

Reconsidering MacLane: the foundations of categorical coherence

Peter M. Hines

York – Maths Dept. – Oct. 2013

Talks is based on:

- Talk at AbramskyFest (Oxford, June 2013)
- Joint Maths / Computing Seminar (Oxford, March 2013)

Topic of talk:

Foundations of category theory & “MacLane’s Theorem”

**Category Theory is simply
a calculus of mathematical¹ structures.**

It studies:

- Mathematical structures.
- Structure-preserving mappings.
- Transformations between structures.

¹or logical, or computational, or linguistic, or ...

It arose from work by:

- **Samuel Eilenberg,**
- **Saunders MacLane,**

in *Algebraic Topology*.

Later applied (despite protests) in other subjects:

Theoretical Computing

...

Linguistics

...

Logic

...

Quantum Mechanics

...

Foundations of Mathematics

...

History & prehistory

It arose from work by:

- **Samuel Eilenberg,**
- **Saunders MacLane,**

in *Algebraic Topology*.

Later applied (despite protests) in other subjects:

Theoretical Computing	...
Linguistics	...
Logic	...
Quantum Mechanics	...
Foundations of Mathematics	...

Precursors to category theory

John von Neumann (1925): Axiomatic theory of *classes*.

A formalism for working with **proper classes**:

All sets, all monoids, all lattices, &c.

Later became the **von Neumann, Gödel, Bernay** formalism

- **von Neumann** originated the theory. (*proto-cat. theory*)
- **Gödel** made it logically consistent.
- **Bernay** rewrote it to look like ZFC set theory

Category Theory textbooks

Applications of category theory in various fields

... a large range of texts.

The underlying theory of categories:

“Categories for the Working Mathematician”
— S. MacLane (1971)

... examples & applications taken from **algebraic topology**.

Category Theory textbooks

Applications of category theory in various fields

... a large range of texts.

The underlying theory of categories:

“Categories for the Working Mathematician”
— S. MacLane (1971)

... examples & applications taken from **algebraic topology**.

The definition ...

A **category** \mathcal{C} consists of

- A **class** of objects, $Ob(\mathcal{C})$.
- For all objects $A, B \in Ob(\mathcal{C})$, a **set** of arrows $\mathcal{C}(A, B)$.

We will work diagrammatically:

An arrow $f \in \mathcal{C}(A, B)$ is drawn as

$$A \xrightarrow{f} B$$

The axioms ...

- Matching arrows can be composed

$$\begin{array}{ccc} A & \xrightarrow{f} & B \\ & \searrow gf & \downarrow g \\ & & C \end{array}$$

- Composition is associative

$$h(gf) = (hg)f$$

- There is an identity 1_A at each object A

Examples of categories

- **Monoid**

- (Objects:) *all monoids*.
- (Arrows:) *homomorphisms*.

- **Set**

- (Objects:) *all sets*.
- (Arrows:) *functions*.

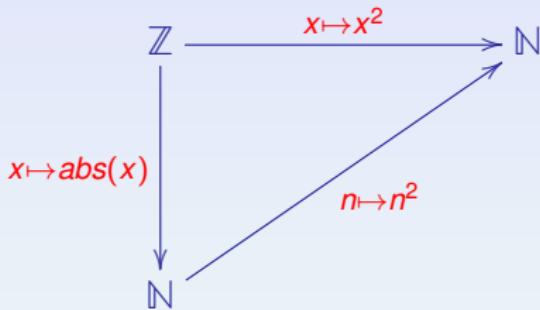
- **Poset**

- (Objects:) *all partially ordered sets*.
- (Arrows:) *order-preserving functions*.

Diagrams in categories

Identities and equations are usually expressed graphically.

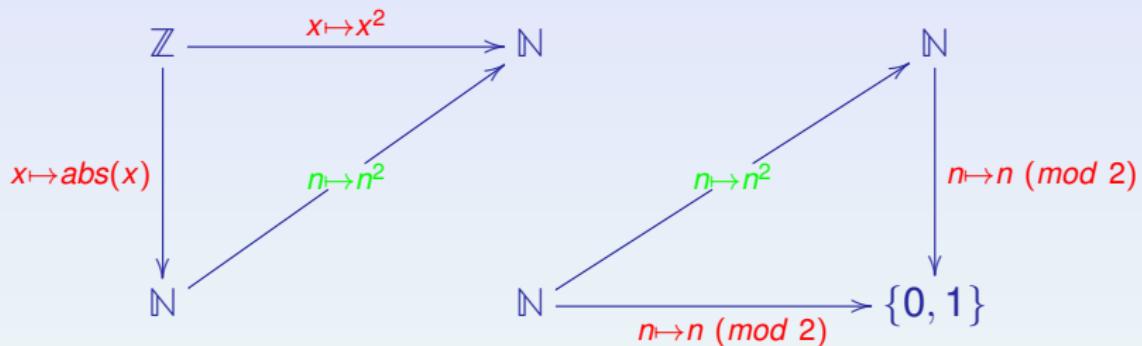
A **diagram** in the category **Set**



A diagram **commutes** when all paths with the same source / target describe the same arrow.

The art of diagram-chasing

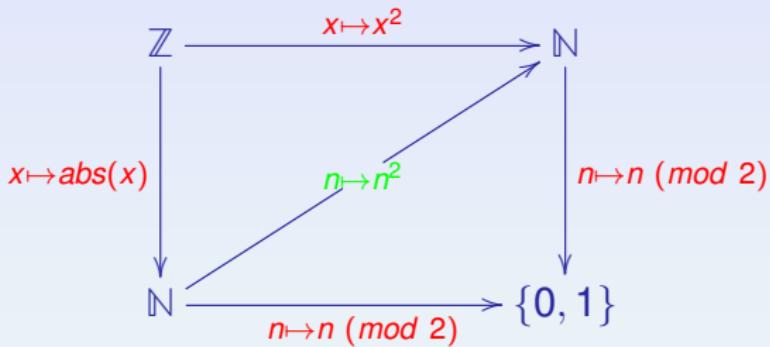
Commuting diagrams can be **pasted** along a common edge.



Both the above diagrams commute . . .

The art of diagram-chasing

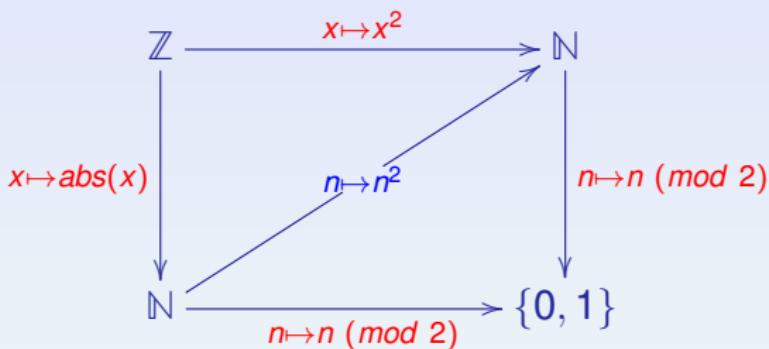
Commuting diagrams can be **pasted** along a common edge.



... this diagram also commutes!

The art of diagram-chasing

Edges can be **deleted** in commuting diagrams.



The art of diagram-chasing

Edges can be **deleted** in commuting diagrams.

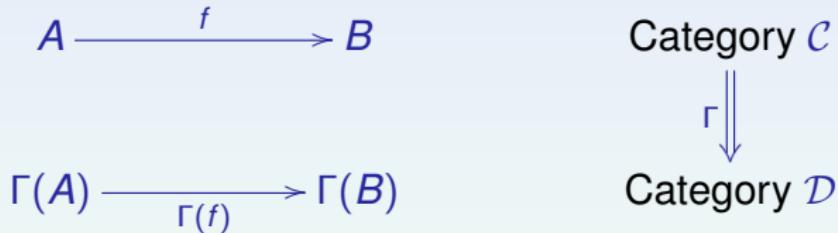
$$\begin{array}{ccc} \mathbb{Z} & \xrightarrow{x \mapsto x^2} & \mathbb{N} \\ \downarrow x \mapsto \text{abs}(x) & & \downarrow n \mapsto n \pmod{2} \\ \mathbb{N} & \xrightarrow{n \mapsto n \pmod{2}} & \{0, 1\} \end{array}$$

... this is still a commuting diagram.

Maps between categories

A mapping between categories \mathcal{C} and \mathcal{D} is a **functor** $\Gamma : \mathcal{C} \rightarrow \mathcal{D}$.

- **Objects** of \mathcal{C} are mapped to **objects** of \mathcal{D} .
- **Arrows** of \mathcal{C} are mapped to **arrows** of \mathcal{D} .

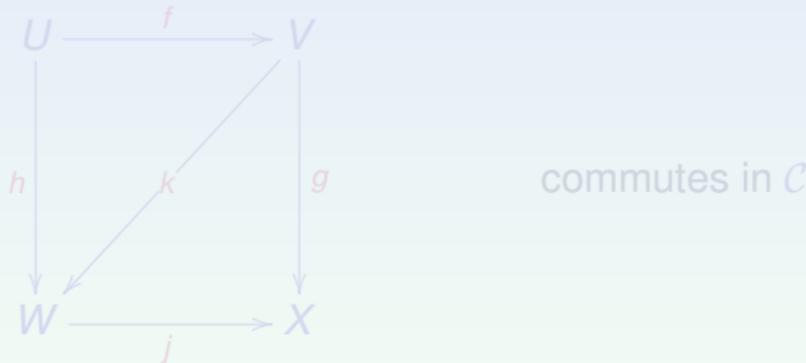


Functors

Functors must preserve **composition** and **identities**.

$$\Gamma(1_X) = 1_{\Gamma(X)} \quad , \quad \Gamma(gf) = \Gamma(g)\Gamma(f)$$

Functors preserve commutativity of diagrams.

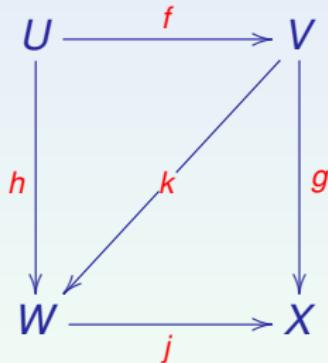


Functors

Functors must preserve **composition** and **identities**.

$$\Gamma(1_X) = 1_{\Gamma(X)} \quad , \quad \Gamma(gf) = \Gamma(g)\Gamma(f)$$

Functors preserve **commutativity of diagrams**.



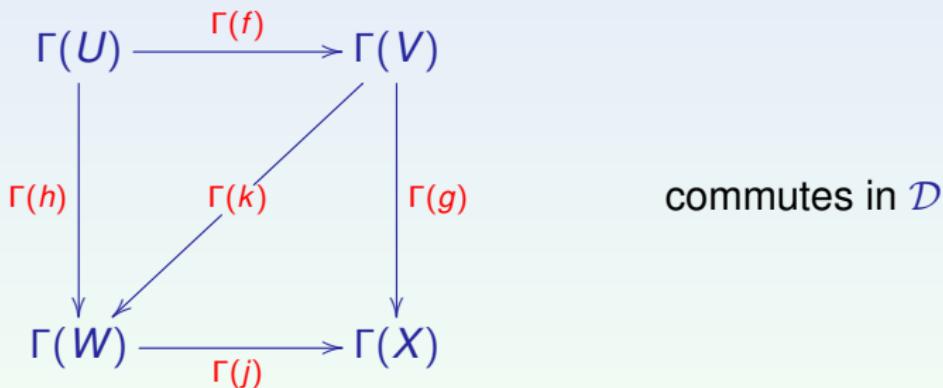
commutes in \mathcal{C}

Functors

Functors must preserve **composition** and **identities**.

$$\Gamma(1_X) = 1_{\Gamma(X)} \quad , \quad \Gamma(gf) = \Gamma(g)\Gamma(f)$$

*Functors preserve **commutativity of diagrams**.*



Examples of functors (I)

A functor from **Set** to **Monoid**.

- Take a set X .
- Form the *free monoid* X^* *(All finite words over X).*

Every **function** $f : X \rightarrow Y$
induces a **homomorphism**

$$\text{map}(f) : X^* \rightarrow Y^*$$

This is a functor $\text{Free} : \text{Set} \rightarrow \text{Monoid}$.

Examples of functors (II)

A functor from \mathbf{Top}_* to \mathbf{Group} .

- Take a pointed topological space T
- Form its *fundamental group* $\pi_1(T)$

Every **continuous map**

$$c : S \rightarrow T$$

induces a **homomorphism**

$$\pi(c) : \pi_1(S) \rightarrow \pi_1(T)$$

This is a functor $\pi : \mathbf{Top}_* \rightarrow \mathbf{Group}$.

A sweeping generalisation

In general:

- finding **invariants** (e.g. fundamental group, K_0 group, &c.)
- using **constructors** (e.g. monoid semi-ring construction)
- type **re-assignments** (e.g. $\mathbf{Int} \rightarrow \mathbf{Real}$)
- forming **algebraic models**
(e.g. Brouwer-Heyting-Kolmogorov interpretation)
- ...

are all examples of functors.

Monoidal Categories

and

MacLane's Theorem

Categories with additional structure:

Monoidal Categories \equiv Categories with Tensors.

A **tensor** \otimes on a category is:

a way of combining two objects / arrows
to make a new object / arrow of the same category.

- **Objects:** Given X, Y , we can form $X \otimes Y$.
- **Arrows:** Given f, g , we can form $f \otimes g$.

Properties of tensors:

A **tensor** is a functor:

$$\underline{} \otimes \underline{} : \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$$

Functionality implies:

1/ Types match:

$$A \xrightarrow{f} B$$

$$X \xrightarrow{h} Y$$

Properties of tensors:

A **tensor** is a functor:

$$\underline{} \otimes \underline{} : \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$$

Functionality implies:

1/ Types match:

$$A \otimes X \xrightarrow{f \otimes h} B \otimes Y$$

Properties of tensors:

A **tensor** is a functor:

$$\underline{} \otimes \underline{} : \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$$

Functionality implies:

2/ Composition is preserved:

$$A \xrightarrow{f} B \xrightarrow{g} C$$

$$X \xrightarrow{h} Y \xrightarrow{k} Z$$

Properties of tensors:

A **tensor** is a functor:

$$\underline{} \otimes \underline{} : \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$$

Functionality implies:

2/ Composition is preserved:

$$A \xrightarrow{gf} C$$

$$X \xrightarrow{kh} Z$$

Properties of tensors:

A **tensor** is a functor:

$$\underline{} \otimes \underline{} : \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$$

Functionality implies:

2/ Composition is preserved:

$$A \otimes X \xrightarrow{gf \otimes kh} C \otimes Z$$

Properties of tensors:

A **tensor** is a functor:

$$\underline{} \otimes \underline{} : \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$$

Functionality implies:

2/ Composition is preserved:

$$A \xrightarrow{f} B \xrightarrow{g} C$$

$$X \xrightarrow{h} Y \xrightarrow{k} Z$$

Properties of tensors:

A **tensor** is a functor:

$$\underline{} \otimes \underline{} : \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$$

Functionality implies:

2/ Composition is preserved:

$$A \otimes X \xrightarrow{f \otimes h} B \otimes Y \xrightarrow{g \otimes k} C \otimes Z$$

Properties of tensors:

A **tensor** is a functor:

$$\underline{} \otimes \underline{} : \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$$

Functionality implies:

2/ Composition is preserved:

$$A \otimes X \xrightarrow{(g \otimes k)(f \otimes h) = gf \otimes kh} C \otimes Z$$

Familiar examples

- **Tensor product** of Hilbert spaces / bounded linear maps
- **Cartesian product** (pairing) of Sets / functions
- **Direct sum** of Vector spaces / matrices
- **Disjoint union** of Sets / functions
- **Combining** Binary trees
- ...

The final conditions

We also require:

- **Associativity**

$$f \otimes (g \otimes h) = (f \otimes g) \otimes h$$

- **A unit object** $I \in \text{Ob}(\mathcal{C})$

$$X \otimes I = X = I \otimes X \text{ for all objects } X \in \text{Ob}(\mathcal{C})$$

Trivial objects

Monoidal categories usually² have a **unit object** $I \in Ob(\mathcal{C})$

$$A \otimes I = A = I \otimes A \quad \text{for all objects } A \in Ob(\mathcal{C})$$

These are *trivial* objects within a category:

- The **single-element set**.
- The **trivial monoid**.
- The **empty space**.
- The **underlying scalar field**.
- The **trivially true proposition**.

²

Part of the original definition. Later shown not to be essential (Saavedra72, Kock08, PH13).

A problem, and MacLane's solution

The problem ...

In real-world examples, the condition

$$f \otimes (g \otimes h) = (f \otimes g) \otimes h$$

is almost never satisfied.

... and its solution.

MacLane's theorem lets us *pretend* that

$$f \otimes (g \otimes h) = (f \otimes g) \otimes h$$

with no harmful side-effects.

A problem, and MacLane's solution

The problem ...

In real-world examples, the condition

$$f \otimes (g \otimes h) = (f \otimes g) \otimes h$$

is almost never satisfied.

... and its solution.

MacLane's theorem lets us *pretend* that

$$f \otimes (g \otimes h) = (f \otimes g) \otimes h$$

with no harmful side-effects.

Failure of associativity - an example

Associativity often fails, *in a trivial way!*

The **disjoint union** of sets

Given sets A, B ,

$$A \uplus B = \{(a, 0)\} \cup \{(b, 1)\}$$

This is not associative . . . for ridiculous reasons.

Non-associativity of disjoint union

- $A \uplus (B \uplus C) =$

$$\{(a, 0)\} \cup \{(b, 01)\} \cup \{(c, 11)\}$$

- $(A \uplus B) \uplus C =$

$$\{(a, 00)\} \cup \{(b, 10)\} \cup \{(c, 1)\}$$

These are not the same set – for annoying syntactical reasons.

There is an obvious isomorphism between them ...

Non-associativity of disjoint union

- $A \uplus (B \uplus C) =$

$$\{(a, 0)\} \cup \{(b, 01)\} \cup \{(c, 11)\}$$

- $(A \uplus B) \uplus C =$

$$\{(a, 00)\} \cup \{(b, 10)\} \cup \{(c, 1)\}$$

These are not the same set – for annoying syntactical reasons.

There is an obvious isomorphism between them ...

Replacing equality by isomorphism:

- **Strict** associativity:

$$A \otimes (B \otimes C) \xlongequal{=} (A \otimes B) \otimes C$$

- Associativity up to **isomorphism**

$$A \otimes (B \otimes C) \xrightleftharpoons[\tau_{ABC}^{-1}]{\tau_{ABC}} (A \otimes B) \otimes C$$

How to ignore isomorphisms

Provided the *associativity isomorphisms* satisfy:

- ➊ **naturality**
- ➋ **A coherence condition**

we can *ignore them completely*.

Natural examples generally satisfy these conditions!

We can ‘push arrows through associativity isomorphisms’

$$A \xrightarrow{f} X \longrightarrow X$$

$$\begin{array}{ccc} \otimes & \otimes & Y \\ B \xrightarrow{g} Y & \xrightarrow{\quad} & \otimes \end{array}$$

$$C \xrightarrow{h} Z \longrightarrow Z$$

$$\tau(f \otimes (g \otimes h)) = ((f \otimes g) \otimes h)\tau$$

We can ‘push arrows through associativity isomorphisms’

$$A \xrightarrow{\quad} A \xrightarrow{f} X$$

$$\otimes \quad \quad \quad B \xrightarrow{\quad} B \xrightarrow{g} Y$$

B \otimes \otimes

$$C \xrightarrow{\quad} C \xrightarrow{h} Z$$

$$\tau(f \otimes (g \otimes h)) = ((f \otimes g) \otimes h)\tau$$

MacLane's coherence condition

The two ways of re-arranging

$$A \otimes (B \otimes (C \otimes D))$$

into

$$((A \otimes B) \otimes C) \otimes D$$

must be *identical*.

Also called **MacLane's Pentagon condition**

$$\tau \tau = (\tau \otimes 1) \tau (1 \otimes \tau)$$

MacLane's coherence condition

The two ways of re-arranging

$$A \otimes (B \otimes (C \otimes D))$$

into

$$((A \otimes B) \otimes C) \otimes D$$

must be *identical*.

Also called **MacLane's Pentagon condition**

$$\tau \tau = (\tau \otimes 1) \tau (1 \otimes \tau)$$

Rebracketing four symbols

$$A \otimes (B \otimes (C \otimes D))$$

$$A \otimes ((B \otimes C) \otimes D)$$

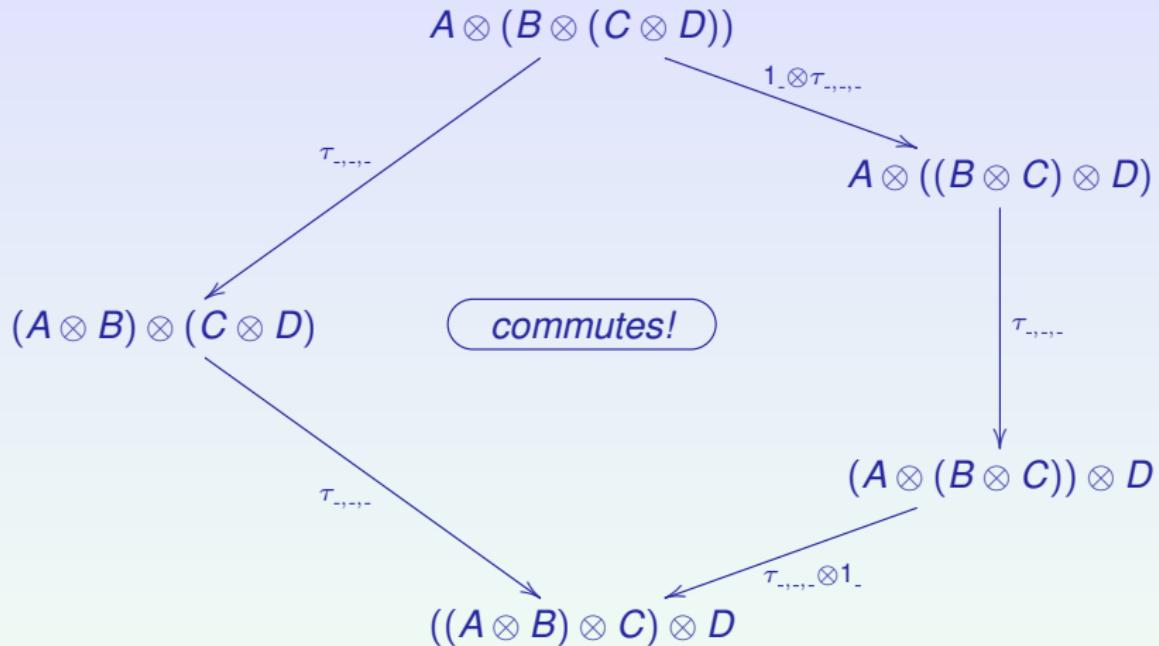
$$(A \otimes B) \otimes (C \otimes D)$$

$$(A \otimes (B \otimes C)) \otimes D$$

$$((A \otimes B) \otimes C) \otimes D$$

Yes, there are two paths you can go by, but ...

MacLane's pentagon



MacLane's coherence theorem:

When we have

- ➊ Naturality
- ➋ Coherence

every **canonical diagram** – built up using

$\tau_{-, -, -}$, $- \otimes -$ and 1_-

is *guaranteed* to commute.

A consequence:

Given a tensor that is *associative up to isomorphism*,

$$A \otimes (B \otimes C) \begin{array}{c} \xrightarrow{T_{ABC}} \\ \xleftarrow{T_{ABC}^{-1}} \end{array} A \otimes (B \otimes C)$$

We can ‘pretend it is *strictly associative*’

$$A \otimes (B \otimes C) \xrightarrow{=} A \otimes (B \otimes C)$$

with no “harmful side-effects”.

The conclusion

The theory of coherence has written
itself out of existence!

By appealing to MacLane's theorem ...

We can completely ignore questions of coherence,
naturality, pentagons, canonical diagrams, &c.

Two common descriptions of MacLane's theorem:

- 1 Every canonical diagram commutes.
- 2 We can treat

$$\begin{array}{ccc} & \tau_{A,B,C} & \\ A \otimes (B \otimes C) & \swarrow & \searrow \\ & \tau_{A,B,C}^{-1} & \end{array}$$
$$(A \otimes B) \otimes C$$

as a strict identity

$$A \otimes B \otimes C \xrightarrow{=} A \otimes B \otimes C$$

with no 'harmful side-effects'.

Two inaccurate descriptions of MacLane's theorem:

1 ~~Every canonical diagram commutes.~~

2 ~~We can treat~~

$$\begin{array}{ccc} & \tau_{A,B,C} & \\ A \otimes (B \otimes C) & \swarrow & \searrow \\ & \tau_{A,B,C}^{-1} & \end{array}$$

$(A \otimes B) \otimes C$

~~as a strict identity~~

$$A \otimes B \otimes C \xrightarrow{=} A \otimes B \otimes C$$

~~with no 'harmful side effects'.~~

Two contrary claims:

- Not every canonical diagram commutes.
(Claim 1)
- Treating associativity **isomorphisms** as
strict identities can have major consequences.³
(Claim 2)

³ everything collapses to a triviality ...

A simple example:

The **Cantor monoid** \mathcal{U} (single-object category).

- Single object \mathbb{N} .
- Arrows: all bijections on \mathbb{N} .

The tensor

We have a tensor $(_ \star _) : \mathcal{U} \times \mathcal{U} \rightarrow \mathcal{U}$.

$$(f \star g)(n) = \begin{cases} 2.f\left(\frac{n}{2}\right) & n \text{ even,} \\ 2.g\left(\frac{n-1}{2}\right) + 1 & n \text{ odd.} \end{cases}$$

Properties of the Cantor monoid (I)

The Cantor monoid has only one object —

$$\mathbb{N} \star (\mathbb{N} \star \mathbb{N}) = \mathbb{N} = (\mathbb{N} \star \mathbb{N}) \star \mathbb{N}$$

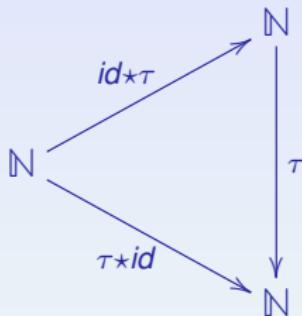
$(_ \star _) : \mathcal{U} \times \mathcal{U} \rightarrow \mathcal{U}$ is associative *up to a natural isomorphism*

$$\tau(n) = \begin{cases} 2n & n \pmod{2} = 0, \\ n+1 & n \pmod{4} = 1, \\ \frac{n-1}{2} & n \pmod{4} = 3. \end{cases}$$

that satisfies MacLane's pentagon condition.

This is not the identity map!

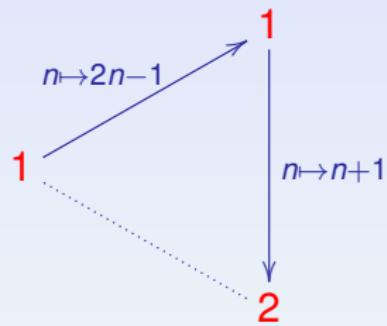
Not all canonical diagrams commute:



This diagram does *not* commute.

Properties of the Cantor monoid (II)

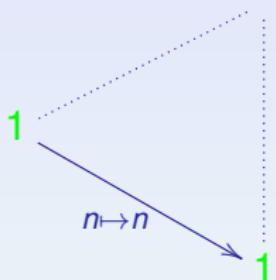
Using an actual number:



On the upper path, $1 \mapsto 2$.

Properties of the Cantor monoid (II)

Taking the right hand path:



$1 \neq 2$, so this diagram does *not* commute.

What does MacLane's thm. actually say?

A recent (May 2013) report

*“Hines uses MacLane’s theorem – **the fact that all canonical diagrams commute** – to construct a large class of examples where . . .”*

— Anonymous Referee

(Category Theory / Theoretical Computing journal).

If in doubt ...

... ask the experts:

http://en.wikipedia.org/wiki/Monoidal_category

*"It follows that **any diagram** whose morphisms are built using [canonical isomorphisms], identities and tensor product commutes."*

Untangling The Web – N.S.A. *guide to internet use*

- *Do not as a rule rely on Wikipedia as your sole source of information.*
- *The best thing about Wikipedia are the external links from entries.*

Categories for the working mathematician (1st ed.)

- *Moreover all diagrams involving [canonical iso.s] must commute. (p. 158)*
- *These three [coherence] diagrams imply that “all” such diagrams commute. (p. 159)*
- *We can only prove that every “formal” diagram commutes. (p. 161)*

Categories for the working mathematician (1st ed.)

- *Moreover all diagrams involving [canonical iso.s] must commute. (p. 158)*
- *These three [coherence] diagrams imply that “all” such diagrams commute. (p. 159)*
- *We can only prove that every “formal” diagram commutes. (p. 161)*

Categories for the working mathematician (1st ed.)

- *Moreover all diagrams involving [canonical iso.s] must commute. (p. 158)*
- *These three [coherence] diagrams imply that “all” such diagrams commute. (p. 159)*
- *We can only prove that every “formal” diagram commutes. (p. 161)*

Categories for the working mathematician (1st ed.)

- *Moreover all diagrams involving [canonical iso.s] must commute. (p. 158)*
- *These three [coherence] diagrams imply that “all” such diagrams commute. (p. 159)*
- *We can only prove that every “formal” diagram commutes. (p. 161)*

What does his theorem say?

MacLane's coherence theorem for associativity

All diagrams *within the image of a certain functor* are guaranteed to commute.

This **usually** means all canonical diagrams.

In some circumstances, this is **not** the case.

Dissecting MacLane's theorem

— a closer look

A technicality:

In common with MacLane, we study *monogenic categories*.

Objects are generated by:

- Some object S ,
- The tensor $(_ \otimes _)$.

This is not a restriction — S is thought of as a 'variable symbol'.

Dissecting MacLane's theorem

— a closer look

A technicality:

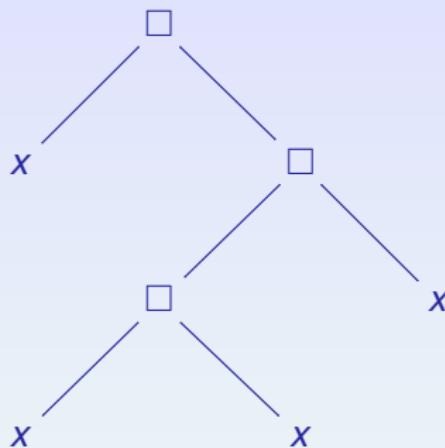
In common with MacLane, we study *monogenic categories*.

Objects are generated by:

- Some object S ,
- The tensor $(_, \otimes _)$.

This is not a restriction — S is thought of as a 'variable symbol'.

This is based on (non-empty) *binary trees*.



- **Leaves** labelled by x ,
- **Branchings** labelled by \square .

The **rank** of a tree is the number of leaves.

A posetal category of trees

MacLane's category \mathcal{W} .

- **(Objects)** All non-empty binary trees.
- **(Arrows)** A **unique** arrow between any two trees
of the same rank.
 - write this as $(v \leftarrow u) \in \mathcal{W}(u, v)$.

Key points:

- ❶ (\square_-) is a tensor on \mathcal{W} .
- ❷ \mathcal{W} is **posetal** — all diagrams over \mathcal{W} commute.

MacLane's theorem relies on a monoidal
(i.e. tensor-preserving) functor

$$\mathcal{WSub} : (\mathcal{W}, \square) \rightarrow (\mathcal{C}, \otimes)$$

This is based on a notion of *substitution*.

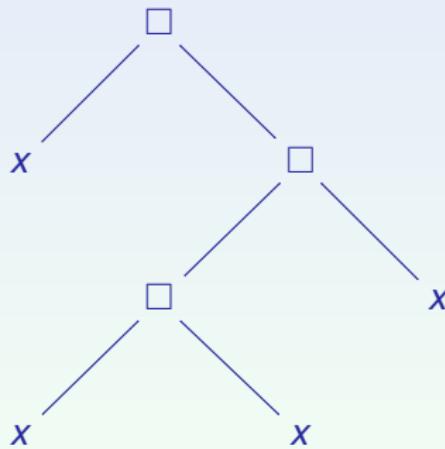
i.e. mapping *formal* symbols to *concrete* objects & arrows.

The functor itself

On objects:

- $\mathcal{W}Sub(x) = S$,
- $\mathcal{W}Sub(u \square v) = \mathcal{W}Sub(u) \otimes \mathcal{W}Sub(v)$.

An object of \mathcal{W} :

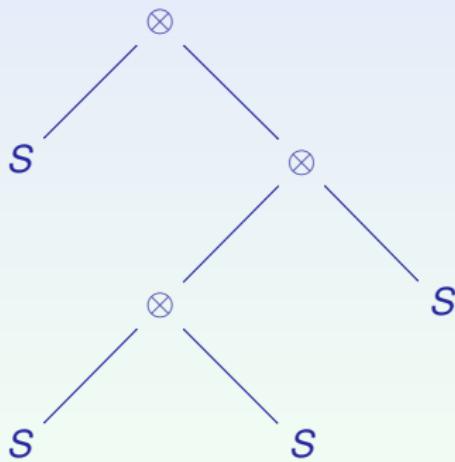


An inductively defined functor (I)

On objects:

- $\mathcal{WSub}(x) = S$,
- $\mathcal{WSub}(u \square v) = \mathcal{WSub}(u) \otimes \mathcal{WSub}(v)$.

An object of \mathcal{C} :



On arrows:

- $\mathcal{WSub}(u \leftarrow u) = 1_{_}$.
- $\mathcal{WSub}(a \square v \leftarrow a \square u) = 1_{_} \otimes \mathcal{WSub}(v \leftarrow u)$.
- $\mathcal{WSub}(v \square b \leftarrow u \square b) = \mathcal{WSub}(v \leftarrow u) \otimes 1_{_}$.
- $\mathcal{WSub}((a \square b) \square c \leftarrow a \square (b \square c)) = \tau_{_, _, _}$.

The role of the Pentagon

The Pentagon condition $\implies \mathcal{WSub}$ is a monoidal functor.

On arrows:

- $\mathcal{WSub}(u \leftarrow u) = 1_-$.
- $\mathcal{WSub}(a \square v \leftarrow a \square u) = 1_- \otimes \mathcal{WSub}(v \leftarrow u)$.
- $\mathcal{WSub}(v \square b \leftarrow u \square b) = \mathcal{WSub}(v \leftarrow u) \otimes 1_-$.
- $\mathcal{WSub}((a \square b) \square c \leftarrow a \square (b \square c)) = \tau_{-, -, -}$.

The role of the Pentagon

The Pentagon condition $\implies \mathcal{WSub}$ is a monoidal functor.

On arrows:

- $\mathcal{WSub}(u \leftarrow u) = 1_{_}$.
- $\mathcal{WSub}(a \square v \leftarrow a \square u) = 1_{_} \otimes \mathcal{WSub}(v \leftarrow u)$.
- $\mathcal{WSub}(v \square b \leftarrow u \square b) = \mathcal{WSub}(v \leftarrow u) \otimes 1_{_}$.
- $\mathcal{WSub}((a \square b) \square c \leftarrow a \square (b \square c)) = \tau_{_, _, _}$.

The role of the Pentagon

The Pentagon condition $\implies \mathcal{WSub}$ is a monoidal functor.

On arrows:

- $\mathcal{WSub}(u \leftarrow u) = 1_{_}$.
- $\mathcal{WSub}(a \square v \leftarrow a \square u) = 1_{_} \otimes \mathcal{WSub}(v \leftarrow u)$.
- $\mathcal{WSub}(v \square b \leftarrow u \square b) = \mathcal{WSub}(v \leftarrow u) \otimes 1_{_}$.
- $\mathcal{WSub}((a \square b) \square c \leftarrow a \square (b \square c)) = \tau_{_, _, _}$.

The role of the Pentagon

The Pentagon condition $\implies \mathcal{WSub}$ is a monoidal functor.

The story so far ...

We have a functor $\mathcal{W}Sub : (\mathcal{W}, \square) \rightarrow (\mathcal{C}, \otimes)$.

- Every **object** of \mathcal{C} is the image of an object of \mathcal{W}
- Every **canonical arrow** of \mathcal{C} is the image of an arrow of \mathcal{W}
- Every **diagram** over \mathcal{W} commutes.

As a corollary:

The image of **every diagram** in (\mathcal{W}, \square) **commutes** in (\mathcal{C}, \otimes) .

Question: Are all canonical diagrams in the image of $\mathcal{W}Sub$?

- This is only the case when $\mathcal{W}Sub$ is an *embedding*!

The story so far ...

We have a functor $\mathcal{W}Sub : (\mathcal{W}, \square) \rightarrow (\mathcal{C}, \otimes)$.

- Every **object** of \mathcal{C} is the image of an object of \mathcal{W}
- Every **canonical arrow** of \mathcal{C} is the image of an arrow of \mathcal{W}
- Every **diagram** over \mathcal{W} commutes.

As a corollary:

The image of **every diagram** in (\mathcal{W}, \square) **commutes** in (\mathcal{C}, \otimes) .

Question: Are all canonical diagrams in the image of $\mathcal{W}Sub$?

- This is only the case when $\mathcal{W}Sub$ is an *embedding*!

The story so far ...

We have a functor $\mathcal{W}Sub : (\mathcal{W}, \square) \rightarrow (\mathcal{C}, \otimes)$.

- Every **object** of \mathcal{C} is the image of an object of \mathcal{W}
- Every **canonical arrow** of \mathcal{C} is the image of an arrow of \mathcal{W}
- Every **diagram** over \mathcal{W} commutes.

As a corollary:

The image of **every diagram** in (\mathcal{W}, \square) **commutes** in (\mathcal{C}, \otimes) .

Question: Are all canonical diagrams in the image of $\mathcal{W}Sub$?

- This is only the case when $\mathcal{W}Sub$ is an *embedding*!

The story so far ...

We have a functor $\mathcal{W}Sub : (\mathcal{W}, \square) \rightarrow (\mathcal{C}, \otimes)$.

- Every **object** of \mathcal{C} is the image of an object of \mathcal{W}
- Every **canonical arrow** of \mathcal{C} is the image of an arrow of \mathcal{W}
- Every **diagram** over \mathcal{W} commutes.

As a corollary:

The image of **every diagram** in (\mathcal{W}, \square) **commutes** in (\mathcal{C}, \otimes) .

Question: Are all canonical diagrams in the image of $\mathcal{W}Sub$?

- This is only the case when $\mathcal{W}Sub$ is an *embedding*!

The story so far ...

We have a functor $\mathcal{W}Sub : (\mathcal{W}, \square) \rightarrow (\mathcal{C}, \otimes)$.

- Every **object** of \mathcal{C} is the image of an object of \mathcal{W}
- Every **canonical arrow** of \mathcal{C} is the image of an arrow of \mathcal{W}
- Every **diagram** over \mathcal{W} commutes.

As a corollary:

The image of **every diagram** in (\mathcal{W}, \square) **commutes** in (\mathcal{C}, \otimes) .

Question: Are all canonical diagrams in the image of $\mathcal{W}Sub$?

- This is only the case when $\mathcal{W}Sub$ is an *embedding*!

The story so far ...

We have a functor $\mathcal{W}Sub : (\mathcal{W}, \square) \rightarrow (\mathcal{C}, \otimes)$.

- Every **object** of \mathcal{C} is the image of an object of \mathcal{W}
- Every **canonical arrow** of \mathcal{C} is the image of an arrow of \mathcal{W}
- Every **diagram** over \mathcal{W} commutes.

As a corollary:

The image of **every diagram** in (\mathcal{W}, \square) **commutes** in (\mathcal{C}, \otimes) .

Question: Are all canonical diagrams in the image of $\mathcal{W}Sub$?

- This is only the case when $\mathcal{W}Sub$ is an *embedding*!

“A beautiful (useful) theory slain by an ugly counterexample”?

A full theory of coherence for associativity is:

- *more mathematically elegant,*
- *much more practically useful!*

single-object categories

$\mathcal{W}Sub : (\mathcal{W}, \square) \rightarrow (\mathcal{C}, \otimes)$ can **never** be an embedding when \mathcal{C} has a **finite** set of objects.

The *Cantor monoid* has precisely one object

Where did this come from?

Hilbert's Hotel

A children's story about infinity.

Hilbert's "Grand Hotel"

An infinite corridor, with rooms numbered $0, 1, 2, 3, \dots$

$\mathbb{N} \hookrightarrow \mathbb{N}$ the successor function.

$\mathbb{N} \cong \mathbb{N} \uplus \mathbb{N}$ the Cantor pairing.

$\mathbb{N} \cong \mathbb{N} \times \mathbb{N}$ an exercise!

$[\mathbb{N} \rightarrow \{0, 1\}]$ is not isomorphic to \mathbb{N}

Hilbert's "Grand Hotel"

An infinite corridor, with rooms numbered $0, 1, 2, 3, \dots$

$\mathbb{N} \hookrightarrow \mathbb{N}$ the successor function.

$\mathbb{N} \cong \mathbb{N} \uplus \mathbb{N}$ the Cantor pairing.

$\mathbb{N} \cong \mathbb{N} \times \mathbb{N}$ an exercise!

$[\mathbb{N} \rightarrow \{0, 1\}]$ is not isomorphic to \mathbb{N}

Hilbert's "Grand Hotel"

An infinite corridor, with rooms numbered $0, 1, 2, 3, \dots$

$\mathbb{N} \hookrightarrow \mathbb{N}$ the successor function.

$\mathbb{N} \cong \mathbb{N} \uplus \mathbb{N}$ the Cantor pairing.

$\mathbb{N} \cong \mathbb{N} \times \mathbb{N}$ an exercise!

$[\mathbb{N} \rightarrow \{0, 1\}]$ is not isomorphic to \mathbb{N}

Hilbert's "Grand Hotel"

An infinite corridor, with rooms numbered $0, 1, 2, 3, \dots$

$\mathbb{N} \hookrightarrow \mathbb{N}$ the successor function.

$\mathbb{N} \cong \mathbb{N} \uplus \mathbb{N}$ the Cantor pairing.

$\mathbb{N} \cong \mathbb{N} \times \mathbb{N}$ an exercise!

$[\mathbb{N} \rightarrow \{0, 1\}]$ is not isomorphic to \mathbb{N}

Hilbert's "Grand Hotel"

An infinite corridor, with rooms numbered $0, 1, 2, 3, \dots$

$\mathbb{N} \hookrightarrow \mathbb{N}$ the successor function.

$\mathbb{N} \cong \mathbb{N} \uplus \mathbb{N}$ the Cantor pairing.

$\mathbb{N} \cong \mathbb{N} \times \mathbb{N}$ an exercise!

$[\mathbb{N} \rightarrow \{0, 1\}]$ is not isomorphic to \mathbb{N}

The categorical identity $S \cong S \otimes S$

Exhibited by two canonical isomorphisms:

- **(Code)** $\triangleleft : S \otimes S \rightarrow S$
- **(Decode)** $\triangleright : S \rightarrow S \otimes S$

These are *unique* (up to *unique isomorphism*).

Examples

- *The natural numbers \mathbb{N} , Separable Hilbert spaces, Infinite matrices, Cantor set & other fractals, &c.*
- *C -monoids, and other untyped (single-object) categories with tensors*
- *Any unit object I of a monoidal category ...*

The categorical identity $S \cong S \otimes S$

Exhibited by two canonical isomorphisms:

- **(Code)** $\triangleleft : S \otimes S \rightarrow S$
- **(Decode)** $\triangleright : S \rightarrow S \otimes S$

These are *unique* (up to *unique isomorphism*).

Examples

- The natural numbers \mathbb{N} , Separable Hilbert spaces, Infinite matrices, Cantor set & other fractals, &c.
- C -monoids, and other untyped (single-object) categories with tensors
- Any unit object I of a monoidal category ...

A tensor on a single object

At a self-similar object S , we may define a tensor by

$$\begin{array}{ccc} S \otimes S & \xrightarrow{t \otimes u} & S \otimes S \\ \uparrow \lhd & & \downarrow \lhd \\ S & \xrightarrow{t \star u} & S \end{array}$$

($_ \star _$) makes $\mathcal{C}(S, S)$ a single-object monoidal category!

Associativity at a single object

The tensor $(_ \star _)$ is associative *up to isomorphism*.

$$\begin{array}{ccccc} S & \xrightarrow{\triangleright} & S \otimes S & \xrightarrow{1_S \otimes \triangleright} & S \otimes (S \otimes S) \\ \tau \downarrow & & & & \downarrow \tau_{S,S,S} \\ S & \xleftarrow{\triangleleft} & S \otimes S & \xleftarrow{\triangleleft \otimes 1_S} & (S \otimes S) \otimes S \end{array}$$

Claim: This is the identity arrow

precisely when

the object S is trivial.

Associativity at a single object

The tensor $(_ \star _)$ is associative *up to isomorphism*.

$$\begin{array}{ccccc} S & \xrightarrow{\triangleright} & S \otimes S & \xrightarrow{1_S \otimes \triangleright} & S \otimes (S \otimes S) \\ \tau \downarrow & & & & \downarrow \tau_{S,S,S} \\ S & \xleftarrow{\triangleleft} & S \otimes S & \xleftarrow{\triangleleft \otimes 1_S} & (S \otimes S) \otimes S \end{array}$$

Claim: This is the identity arrow

precisely when

the object S is trivial.

constructing
categories where all
canonical diagrams commute

How to Rectify the Anomaly

Given a **badly-behaved** category (\mathcal{C}, \otimes) , we can
*build a **well-behaved** (non-strict) version.*

Think of this as the **Platonic Ideal** of (\mathcal{C}, \otimes) .

We (still) assume \mathcal{C} is *monogenic*, with objects generated by $\{S, - \otimes -\}$

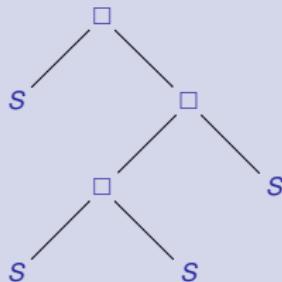
Building the ‘Platonic Ideal’

We will construct $\mathcal{P}lat_{\mathcal{C}}$

A version of \mathcal{C} for which \mathcal{WSub} is an *embedding*.

Constructing $Plat_{\mathcal{C}}$

Objects are free binary trees



Leaves labelled by $S \in Ob(\mathcal{C})$,

Branchings labelled by \square .

There is an **instantiation map** $Inst : Ob(Plat_{\mathcal{C}}) \rightarrow Ob(\mathcal{C})$

$$S\square((S\square S)\square S) \mapsto S \otimes ((S \otimes S) \otimes S)$$

This is not just a matter of syntax!

What about arrows?

Homsets are copies of homsets of \mathcal{C}

Given trees T_1, T_2 ,

$$Plat_{\mathcal{C}}(T_1, T_2) = \mathcal{C}(Inst(T_1), Inst(T_2))$$

Composition is inherited from \mathcal{C} in the obvious way.

The tensor (\square) : $Plat_{\mathcal{C}} \times Plat_{\mathcal{C}} \rightarrow Plat_{\mathcal{C}}$

$$\begin{array}{ccc} A & \xrightarrow{f} & X \\ & & \left. \right\} \\ B & \xrightarrow{g} & Y \end{array} \quad A \square X \xrightarrow{f \square g} B \square Y$$

The tensor of $Plat_{\mathcal{C}}$ is

- **(Objects)** A free formal pairing, $A \square B$,
- **(Arrows)** Inherited from (\mathcal{C}, \otimes) , so $f \square g \stackrel{\text{def.}}{=} f \otimes g$.

Some properties of the platonic ideal ...

1 The functor

$$\mathcal{WSub} : (\mathcal{W}, \square) \rightarrow (\mathcal{Plat}_{\mathcal{C}}, \square)$$

is always **monic**.

2 As a corollary:

All canonical diagrams of $(\mathcal{Plat}_{\mathcal{C}}, \square)$ commute.

3 Instantiation defines an **epic** monoidal functor

$$Inst : (\mathcal{Plat}_{\mathcal{C}}, \square) \rightarrow (\mathcal{C}, \otimes)$$

through which McL's substitution functor always factors.

Some properties of the platonic ideal ...

1 The functor

$$\mathcal{WSub} : (\mathcal{W}, \square) \rightarrow (\mathcal{Plat}_{\mathcal{C}}, \square)$$

is always **monic**.

2 As a corollary:

All canonical diagrams of $(\mathcal{Plat}_{\mathcal{C}}, \square)$ commute.

3 Instantiation defines an **epic** monoidal functor

$$Inst : (\mathcal{Plat}_{\mathcal{C}}, \square) \rightarrow (\mathcal{C}, \otimes)$$

through which McL's substitution functor always factors.

Some properties of the platonic ideal ...

1 The functor

$$\mathcal{WSub} : (\mathcal{W}, \square) \rightarrow (\mathcal{Plat}_{\mathcal{C}}, \square)$$

is always **monic**.

2 As a corollary:

All canonical diagrams of $(\mathcal{Plat}_{\mathcal{C}}, \square)$ commute.

3 Instantiation defines an **epic** monoidal functor

$$\mathcal{Inst} : (\mathcal{Plat}_{\mathcal{C}}, \square) \rightarrow (\mathcal{C}, \otimes)$$

through which McL's substitution functor always factors.

A monic / epic decomposition

MacLane's substitution functor always factors through the platonic ideal:

$$\begin{array}{ccc} (\mathcal{W}, \square) & \xrightarrow{\mathcal{W}Sub_{-}^{(\text{monic})}} & (Plat_{\mathcal{C}}, \square) \\ & \searrow \mathcal{W}Sub_{-} & \downarrow Inst^{(\text{epic})} \\ & & (\mathcal{C}, \otimes) \end{array}$$

This gives a monic / epic decomposition of his functor.

A highly relevant question ...

What does the Platonic Ideal of a **single-object** category actually look like?

The simplest possible case:

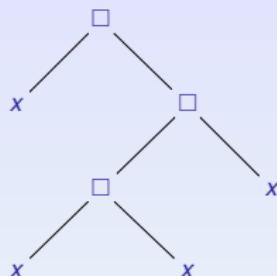
The trivial monoidal category (\mathcal{I}, \otimes) .

- **Objects:** $Ob(\mathcal{I}) = \{x\}$.
- **Arrows:** $\mathcal{I}(x, x) = \{1_x\}$.
- **Tensor:**

$$x \otimes x = x \ , \ 1_x \otimes 1_x = 1_x$$

What is the platonic ideal of \mathcal{I} ?

(Objects) All non-empty binary trees:



(Arrows) For all trees T_1, T_2 ,

$Plat_{\mathcal{I}}(T_1, T_2)$ is a single-element set.

There is a unique arrow between any two trees!

(PhD Thesis) The prototypical self-similar category (\mathcal{X}, \square)

- **Objects:** *All non-empty binary trees.*
- **Arrows:** *A unique arrow between any two objects.*

This monoidal category:

- ① was introduced to study **self-similarity** $S \cong S \otimes S$,
- ② contains MacLane's (\mathcal{W}, \square) as a subcategory.

Coherence for Self-Similarity

(a special case of a much more general theory)

A straightforward coherence theorem

We base this on the category (\mathcal{X}, \square)

- **Objects** All non-empty binary trees.
- **Arrows** A unique arrow between any two trees.

This category is posetal — all diagrams over \mathcal{X} commute.

We will define a monoidal substitution functor:

$$\mathcal{X}Sub : (\mathcal{X}, \square) \rightarrow (\mathcal{C}, \otimes)$$

The self-similarity substitution functor

An inductive definition of $\mathcal{X}Sub : (\mathcal{X}, \square) \rightarrow (\mathcal{C}, \otimes)$

On objects:

$$\begin{aligned} x &\mapsto S \\ u \square v &\mapsto \mathcal{X}Sub(u) \otimes \mathcal{X}Sub(v) \end{aligned}$$

On arrows:

$$(x \leftarrow x) \mapsto 1_S \in \mathcal{C}(S, S)$$

$$\begin{aligned} (x \leftarrow x \square x) &\mapsto \triangleleft \in \mathcal{C}(S \otimes S, S) \\ (x \square x \leftarrow x) &\mapsto \triangleright \in \mathcal{C}(S, S \otimes S) \end{aligned}$$

$$(b \square v \leftarrow a \square u) \mapsto \mathcal{X}Sub(b \leftarrow a) \otimes \mathcal{X}Sub(v \leftarrow u)$$

Interesting properties:

① $\mathcal{X}\text{Sub} : (\mathcal{X}, \square) \rightarrow (\mathcal{C}, \otimes)$ is always functorial.

② Every arrow built up from

$$\{\triangleleft, \triangleright, 1_S, - \otimes -\}$$

is the image of an arrow in \mathcal{X} .

③ The image of every diagram in \mathcal{X} commutes.

Interesting properties:

- ① $\mathcal{X}\text{Sub} : (\mathcal{X}, \square) \rightarrow (\mathcal{C}, \otimes)$ is always functorial.
- ② Every arrow built up from

$$\{\triangleleft, \triangleright, 1_S, - \otimes -\}$$

is the image of an arrow in \mathcal{X} .

- ③ The image of every diagram in \mathcal{X} commutes.

Interesting properties:

- ① $\mathcal{X}\text{Sub} : (\mathcal{X}, \square) \rightarrow (\mathcal{C}, \otimes)$ is always functorial.
- ② Every arrow built up from

$$\{\triangleleft, \triangleright, 1_S, - \otimes -\}$$

is the image of an arrow in \mathcal{X} .

- ③ The image of every diagram in \mathcal{X} commutes.

$\mathcal{X}Sub$ factors through the Platonic ideal

There is a monic-epic decomposition of $\mathcal{X}Sub$.

$$\begin{array}{ccc} (\mathcal{X}, \square) & \xrightarrow{\mathcal{X}Sub_-} & (\mathcal{Plat}_{\mathcal{C}}, \square) \\ & \searrow \mathcal{X}Sub_- & \downarrow Inst \\ & & (\mathcal{C}, \otimes) \end{array}$$

Every canonical (for self-similarity) diagram
in $(\mathcal{Plat}_{\mathcal{C}}, \square)$ commutes.

Relating associativity and self-similarity

A tale of two functors

Comparing the *associativity* and *self-similarity* categories.

MacLane's (\mathcal{W}, \square)

Objects: Binary trees.

Arrows: Unique arrow between
two trees *of the same rank*.

The category (\mathcal{X}, \square)

Objects: Binary trees.

Arrows: Unique arrow between
any two trees.

There is an obvious inclusion $(\mathcal{W}, \square) \hookrightarrow (\mathcal{X}, \square)$

Is *associativity* a restriction of *self-similarity*?

Does the following diagram commute?

$$\begin{array}{ccc} (\mathcal{W}, \square) & \xrightarrow{\quad} & (\mathcal{X}, \square) \\ \swarrow \mathcal{W}Sub & & \searrow \mathcal{X}Sub \\ & (\mathcal{C}, \otimes) & \end{array}$$

Does the **associativity** functor
factor through
the **self-similarity** functor?

Proof by contradiction:

Let's assume this is the case.

Special arrows of (\mathcal{X}, \square)

For arbitrary trees u, e, v ,

$$t_{uev} = ((u \square e) \square v \leftarrow u \square (e \square v))$$

$$l_v = (v \leftarrow e \square v)$$

$$r_u = (u \leftarrow u \square e)$$

Since all diagrams over X commute:

The following diagram over (\mathcal{X}, \square) commutes:

$$\begin{array}{ccc} u \square (e \square v) & \xrightarrow{t_{uev}} & (u \square e) \square v \\ & \searrow 1_u \square l_v & \swarrow r_u \square 1_v \\ & u \square v & \end{array}$$

Let's apply $\mathcal{X}Sub$ to this diagram.

By Assumption: $t_{uev} \mapsto \tau_{U,E,V}$ (assoc. iso.)

Notation: $u \mapsto U$, $v \mapsto V$, $e \mapsto E$, $l_v \mapsto \lambda_V$, $r_u \mapsto \rho_U$

Since all diagrams over X commute:

The following diagram over (\mathcal{X}, \square) commutes:

$$\begin{array}{ccc} u \square (e \square v) & \xrightarrow{t_{uev}} & (u \square e) \square v \\ & \searrow 1_u \square l_v & \swarrow r_u \square 1_v \\ & u \square v & \end{array}$$

Let's apply $\mathcal{X}Sub$ to this diagram.

By Assumption: $t_{uev} \mapsto \tau_{U,E,V}$ (assoc. iso.)

Notation: $u \mapsto U$, $v \mapsto V$, $e \mapsto E$, $l_v \mapsto \lambda_V$, $r_u \mapsto \rho_U$

Since all diagrams over X commute:

The following diagram over (\mathcal{C}, \otimes) commutes:

$$\begin{array}{ccc} U \otimes (E \otimes V) & \xrightarrow{\tau_{UEV}} & (U \otimes E) \otimes V \\ & \searrow 1_U \otimes \lambda_U & \swarrow \rho_U \otimes 1_V \\ & U \otimes V & \end{array}$$

This is MacLane's **units triangle**
— the defining equation for a unit (trivial) object.

The choice of e was *arbitrary* — every object is trivial!

Since all diagrams over X commute:

The following diagram over (\mathcal{C}, \otimes) commutes:

$$\begin{array}{ccc} U \otimes (E \otimes V) & \xrightarrow{\tau_{UEV}} & (U \otimes E) \otimes V \\ & \searrow 1_U \otimes \lambda_U & \swarrow \rho_U \otimes 1_V \\ & U \otimes V & \end{array}$$

This is MacLane's **units triangle**
— the defining equation for a unit (trivial) object.

The choice of e was *arbitrary* — every object is trivial!

A general result

The following diagram commutes

$$\begin{array}{ccc} (\mathcal{W}, \square)^c & \xrightarrow{\quad} & (\mathcal{X}, \square) \\ & \searrow \mathcal{W}Sub & \swarrow \mathcal{W}Sub \\ & (\mathcal{C}, \otimes) & \end{array}$$

exactly when (\mathcal{C}, \otimes) is **degenerate** —

i.e. all objects are trivial.

An important special case:

What is strict self-similarity?

Can the code / decode maps

$$\triangleleft : S \otimes S \rightarrow S, \quad \triangleright : S \rightarrow S \otimes S$$

be **strict identities**?

In **single-object** monoidal categories:

We only have one object, so $S \otimes S = S$.

$$\begin{array}{ccc} S & \begin{array}{c} \nearrow \text{Id} \\ \searrow \text{Id} \end{array} & S \otimes S \end{array}$$

Take the identity as both the **code** and **decode** arrows.

Untyped \equiv Strictly Self-Similar.

What is strict self-similarity?

Can the code / decode maps

$$\triangleleft : S \otimes S \rightarrow S, \quad \triangleright : S \rightarrow S \otimes S$$

be **strict identities**?

In **single-object** monoidal categories:

We only have one object, so $S \otimes S = S$.

$$\begin{array}{ccc} & \text{Id} & \\ S & \swarrow \quad \searrow & S \otimes S \\ & \text{Id} & \end{array}$$

Take the identity as both the **code** and **decode** arrows.

Untyped \equiv Strictly Self-Similar.

Generalising Isbell's argument

① **Strict associativity:** $A \otimes (B \otimes C) = (A \otimes B) \otimes C$

All arrows of (\mathcal{W}, \square) are mapped to identities of (\mathcal{C}, \otimes)

② **Strict self-similarity:** $S \otimes S = S$.

All arrows of (\mathcal{X}, \square) are mapped to the identity of (\mathcal{C}, \otimes) .

$\mathcal{W}Sub$ trivially factors through $\mathcal{X}Sub$.

The conclusion

Strictly associative untyped monoidal categories are **degenerate**.

We see special cases of this in many areas:

- **(Monoid Theory)**

Congruence-freeness (e.g. the polycyclic monoids).

- **(Group Theory)**

No normal subgroups (e.g. Thompson's group \mathcal{F}).

- **(λ calculus / Logic)**

Hilbert-Post completeness / Girard's dynamical algebra.

- **(Linguistics)**

Recently (re)discovered ... not yet named!

Another perspective ...

Another way of looking at things:

The 'No Simultaneous Strictness' Theorem

One cannot have both

(I) Associativity $A \otimes (B \otimes C) \cong (A \otimes B) \otimes C$

(II) Self-Similarity $S \cong S \otimes S$

as strict equalities.