

Almost and Absolute Pure Acts over Semilattices

Salma Shaheen

19th January 2016

S-acts

Throughout, S is a monoid.

A right S -act is a nonempty set A together with a map

$$A \times S \rightarrow A, (a, s) \mapsto as$$

such that for all $a \in A, s, t \in S$

$$(as)t = a(st) \text{ and } a1 = a.$$

- ❖ For any $s \in S$, we have an operation $\rho_s : A \rightarrow A$ given by $(a)\rho_s = as$. The function $\rho : S \rightarrow T_A$ given by $(s)\rho = \rho_s$ is a monoid morphism.

Conversely, if $\theta : S \rightarrow T_A$ is monoid morphism, define

$$as = (a)\theta_s$$

Then A is an S -act.

Examples of S-acts

1. S is an S -act
2. Any right ideal of S is an S -act.
3. Let $(K, +, \cdot)$ be a field and V be a left vector space. Then V is a left (K, \cdot) -act but not a $(K, +)$ -act.
4. For any monoid S and a non-empty set A , define $as = a$ for all $a \in A$, then A becomes a right S -act.

Subact of S-acts

Let A_S be an S -act and $B \subseteq A$, a nonempty subst. Then B is a subact of A if $as \in B$ for all $a \in B$ and $s \in S$.

Obviously, any right ideal of S is a subact of S_S .

Congruences and Morphisms for S-acts

- ❖ Let A be an S -act. An equivalence relation σ on A is called an S -act congruence or a congruence on A , if $a\sigma b$ implies $(as)\sigma(bs)$ for $a, b \in A$ and $s \in S$.
- ❖ If $X \subseteq A \times A$, then $\sigma(X)$ denote the smallest congruence on A containing X .
- ❖ A congruence σ is finitely generated if there exists a finite subset $X \subseteq A \times A$ such that $\sigma = \sigma(X)$.
- ❖ The ordered pair $(a, b) \in \sigma(X)$ if and only if either

$$a = b$$

or there exists a natural number n and a sequence

$$\begin{array}{ccccccc} a = c_1t_1 & & d_2t_2 = c_3t_3 & \cdots & & d_nt_n = b \\ d_1t_1 = c_2t_2 & & d_3t_3 = c_4t_4 & \cdots & & d_{n-1}t_{n-1} = c_nt_n \end{array}$$

where $t_1, t_2, t_3, \dots, t_n \in S$ and for each $i = 1, \dots, n$ either (c_i, d_i) or (d_i, c_i) is in X .

- ❖ If σ is a congruence on A , then A/σ is an S -act.
- ❖ An S -morphism from A to B is a map $f : A \rightarrow B$ with $(as)f = (af)s$ for all $a \in A$ and $s \in S$.

Free S-acts

- ❖ An S-act A is finitely generated if there exists a subset U of A such that

$$A = \bigcup_{u \in U} uS \text{ and } |U| < \infty.$$

- ❖ An S-act is free if there exists a subset U of A such that $A = \bigcup_{u \in U} uS$ and each element $a \in A$ can be uniquely presented in the form $a = us$, $u \in U$ and $s \in S$.
- ❖ Let X be a nonempty set. Then free S-act $F(X)$ on X exists.

Construction for $F(X)$: Let

$$F(X) = X \times S$$

and define

$$(x, s)t = (x, st).$$

Then it is easy to check that $F(X)$ is an S-act. With $x \mapsto (x, 1)$, we have $F(X)$ is free on X .

Notice that

$$(x, s) = (x, 1)s \equiv xs.$$

- ❖ Free S-acts are disjoint unions of copies of S .

Finitely Presented S-acts

An S-act A_s is cyclic is $A = \langle \{a\} \rangle$, where $a \in A$.

An S-act A is finitely presented if

$$A \cong F/\sigma$$

for some finitely generated free S-act F and finitely generated congruence σ .

Proposition:

Let A_s be a cyclic S-act. Then A_s is finitely presented if and only if it is isomorphic to a factor act of S_s by a finitely generated right congruence on S , that is,

$$A \cong S/\sigma$$

where σ is finitely generated right congruence.

System of Equations over S-act

- ❖ Let A be an S -act. An equation over A has one of the three forms

$$xs = a \quad xs = xt \quad xs = yt$$

where $s, t \in S$, $a \in A$ and x, y are variables

- ❖ Let Σ be a system of equations over A . Then Σ is consistent if Σ has solution in some S -act $B \supseteq A$.

Consistency criteria for Σ :

Let $\Sigma = \{ xs_i = a_i, xu_i = xv_j : s_i, u_j, v_j \in S, a_i \in A, 1 \leq i \leq n, 1 \leq j \leq m \}$ and $\sigma = \langle (u_j, v_j) : 1 \leq j \leq m \rangle$. Then Σ is consistent if and only if for all $h, k \in S$ and for all $1 \leq i, i' \leq n$,

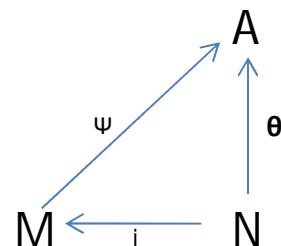
$$s_i h \sigma s_{i'} k \text{ implies } a_i h = a_{i'} k.$$

Almost Pure S-act

An S-system A is almost pure if every finite consistent system of equations in one variable, with constants from A, has a solution in A.

Proposition: The following conditions are equivalent for an S-act A:

1. A is almost pure;
2. Given any diagram of S-acts and S-homomorphisms



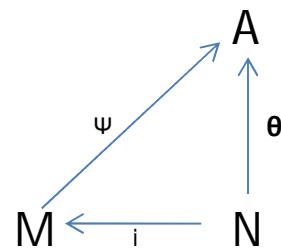
where M is cyclic finitely presented, N is finitely generated and $i : N \rightarrow M$ is an injection, there exists an S-homomorphism $\Psi : M \rightarrow A$ such that $i \Psi = \theta$; further, for any s_1, \dots, s_n in S there is an element a in A with $a = as_1 = \dots = as_n$.

Absolutely Pure S-acts

An S-system A is absolutely pure if every finite consistent system of equations, with constants from A, has a solution in A.

Proposition: The following conditions are equivalent for an S-act A:

1. A is absolutely pure;
2. Given any diagram of S-acts and S-homomorphisms



where M is finitely presented, N is finitely generated and $i : N \rightarrow M$ is an injection, there exists an S-homomorphism $\Psi : M \rightarrow A$ such that $i \Psi = \theta$.

Completely Right Pure Monoids

A monoid S is called completely right pure if all right S -acts are absolutely pure.

Theorem: A monoid S is completely right pure if and only if all S -acts are almost pure.

Absolutely pure S -act \Rightarrow Almost Pure S -acts

For completely right pure monoids:

Almost Pure S -acts \Rightarrow Absolutely pure S -act

Does there exists an almost pure S-act which is not absolutely pure???

OR

Does there exists a class of monoids (Other than completely right pure) for which almost pure s-acts are absolutely pure????

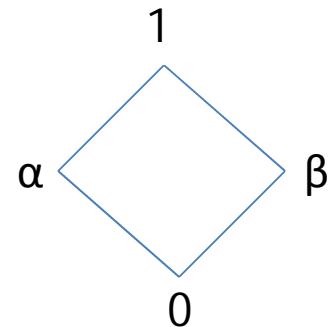
Theorem: A monoid S is completely right pure if and only if S has local left zeros and satisfies (*):

(*) given any finitely generated right congruence σ on S and any finitely generated right ideal I of S , there is an element s of I such that for any u, v in S , if $u \sigma v$ then $su \sigma sv$ and for any $w \in I$, $w \sigma sw$.

Corollary: Let I be finitely generated right ideal of a completely right pure monoid. Then $I = eS$ for some idempotent element e of S .

- ❖ The following conditions are equivalent for a monoid S :
 - i. S is regular and its principle right ideals are linearly ordered with respect to inclusion.
 - ii. Every finitely generated right ideal is generated by an idempotent element.

Consider the semilattice $S=\{0, \alpha, \beta, 1\}$.



- ❖ S is an S -act over itself.
- ❖ S is not completely right pure because the principle right ideals $\{0, \alpha\}$ and $\{0, \beta\}$ are not linearly ordered with respect to inclusion.
- ❖ S is an almost pure S -act over itself.

For $S=\{0, \alpha, \beta, 1\}$, every almost pure S -act is absolutely pure.

Proof: Let A be an arbitrary almost pure S -act.

$S(n)$: All finite consistent system of equations over A in no more than n variables have a solution in A .

Clearly, the assumption is true for $n = 1$.

Let Σ be a finite consistent system of equations in $n+1$ variables $x_1, x_2, \dots, x_n, x_{n+1}$. Since Σ is consistent, Σ has a solution $(b_1, b_2, \dots, b_n, b_{n+1})$ in some S -act $B \supseteq A$.

Case I:

Σ has no equation of the form $x_i = t$ for all $i = 1, 2, \dots, n+1$. Since A is almost pure S -act, so Solution of Σ exists in A .

Case II:

Σ has an equation of the form $x_i = t$ for some $i = 1, 2, \dots, n+1$. Since Σ is consistent. So $b_i = a \in A$.

Construct

$\Sigma' = \text{Considering all equations of } \Sigma \text{ in } x_2, \dots, x_n, x_{n+1} \text{ and}$
 $\text{replacing } x_1 \text{ by } a.$

Σ' is consistent. So, by induction Σ' has a solution $(a_2, a_3, \dots, a_n, a_{n+1})$ in A.

$(a_1 = a, a_2, \dots, a_n, a_{n+1})$ is the solution of Σ in A.

Case III:

Suppose Σ has equations of the form :

$x_{iS} = a$ and $x_i = x_{i'}t$ for some $i, i' = 1, 2, \dots, n+1$ and $i \neq i'$

Take $i = 1$ and $i' = 2$.

Construct

Σ' = Considering all equations of Σ in x_2, \dots, x_n, x_{n+1} and replacing x_1 by x_2t .

Σ' is consistent because $(b_2, \dots, b_n, b_{n+1})$ is the solution of Σ in B. So, by induction Σ' has a solution $(a_2, a_3, \dots, a_n, a_{n+1})$ in A.

$(a_1 = a_2s, a_2, \dots, a_n, a_{n+1})$ is the solution of Σ in A.

Case IV:

Suppose Σ has equations of the form :

$$x_s = a \text{ for } i=1,2,3,\dots,n$$

We prove this case for $i = 1, 2$ and by the similar argument it would be true for $i = 1, 2, \dots, n+1$.

Rename x_1 by x and x_2 by y and consider

$$\Sigma = \{ x\alpha = a, xs' = xt', xs = yt, yu = b \}$$

Subcase I:

If $s=1$, then Σ has a solution in A .

Subcase II:

If $s = 0$, then construct

$$\Sigma' = \{ x\alpha = a, xs' = xt', x0 = a.0 \}$$

$$\Sigma^* = \{ yu = b, yt = a.0 \}$$

Σ' and Σ^* both are consistent having solution b_1 and b_2 in B. So, by induction, Σ' and Σ^* having solution a_1 and a_2 in A, respectively.

(a_1, a_2) is the solution for Σ .

Subcase III:

If $s = \alpha$, then construct

$$\Sigma' = \{ x\alpha = a, xs' = xt' \}$$

$$\Sigma^* = \{ yu = b, yt = a \}$$

Σ' and Σ^* both are consistent having solution b_1 and b_2 in B. So, by induction, Σ and Σ^* having solution a_1 and a_2 in A, respectively.

(a_1, a_2) is the solution for Σ .

Subcase IV:

If $s = \beta$

$$\Sigma = \{ x\alpha = a, xs' = xt', x\beta = yt, yu = b \}.$$

Consider

$$\Sigma' = \{ x\alpha = a, xs' = xt' \}.$$

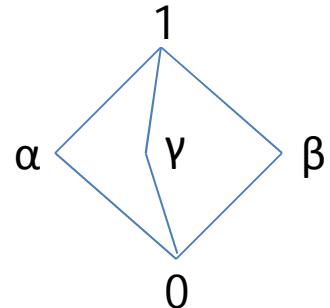
Then corresponds to every $\sigma = \langle (s', t') \rangle$, Σ has solution in A .

So, if

$$\Sigma = \{ x\alpha = a, x\beta = yt, yu = b \}.$$

Then, corresponds to every value of t and u , we can either split Σ into two system in one variable or (a, b) is the solution of Σ .

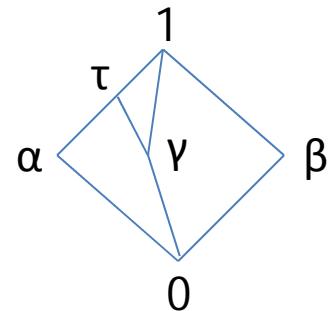
Consider the semilattice $S = \{0, \alpha, \beta, \gamma, 1\}$.



- ❖ S is an S -act over itself.
- ❖ S is not completely right pure because the principle right ideals $\{0, \alpha\}$ and $\{0, \beta\}$ are not linearly ordered with respect to inclusion.
- ❖ S is not an almost pure S -act. Consider the system of equation

$$\Sigma = \{ x\alpha = \alpha, x\beta = 0, x\gamma = \gamma \}$$

Σ is consistent because it has solution in extension $T = S \cup \{\tau\}$



But Σ has no solution in S .

For $S = \{0, \alpha, \beta, \gamma, 1\}$, every almost pure S -act is absolutely pure.

For the following semilattices, every almost pure s-act is absolutely pure.

