor pairing.
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Hilbert’s “Grand Hotel”

An infinite corridor, with rooms numbered 0,1,2,3, ...

N < N the successor function.
N= NwN the Cantor pairing.
N=NxN an exercise!
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Hilbert’s “Grand Hotel”

An infinite corridor, with rooms numbered 0,1,2,3, ...

N — N the successor function.
N= NwN the Cantor pairing.
N=NxN an exercise!
[N — {0,1}] is not isomorphic to N
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Self-similarity
The categorical identity S= S® S

Exhibited by two canonical isomorphisms:
@ (Code) 1:S5085—> S
@ (Decode) >:S—+S®S

These are unique (up to unique isomorphism).
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Self-similarity

The categorical identity S= S® S

Exhibited by two canonical isomorphisms:
@ (Code) 1:S5085—> S
@ (Decode) >:S—+S®S

These are unique (up to unique isomorphism).

@ The natural numbers N, Separable Hilbert spaces,
Infinite matrices, Cantor set & other fractals, &c.

@ C-monoids, and other untyped (single-object) categories with
tensors

@ Any unit object | of a monoidal category . ..

www.peter.hines.net




A tensor on a single object

At a self-similar object S, we may define a tensor by

Ses—® .ses

K -

S S

txu

(-*-) makes C(S, S) a single-object monoidal category! |
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Associativity at a single object

The tensor (_x _) is associative up to isomorphism.

1s®>

S=-S®S S®(S®S)
Tl J/TS.S,S

www.peter.hines.net



Associativity at a single object

The tensor (_x _) is associative up to isomorphism.

15®>

S=-S®S S®(S®S)
Tl J/TS.S,S

Claim: This is the identity arrow
precisely when

the object S is trivial.
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constructing

categories where all

canonical diagrams commute
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How to Rectify the Anomaly

Given a badly-behaved category (C, ®), we can

build a well-behaved (non-strict) version.

Think of this as the Platonic Ideal of (C, ®).

We (still) assume C is monogenic, with objects generated by {S, - ® _}
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Building the ‘Platonic Ideal’

We will construct Plat;
A version of C for which WSub is an embedding.
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Constructing Plat;

O
S/ \D
D/ \S
N
S S

Leaves labelled by S € Ob(C),

Branchings labelled by .

There is an instantiation map /nst : Ob(Plat;) — Ob(C)

SO((SOS)dS) — S® ((S®S)® S)

This is not just a matter of syntax!
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Constructing Plat;

What about arrows?

Homsets are copies of homsets of C

Given trees Ty, T,

P/atc(T1, Tg) = C(/HST(T1),IHST(T2))

Composition is inherited from C in the obvious way.
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The tensor ( O ) : Plat; x Plat. — Plat;

A

— X

fOg

AOX BOY

B

——Y

The tensor of Plat: is

@ (Objects) A free formal pairing, ACIB,

@ (Arrows) Inherited from (C, ®), so fClg “p f®g.
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Some properties of the platonic ideal ...

@ The functor
WSub : (W,0) — (Plat;,0)

is always monic.
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Some properties of the platonic ideal ...

@ The functor
WSub : (W,0) — (Plat;,0)

is always monic.

© As a corollary:

All canonical diagrams of ( Plat;, [J) commute.
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Some properties of the platonic ideal ...

@ The functor
WSub : (W,0) — (Plat;,0)

is always monic.

© As a corollary:

All canonical diagrams of ( Plat;, [J) commute.

© Instantiation defines an epic monoidal functor
Inst : (Plat;,00) — (C,®)

through which McL.s substitution functor always factors.
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A monic / epic decomposition

MacLane’s substitution functor always factors
through the platonic ideal:

(monic)

W, 0) —222 (Plat;, 0))
WSub. Inst (epic)
(C,®)

This gives a monic / epic decomposition of his functor.
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A highly relevant question ...

What does the Platonic Ideal of a single-object category
actually look like?

The simplest possible case:

The trivial monoidal category (Z, ®).
@ Objects: Ob(Z) = {x}.
@ Arrows: Z(x,x) = {1x}.

@ Tensor:
X®X:X, 1X®1X:1X
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What is the platonic ideal of Z?

(Objects) All non-empty binary trees:

S\,
N
A\,

(Arrows) For all trees T4, Tp,

Platz(Ty, T») is a single-element set.

There is a unique arrow between any two trees!
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A la recherche du tensors perdu

(PhD Thesis) The prototypical self-similar category (X, 0)
@ Objects: All non-empty binary trees.

@ Arrows: A unique arrow between any two objects.

This monoidal category:

@ was introduced to study self-similarity S =~ S ® S,

© contains MacLane’s (W, ) as a subcategory.
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Coherence for Self-Similarity

(a special case of a much more general theory)
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A straightforward coherence theorem

We base this on the category (X, 0)

@ Objects All non-empty binary trees.

@ Arrows A unique arrow between any two trees.

This category is posetal — all diagrams over X commute.

We will define a monoidal substitution functor:

XSub: (x,0) = (C,®)
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The self-similarity substitution functor

An inductive definition of XSub : (X,0O0) — (C,®)

On objects:

X — S
ulv — XSub(u)® XSub(v)

(x+<x) — 1s5€C((S,S)

(x+xOx) —» <€C(S®S,S)
(xOx <~ x) — >€C(S,S®S)

(bOv < alu) — X Sub(b < a) ® XSub(v < u)
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Interesting properties:

Q@ XSub: (X,0) — (C,®) is always functorial.
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Interesting properties:

Q@ XSub: (X,0) — (C,®) is always functorial.

© Every arrow built up from
{«,>,15, -®_}

is the image of an arrow in X.
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Interesting properties:

Q@ XSub: (X,0) — (C,®) is always functorial.

© Every arrow built up from
{«,>,15, -®_}

is the image of an arrow in X.

© The image of every diagram in X commutes.
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X Sub factors through the Platonic ideal

There is a monic-epic decomposition of X Sub.

X Sub.

(x,0) (Plat;, )

Inst
X Sub.

(€, ®)

Every canonical (for self-similarity) diagram
in (Platz,J) commutes.
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Relating associativity and self-similarity
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A tale of two functors

Comparing the associativity and self-similarity categories.

MacLane’s (W,0) The category (X,0)

Objects: Binary trees. Objects: Binary trees.
Arrows: Unique arrow between Arrows: Unique arrow between
two trees of the same rank. any two trees.

There is an obvious inclusion (W, ) — (X,0)
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Is associativity a restriction of self-similarity?

Does the following diagram commute?

(W, 0)¢ (4, 00)

WSub X Sub

(€, ®)

Does the associativity functor
factor through

the self-similarity functor?
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Proof by contradiction:

Let’s assume this is the case.

Special arrows of (X, 0)

For arbitrary trees u, e, v,

tiew = ((ude)dv « ub(eOv))
I = (v« eOv)
rn = (u+ ule)
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Since all diagrams over X commute:

The following diagram over (X', [J) commutes:

uO(eOv) luew (uOe)Ov

1,00 ruO1y

ulv
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Since all diagrams over X commute:

The following diagram over (X', [J) commutes:

uO(eOv) luew (uOe)Ov

1,00 ruO1y

ulv

Let’s apply X' Sub to this diagram.

By Assumption: t,e, — 7y £ v (@ssoc. iso.)

Notation: u— U, v~V e—E |, |, — Ay, ru— py
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Since all diagrams over X commute:

The following diagram over (C, ®) commutes:

U (E® V) (U E)o V

Tu®Ay pu1y

UV
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Since all diagrams over X commute:

The following diagram over (C, ®) commutes:

U (E® V) (U E)o V

1u®Ay pu®ly
UV
This is MacLane’s units triangle
— the defining equation for a unit (trivial) object.

The choice of e was arbitrary — every object is trivial!
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A general result

The following diagram commutes

exactly when (C, ®) is degenerate —

)

i.e. all objects are trivial.
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An important special case:
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What is strict self-similarity?

Can the code / decode maps
1:859S8S—-S, >:S—-85®S

be strict identities?
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What is strict self-similarity?

Can the code / decode maps
1:859S8S—-S, >:S—-85®S

be strict identities?

In single-object monoidal categories:
We only have one object, so S® S = S.

Take the identity as both the code and decode arrows.

Untyped = Strictly Self-Similar.



Generalising Isbell’s argument

@ Strict associativity: Ao (B C)=(A@ B)® C
All arrows of (W, ) are mapped to
identities of (C, ®)

© Strict self-similarity: S ® S=S.

All arrows of (X, ) are mapped to
the identity of (C, ®).

WSub trivially factors through X' Sub.

The conclusion

Strictly associative untyped monoidal categories are degenerate.
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This is seen in various fields ...

We see special cases of this in many areas:

@ (Monoid Theory)

Congruence-freeness (e.g. the polycyclic monoids).

@ (Group Theory)

No normal subgroups (e.g. Thompson’s group F).

@ () calculus / Logic)

Hilbert-Post completeness / Girard’s dynamical algebra.

@ (Linguistics)

Recently (re)discovered ... not yet named!
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Another perspective ...

Another way of looking at things:

One cannot have both
() Associativity A®(B®C) = (A®B)®C
() Self-Similarity S=2S®S

as strict equalities.
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