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Abstract. Fountain and Gomes have shown that any proper left ample semi-
group embeds into a so-called W -product, which is a subsemigroup of a reverse
semidirect product T ⋉ Y of a semilattice Y by a monoid T , where the action
of T on Y is injective with images of the action being order ideals of Y. Proper
left ample semigroups are proper left restriction, the latter forming a much
wider class. The aim of this paper is to give necessary and sufficient conditions
on a proper left restriction semigroup such that it embeds into a W -product.
We also examine the complex relationship between W -products and semidirect
products of the form Y ⋊ T .

Introduction

Left restriction semigroups arise from many sources.1 They are a class of unary
semigroups (that is, semigroups equipped with an additional unary operation)
that are precisely the unary semigroups isomorphic to unary subsemigroups of
partial tranformation semigroups PT X , where the unary operation is α 7→ Idomα.
The reader can consult [10] or the unpublished notes [8] for history and further
details.
Left restriction semigroups form a variety of unary semigroups, that is, semi-

groups equipped with an additional unary operation, here denoted by +. The
identities additional to associativity that define left restriction semigroups are:

x+x = x, x+y+ = y+x+, (x+y)+ = x+y+, xy+ = (xy)+x.

For any left restriction semigroup S, we put

E = {x+ : x ∈ S}.
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1They also have equally many names, including weakly left E-ample. We remark that the
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would call right restriction semigroups as restriction semigroups.
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It is easy to see that E is a semilattice under the semigroup multiplication, the
semilattice of projections of S (also known as the distinguished semilattice of S).
Right restriction semigroups are defined dually, where in this case we use ∗ for

the unary operation. A bi-unary semigroup is restriction if it is both left and
right restriction such that the semilattices of projections coincide, which latter
condition is equivalent to the identities

(x+)∗ = x+ and (x∗)+ = x∗

being satisfied.
Every inverse semigroup is left restriction with a+ = aa−1 (and also right re-

striction with a∗ = a−1a), so that, as left restriction semigroups form a variety,
every subsemigroup of an inverse semigroup that is closed under + is left restric-
tion. Not every left restriction semigroup is obtained in this way. Those that
are, are precisely the left ample (formerly, left type A) semigroups, forming a
quasi-variety determined by the addition of the quasi-identity

(1) xz = yz → xz+ = yz+.

A left restriction semigroup is reduced if |E| = 1. In this case, it is a monoid
with identity the single projection. On the other hand, it is easy to see that any
monoid M is left restriction, where we declare a+ = 1, for every a ∈ M . An
inverse semigroup, regarded as a left restriction semigroup, is reduced if and only
if it is a group. We view left restriction semigroups as being natural extensions of
inverse semigroups, obtained by dropping the condition of regularity, and, indeed,
they have many analogous properties. A central theme has been to describe them
in terms of reduced left restriction semigroups (i.e. monoids) and semilattices,
echoing the approach to inverse semigroups which uses groups and semilattices as
its building blocks. There is naturally a similar theme for (two-sided) restriction
semigroups.
We denote the semidirect product of a semilattice Y by a monoid T acting on

the left of Y by Y ⋊T and the reverse semidirect product of a semilattice Y by a
monoid T acting on the right by T ⋉Y ; semigroups Y⋊T (T ⋉Y) are left (right)
restriction, and more than this, are proper [6, 1]. Here ‘proper’ is the appropriate
analogue of the notion of an E-unitary, or proper, inverse semigroup. If Y has
an identity, and T acts on the left and right of Y satisfying the compatibility
conditions, then a subsemigroup Y ∗m T of Y ⋊ T is proper as a (two-sided)
restriction semigroup [5]. The final construction we use here is that of a W -
product W (T,Y) of a semilattice Y by a monoid T , which is a subsemigroup
of a semigroup of the form T ⋉ Y , where the action of T satisfies some special
properties; W -products are again proper restriction semigroups [7, 14].
The relationship between semidirect products of semilattices by monoids, semi-

groups of the form Y ∗m T and W -products, is complex. Our first aim is to show
that any W -semigroup embeds as a restriction semigroup into a semigroup of the
form Y ∗m T which, in our particular case, is the full semidirect product Y ⋊ T .
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This we do in Section 2. On the other hand, it is known that any proper left
ample semigroup embeds into a W -product [4]. In Section 3 we find necessary
and sufficient conditions on a proper left restriction semigroup such that it em-
beds into a W -product. Since these conditions involve the least right cancellative
congruence ωS on a semigroup S, we investigate ωS in Section 4.
In Section 1 we briefly define the tools needed for the rest of the paper. We refer

the reader to [11] for general semigroup background and [8] for further details
concerning restriction semigroups and related classes.

1. Preliminaries

We emphasise that we always regard left restriction semigroups as algebras
possessing two basic operations; as such, substructures, morphisms and congru-
ences must respect both. Similarly, we regard restriction semigroups as algebras
with three basic operations.
Let S be a left (right) restriction semigroup. We recall that S is partially

ordered by ≤ where for any a, b ∈ S we have a ≤ b if and only if a = a+b
(a = ba∗) [8]. The relation ≤ is compatible on both sides with multiplication in
S, and with the unary operation. If S is restriction, then it is easy to see that
a = a+b if and only if a = ba∗, so that ≤ is unambiguously defined.

Result 1.1. [8] Let S be a left restriction semigroup. Then for any a, b ∈ S:

(i) (a+)+ = a+;
(ii) (ab)+ ≤ a+;
(iii) (ab+)+ = (ab)+.

Let S be a left restriction semigroup. The relation σS on S is the least con-
gruence identifying all the elements of E. As explained in [8, Section 8], we can
regard σS as either a semigroup congruence or as a unary semigroup congruence.2

Result 1.2. [8, Lemma 8.1] Let S be a left restriction semigroup. Then for any
a, b ∈ S, we have that a σS b if and only if ea = eb for some e ∈ E.

Clearly, S/σS is reduced for any left restriction semigroup S, and is the great-
est reduced image of S. We also have call here to consider ωS, the least right
cancellative congruence on S. Since right cancellative semigroups have at most
one idempotent, certainly σS ⊆ ωS.

Lemma 1.3. Let S be a left restriction semigroup and let κ be a congruence
contained in ωS. Then

(i) S/ωS
∼= (S/κ)/(ωS/κ);

(ii) ωS/κ = ωS/κ.

2From another perspective, a left restriction semigroup is a semigroup (rather than a unary
semigroup) possessing particular properties related to a semilattice E of idempotents. In view
of this, the relation σS is also referred to as σE in the literature.
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In particular, ωS/σS
= ωS/σS.

Proof. (i) is a standard algebraic fact. To show (ii), let νκ : S 7→ S/κ and
νωS

: S 7→ S/ωS be the natural maps, and let νωS/κ : S/κ → S/ωS be the mor-
phism sκ 7→ sωS such that

S/ωS

S S/κ

νωS

νκ

νωS/κ

commutes. Clearly S/ωS is a right cancellative image of S/κ. On the other hand,
if θ : S/κ → T is a morphism, where T is right cancellative, then there must be
a morphism φ : S/ωS → T such that νκθ = νωS

φ. Then

(sκ)νωS/κφ = sνκνωS/κφ = sνωS
φ = sνκθ = (sκ)θ,

so that the diagram below commutes.

S/ωS

S S/κ T

νωS

νκ

νωS/κ

θ

φ

Clearly ωS/κ = ker νωS/κ. �

Result 1.4. [3, 8] If S is a left ample semigroup then ωS = σS, and every
idempotent is a projection in S.

To see the second statement, let s ∈ S such that s2 = s. Then s2 = s+s, and
so ss+ = s+s+ = s+ follows by (1). Thus

s+ = ss+ = (ss+)+s = (s+)+s = s+s = s,

making use of the defining identities and Result 1.1.

Definition 1.5. A left restriction semigroup is proper if

a+ = b+ and a σS b implies that a = b.

The dual definition holds for right restriction semigroups. A restriction semigroup
is proper if it is proper as both a left and as a right restriction semigroup.
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Lemma 1.6. Let S be a unary subsemigroup of a proper left restriction semigroup
U . Then S is proper and

σU ∩ (S × S) = σS.

Proof. It is clear that σS ⊆ σU ∩(S×S) and so S is proper. Suppose that a, b ∈ S
and a σU b. Then a+b σU b+a and it follows from Result 1.1 that

(a+b)+ = (a+b+)+ = a+b+ = b+a+ = (b+a+)+ = (b+a)+,

so that as U is proper, a+b = b+a and a σS b.
�

We remark that if S is a proper left restriction semigroup, then E is a σS-class,
but the converse need not be true [3, Example 3]. However, it is well known that
an inverse semigroup is proper if and only if it is E-unitary, that is, if and only
if E(S) forms a σS-class.
McAlister’s ‘P -theorem’, giving the structure of E-unitary inverse semigroups,

has analogues for proper left restriction semigroups. Each approach involves
monoids acting on semilattices, a notion recapped below.

Definition 1.7. Let T be a monoid and let Y be a semilattice, with binary
operation of meet denoted by ∧. Then T acts on Y (on the left) by morphisms
if there is a map T × Y → Y , (t, a) 7→ ta, such that for all a, b ∈ Y , s, t ∈ T we
have

1a = a, sta = s(ta) and s(a ∧ b) = sa ∧ sb.

Suppose now that the monoid T acts by morphisms on the left of a semilattice
Y . We denote by Y ⋊ T the semidirect product of Y by T , so that

Y ⋊ T = Y × T and (e, s)(f, t) = (e ∧ sf, st)

for all (e, s), (f, t) ∈ Y × T .
We remark that the right action of a monoid T on a semilattice Y by morphisms

is defined dually to that in Definition 1.7, where we write at for the right action
of t ∈ T on a ∈ Y . The reverse semidirect product T ⋉ Y is then dual to the
construction above.

Result 1.8. [5, Lemma 6.1] Let T be a monoid acting by morphisms on the left
of a semilattice Y. Then Y ⋊ T is proper left restriction with (e, s)+ = (e, 1), so
that the semilattice of projections of Y ⋊ T is {(e, 1) : e ∈ Y} and is isomorphic
to Y. Further, (e, s) σY⋊T (f, t) if and only if s = t, so that Y ⋊ T/σY⋊T

∼= T .

We note that if in Result 1.8, the monoid T is right cancellative, then it is easy
to check that Y ⋊ T is left ample.
There are various approaches to constructing a ‘P -theorem’ for left restriction

semigroups and their specialisations (see [3, 12, 6, 1]). Here we describe that of
[6, 1].
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Let T be a monoid acting on the left of a semilattice X via morphisms. Suppose
that X has subsemilattice Y with upper bound ε (where if Y is a monoid, then
ε is the identity of Y) such that:
(a) for all t ∈ T there exists e ∈ Y such that e ≤ tε;
(b) if e ≤ tε then for all f ∈ Y , e ∧ tf ∈ Y .

Then (T,X ,Y) is a strong left M-triple.
For a strong left M -triple (T,X ,Y) we put

M(T,X ,Y) = {(e, t) ∈ Y × T : e ≤ tε} ⊆ X ⋊ T.

From [1, Lemma 7.1], M = M(T,X ,Y) is a unary subsemigroup of X ⋊ T and
is proper left restriction. We say that M is the strong M-semigroup associated
with (T,X ,Y). Part (iii) of the result below follows easily from Lemma 1.6 and
Result 1.8.

Result 1.9. [1, Theorem 7.2] Let S be a left restriction semigroup. Then the
following conditions are equivalent:

(i) S is proper;
(ii) S is isomorphic to an M-semigroup M = M(T,X ,Y);
(iii) S embeds into a semidirect product of a semilattice by a monoid T .

If these conditions hold, then we may take T = S/σS in (ii) and (iii) and Y = E
in (ii).

We note that corresponding results exist for proper restriction semigroups, but
in this case one requires partial actions of a monoid on a semilattice [2].
In view of the comment following Result 1.8, we can deduce the following result

for left ample semigroups. The original version of the equivalence of (i) and (ii),
using a construction slightly more akin to the P -theorem, appears in [12].

Result 1.10. [6] Let S be a left restriction semigroup. Then the following con-
ditions are equivalent:

(i) S is proper left ample;
(ii) S is isomorphic to an M-semigroup M = M(T,X ,Y) where T is right

cancellative;
(iii) S embeds into a semidirect product of a semilattice by a right cancellative

monoid T .

If these conditions hold, then we may take T = S/σS in (ii) and (iii) and Y = E
in (ii).

We now remind the reader of the so-called ‘W -products’, originally introduced
by Fountain and Gomes [4] to describe proper left ample monoids.
Let T be a monoid acting by morphisms on the right of a semilattice Y such

that for all a, b ∈ Y and t ∈ T :
(a) at = bt ⇒ a = b;
(b) a ≤ bt ⇒ a = ct for some c ∈ Y .
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We say that (T,Y) is a W -pair. Notice that it is a consequence of (a) that for
any a, b ∈ Y and t ∈ T , if at ≤ bt, then a ≤ b.
Let (T,Y) be a W -pair. We put

W = W (T,Y) := {(t, at) : t ∈ T, a ∈ Y} ⊆ T ⋉ Y

and define + and ∗ on W by

(t, at)+ = (1, a) and (t, at)∗ = (1, at).

Result 1.11. [4, 7, 14] Let (T,Y) be a W-pair. Then W = W (T,Y) is a sub-
semigroup of T ⋉ Y that is proper restriction, with semilattice of projections

{(1, a) : a ∈ Y}

isomorphic to Y. For any (t, at), (s, bs) ∈ W we have

(t, at) σW (s, bs) if and only if t = s,

so that W/σW
∼= T .

Further, W is left ample if and only if T is right cancellative.

We say that W (T,Y) above is the W -product associated with the W -pair
(T,Y).

Lemma 1.12. Let W (T,Y) be a W -product for a W -pair (T,Y). Then (T/ωT ,Y)
is a W -pair where the action of T/ωT on Y is given by atωT = at, and the map

η : W (T,Y) → W (T/ωT ,Y), (t, at) 7→ (tωT , a
tωT )

is a surjective morphism.

Proof. Let α : T → End Y be the morphism that corresponds to the action of
T on Y . Notice that the image of α is contained in the monoid of injective
mappings of Y , which is right cancellative. Hence ωT ⊆ kerα and there is a
morphism α : T/ωT → End Y given by (tωT )α = tα. This mapping defines an
action of T/ωT on Y . It is then easy to see that (T/ωT ,Y) is a W -pair with
respect to this action, and η is a surjective morphism. �

Corollary 1.13. Let W (T,Y) be a W -product. Then the relation

{
(

(t, at), (s, bs)
)

: a = b and t ωT s}

is a projection separating congruence on W (T,Y).

Proof. The relation above is ker η, where η is given in Lemma 1.12, and clearly
is projection separating. �

Notice that if T is right cancellative in Corollary 1.13, then it follows from the
definition of η in Lemma 1.12 that the given relation is equality.
The construction of W (T,Y) with T a right cancellative monoid is introduced

in [4] as a construction of a proper left ample semigroup. In [7] (see also [14]), it is
generalized for any monoid T , and it is noticed that there is a natural unary op-
eration ∗ on W (T,Y), stemming from the oversemigroup T ⋉Y , making W (T,Y)
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a proper restriction semigroup. Similarly to the usual notion of an almost fac-
torisable inverse semigroup, a notion of an almost left factorisable restriction
semigroup is introduced, and it is established that the almost left factorisable
restriction semigroups are just the (projection separating) homomorphic images
of W -products. Moreover, it is shown that a restriction semigroup is proper and
almost left factorisable if and only if it is isomorphic to a W -product.

2. W -products embed into semidirect products

Let W = W (T,Y) be a W -product. From Result 1.11 we know that W is
proper restriction, and hence from Result 1.9, W embeds as a unary semigroup
into a semidirect product of a semilattice by a monoid, where we can take the
monoid to be T . However, the embedding provided in [1] to prove Result 1.9 is far
from transparent, and moreover is argued only in the context of unary semigroups.
As we have already remarked, W is proper (two-sided) restriction. It is true that
semidirect products of semilattices by monoids are not normally restriction, but
in certain cases, explained below, they are. The semidirect product in which we
embed our W is one of this kind, and W embeds into it as a bi-unary semigroup.
Our construction is short and direct, avoiding the machinery of [1].
We say that a monoid T acts doubly on a semilattice Y with identity ǫ, if T

acts by morphisms on the left and right of Y and the compatibility conditions
hold, that is

(te)t = ǫt ∧ e and t(et) = e ∧ tǫ.

for all t ∈ T, e ∈ Y .

Proposition 2.1. [5] Let T be a monoid acting doubly on a semilattice Y with
identity ǫ. Then

Y ∗m T = {(e, t) : e ≤ tǫ} ⊆ Y ⋊ T

is a proper restriction monoid with identity (ǫ, 1) such that

(e, t)+ = (e, 1) and (e, t)∗ = (et, 1).

If T is left (right) cancellative, then Y ∗m T is right (left) ample.

Suppose that T acts doubly on Y as above, with the additional property that
tǫ = ǫ for all t ∈ T . Then

Y ∗m T = {(e, t) : e ≤ tǫ} = Y ⋊ T

so that Y ⋊ T is proper restriction with (e, t)+ = (e, 1) and (e, t)∗ = (et, 1).
If P is a partially ordered set, then we denote the smallest order ideal containing

P ⊆ P by 〈P 〉, abbreviated to 〈p〉 where P = {p} is a singleton.

Proposition 2.2. Let W (T,Y) be a W -product and denote by Y the semilattice
of order ideals of Y under intersection3. Then T acts doubly on Y such that
tY = Y for all t ∈ T , and W (T,Y) embeds (as a bi-unary semigroup) into Y⋊T .

3We allow ∅ to be an order ideal.
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Proof. For t ∈ T and I ∈ Y , define

tI = {a : at ∈ I}.

Notice that if a ∈ tI and b ≤ a, then we have at ∈ I and bt ≤ at. As I is an
order ideal, we have bt ∈ I so that b ∈ tI. Hence tI is an order ideal of Y . It is
easy to check that this operation produces an action of T on Y by morphisms.
Moreover, Y is the identity element of Y , and tY = Y for all t ∈ T .
We now define a right action of T on Y by

I t = {at : a ∈ I}.

If I is an ideal and b ≤ at where a ∈ I, then as (T,Y) is a W -pair, we have b = ct

for some c ∈ Y . From ct ≤ at we have c ≤ a, so that c ∈ I and b ∈ I t. Thus I t is
indeed in Y .
It is clear that T acts on the right on Y and the action is order preserving.

To see that the action is by morphisms, suppose that I, J ∈ Y , and t ∈ T . As
the action is order preserving, certainly (I ∩ J)t ⊆ I t ∩ J t. On the other hand,
if x ∈ I t ∩ J t, then x = at = bt for some a ∈ I and b ∈ J . As the right action
of T on Y is injective, we deduce that a = b ∈ I ∩ J so that x ∈ (I ∩ J)t and
(I ∩ J)t = I t ∩ J t. We now show that T acts doubly on Y . Let t ∈ T and I ∈ Y .
If a ∈ (tI)t, then a = bt for some b ∈ tI. By definition of tI we have bt = a ∈ I,
so that a ∈ I ∩ Y t. Conversely, if c ∈ I ∩ Y t, then c = dt for some d ∈ Y , so that
d ∈ tI and c ∈ (tI)t. Hence (tI)t = I ∩ Y t.
We have shown that the first compatibility condition holds. For the second, we

wish to show that t(I t) = I ∩ tY for any I ∈ Y and t ∈ T . But as tY = Y , this is
equivalent to showing that t(I t) = I. Let a ∈ t(I t). Then at ∈ I t, so that at = bt

for some b ∈ I, giving that a = b ∈ I. The converse is clear, so that t(I t) = I.
Given that T acts doubly on Y and tY = Y for all t ∈ T , Proposition 2.1 and

the succeeding remark tell us that Y ⋊ T is proper restriction.
Define φ : W (T,Y) → Y ⋊ T by

(t, at)φ = (〈a〉, t).

Since (t, at)+ = (1, a), it is clear this is a well-defined mapping that is injective.
We show that φ is a morphism. Let (t, at), (s, bs) ∈ W (T,Y). Consider at ∧ b.

Certainly at∧ b ≤ at so that as (T,Y) is a W -pair, at∧ b = ct for some c ∈ Y and
again by definition of W -pair, c is uniquely defined. Let x ∈ Y and we calculate:

x ∈ 〈c〉 ⇔ x ≤ c
⇔ xt ≤ ct

⇔ xt ≤ at ∧ b
⇔ xt ≤ at and xt ≤ b
⇔ x ≤ a and xt ∈ 〈b〉
⇔ x ∈ 〈a〉 and x ∈ t〈b〉
⇔ x ∈ 〈a〉 ∩ t〈b〉.
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It follows that
(

(t, at)(s, bs)
)

φ = (ts, ats ∧ bs)φ = (ts, (at ∧ b)s)φ = (ts, cts)φ =

(〈c〉, ts) = (〈a〉 ∩ t〈b〉, ts) = (〈a〉, t)(〈b〉, s) = (t, at)φ(s, bs)φ.

It is easy to check that

((t, at)φ)+ = (〈a〉, t)+ = (〈a〉, 1) = (1, a1)φ = (t, at)+φ.

Finally we show that φ preserves ∗. For any a ∈ Y and t ∈ T we have

b ∈ 〈at〉 ⇔ b ≤ at

⇔ b = ct for some c ∈ Y with c ≤ a
⇔ b ∈ 〈a〉t.

Let (t, at) ∈ W . Then

(t, at)∗φ = (1, at)φ = (〈at〉, 1) = (〈a〉t, 1) = (〈a〉, t)∗ = ((t, at)φ)∗.

This completes the proof that φ is an embedding. �

We further add to the subtle connection between W -products and semidirect
products by the final result of this section.

Proposition 2.3. Let T be a monoid acting doubly on a semilattice Y with
identity ǫ, such that tǫ = ǫ for all t ∈ T . Then (T,Y) is a W -pair and the
semidirect product Y ⋊ T is isomorphic to W (T,Y).

Proof. The compatibility conditions tell us that for all t ∈ T, e ∈ Y ,

(te)t = e ∧ ǫt and t(et) = e ∧ tǫ = e,

using the assumption tǫ = ǫ.
If a, b ∈ Y and t ∈ T , then if at = bt we have a = t(at) = t(bt) = b. Moreover,

if c ≤ at, then as certainly c ≤ ǫt, we have that (tc)t = c ∧ ǫt = c. Hence (T,Y)
is a W -pair.
Define θ : Y ⋊ T → W (T,Y) by

(a, t)θ = (t, at).

Let (a, t), (b, s) ∈ Y ⋊ T . If (a, t)θ = (b, s)θ, then (t, at) = (s, bs), so that by the
properties of W -pair we have (a, t) = (b, s). It is clear that θ is onto and hence
a bijection.
We calculate:

(

(a, t)(b, s)
)

θ = (a ∧ tb, ts)θ
= (ts, (a ∧ tb)ts)
= (ts, (at ∧ (tb)t)s)
= (ts, (at ∧ ǫt ∧ b)s)
= (ts, (at ∧ b)s)
= (ts, ats ∧ bs)
= (t, at)(s, bs)
= (a, t)θ(b, s)θ.
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Further,

(a, t)+θ = (a, 1)θ = (1, a) = (t, at)+ = ((a, t)θ)+

and

(a, t)∗θ = (at, 1)θ = (1, at) = (t, at)∗ = ((a, t)θ)∗.

Hence θ is an isomorphism. �

3. Embedding proper left restriction semigroups into W -products

Let S be a left restriction semigroup. By considering the intersection of all
the proper left ample congruences on S, that is, congruences τ such that S/τ is
proper left ample, it is clear that a least such congruence exists. We denote this
by ρS. In general we cannot find a closed formula for ρS, although a description
can be constructed along the lines of that of ωS provided in Section 4. However,
if S is embeddable into a W -product then we will see that ρS can be explicitly
defined in terms of ωS. Indeed, setting

τS = {(a, b) ∈ S × S : a+ = b+ and aωS b}

we will see that ρS = τS in this case. It is clear that τS is an equivalence. By
Result 1.1, τS is projection separating.
For later purposes we now define two conditions on a left restriction semigroup

S:
(C): for any a, b ∈ S, if a+ = b+ and aωS b, then (ae)+ = (be)+ for all e ∈ E;
(D): for any r, s, t, x ∈ S, if x+ = r+, rs+ = r, xt+ = x and rs ωS x, then

r(st)+ = r.

Lemma 3.1. Let S be a left restriction semigroup. Then

(i) τS ⊆ ρS;
(ii) τS is a congruence on S if and only if Condition (C) holds.

Proof. (i) Clearly ρS ⊆ ωS so that using Lemma 1.3 we have that ωS/ρS = ωS/ρS,
and as S/ρS is left ample, ωS/ρS = σS/ρS . Let a, b ∈ S with a τS b. Then a+ = b+

and aωS b whence (aρS)
+ = (bρS)

+ and (aρS)ωS/ρS (bρS). As ωS/ρS = σS/ρS and
S/ρS is proper, it follows that aρS = bρS, that is, a ρS b. Hence τS ⊆ ρS.
(ii) Suppose that τS is a congruence. Let a, b ∈ S be such that a+ = b+

and aωS b, and let e ∈ E. Then a τS b so that as τS is a congruence we have
(ae)+ τS (be)

+. Since τS is projection separating we must have (ae)+ = (be)+ so
that (C) holds.
Conversely, suppose that (C) holds and a τS b. By definition, a+ = b+ and

aωS b. Let c ∈ S. Clearly ca ωS cb and ac ωS bc. Moreover by Result 1.1, we have

(ca)+ = (ca+)+ = (cb+)+ = (cb)+,

giving ca τS cb. By (C) we have that

(ac)+ = (ac+)+ = (bc+)+ = (bc)+,
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and so ac τS bc also. Finally it is clear that a τS b implies that a+ τS b
+, since

(a+)+ = a+ = b+ = (b+)+ and a+ ωS b
+. �

We need the following technical lemma for the proof of (v) implies (i) in The-
orem 3.3.

Lemma 3.2. Let S be a left restriction semigroup satisfying (D). Then z ωS z
+

implies that (zf)+ = z+f , for any z ∈ S and f ∈ E.

Proof. Suppose that z ωS z
+. Put

r = (zf)+, x = zf, s = z+ and t = f.

Then by Result 1.1, r+ = x+ and rs+ = (zf)+z+ = (zf)+ = r. Also, xt+ =
zff = zf = x and rs = (zf)+z+ ωS (zf)

+z = zf = x. Hence by (D) we have
that

(zf)+(z+f) = (zf)+(z+f)+ = r(st)+ = r = (zf)+

so that (zf)+ ≤ z+f .
A similar calculation, with r = z+f = x, s = z and t = f gives that z+f ≤

(zf)+ and so we have equality as claimed. �

Theorem 3.3. The following are equivalent for a left restriction semigroup S:

(i) S is embeddable into a W -product;
(ii) S is proper, and the relation τS is a congruence on S;
(iii) S is proper, and ρS, the least proper left ample congruence on S, is pro-

jection separating;
(iv) S is proper and satisfies Condition (C);
(v) S is proper and satisfies Condition (D).

If any (each) of these conditions is satisfied, then τS = ρS.

Proof. (i)⇒ (ii) We assume that S is a unary subsemigroup of some W (T,Y) so
that by Lemma 1.6, S is proper. Denote by π1 the first projection of W (T,Y)
onto T . By replacing T with Sπ1 if necessary, we can assume that T = Sπ1. Then
π1|S : S → T is a surjective morphism and again by Lemma 1.6, ker π1|S = σS.
Hence S/σS

∼= T .
By Lemma 1.3 we see that, for any (t, at), (u, bu) ∈ S, (t, at)ωS (u, b

u) if and
only if t ωT u. Thus

τS = {(t, at), (u, bu) ∈ S × S : (t, at)+ = (u, bu)+ and (t, at)ωS (u, b
u)}

= {(t, at), (u, bu) ∈ S × S : (1, a) = (1, b) and t ωT u}
= {(t, at), (u, bu) : a = b and t ωT u} ∩ (S × S).

Corollary 1.13 implies that τS is a (projection separating) congruence on S.
(ii) ⇒ (iii) Suppose that τS is a congruence on S. We have observed that τS is

projection separating. Now we check that S/τS is proper left ample.
To show that S/τS is left ample, by (1) it is enough to show that if aτS, xτS, yτS ∈

S/τS with (xτS)(aτS) = (yτS)(aτS), then (xτS)(aτS)
+ = (yτS)(aτS)

+. With a, x, y
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as given, we have that xa τS ya and so (xa)+ = (ya)+ and xaωS ya. Using Re-
sult 1.1 and the fact that S/ωS is right cancellative, we deduce that (xa+)+ =
(ya+)+ and xa+ ωS ya

+, that is, xa+ τS ya
+. It follows that (xτS)(aτS)

+ =
(yτS)(aτS)

+.
Since τS ⊆ ωS, Lemma 1.3 gives that ωS/τS = ωS/τS. However, S/τS is left

ample, therefore ωS/τS = σS/τS .
In order to check that S/τS is proper, let a, b ∈ S such that (aτS)

+ = (bτS)
+ and

aτS σS/τS bτS. As τS is projection separating, the equality implies that a+ = b+.
The latter relation implies aωS b by the observation in the previous paragraph.
Hence a τS b follows from the definition of τS and so aτS = bτS. This completes
the proof that S/τS is proper.
From Lemma 3.1 we have that τS ⊆ ρS and we have just shown that ρS ⊆ τS.

Hence ρS = τS and ρS is projection separating.
(iii) ⇒ (iv) Suppose that a, b ∈ S, with a+ = b+ and aωS b, and e ∈ E.

As τS ⊆ ρS we have that a ρS b so that (ae)+ ρS (be)
+ and as ρS is projection

separating, (ae)+ = (be)+.
(iv) ⇒ (v) Suppose that S is proper and (C) holds. Let r, s, t, x ∈ S with

x+ = r+, rs+ = r, xt+ = x and rs ωS x. Then (rs)+ = (rs+)+ = r+ = x+. By (C)

(r(st)+)+ = (rst)+ = (rst+)+ = (xt+)+ = x+ = r+,

and as r(st)+ σS r and S is proper, r(st)+ = r as required.
(v) ⇒ (i) Suppose that S is proper and satisfies (D). Let X = E × S/ωS. We

define a relation � on X by

(e, uωS) � (f, vωS) ⇔ ∃r ∈ S with uωS = (rωS)(vωS), e = r+ and rf = r.

Lemma 3.4. The relation � is a pre-order on X.

Proof. For (e, uωS) ∈ X,

uωS = (eωS)(uωS), e = e+ and ee = e,

so that (u, ωS) � (u, ωS) and � is reflexive.
Suppose that (e, uωS) � (f, vωS) � (g, wωS), so that we have r, s ∈ S with

uωS = (rωS)(vωS), e = r+, rf = r, vωS = (sωS)(wωS), f = s+ and sg = s.

Clearly

uωS = ((rs)ωS)(wωS), e = r+ = (rf)+ = (rs+)+ = (rs)+ and rsg = rs,

so that (e, uωS) � (g, wωS).
�

Lemma 3.5. For any (e, uωS), (f, uωS) ∈ X, we have

(e, uωS) � (f, uωS) ⇔ e ≤ f.
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Proof. If (e, uωS) � (f, uωS), then there exists r ∈ S with

uωS = (rωS)(uωS), e = r+ and rf = r.

Since S/ωS is right cancellative, the first equality implies r ωS r
+. By Lemma 3.2,

we have that

e = r+ = (rf)+ = r+f ≤ f.

Conversely, if e ≤ f then with r = e it is easy to see that (e, uωS) � (f, uωS). �

We now define an action of S/ωS on the right of X by

(e, uωS)
tωS = (e, (uωS)(tωS)).

Lemma 3.6. The action of S/ωS on X preserves �. Further,

(e, uωS) � (f, vωS) ⇔ (e, uωS)
tωS � (f, vωS)

tωS ,

for any (e, uωS), (f, vωS) ∈ X and t ∈ S.

Proof. Let (e, uωS), (f, vωS) ∈ X and t ∈ S. Using the fact that S/ωS is right
cancellative we calculate:

(e, uωS) � (f, vωS) ⇔ ∃r ∈ S with uωS = (rωS)(vωS), e = r+, rf = f
⇔ ∃r ∈ S with (uωS)(tωS) = (rωS)(vωS)(tωS),

e = r+, rf = f
⇔ (e, (uωS)(tωS)) � (f, (vωS)(tωS))
⇔ (e, uωS)

tωS � (f, vωS)
tωS .

�

Let ≡ be the equivalence relation on X associated with �; by the previous
lemma note that for any α, β ∈ X and t ∈ S we have that α ≡ β if and only if
αtωS ≡ βtωS . Let X = X/ ≡, so that X is partially ordered by ≤ where, denoting
the equivalence class of α ∈ X by [α], we have [α] ≤ [β] if and only if α � β.
Clearly S/ωS acts on X via [α]tωS = [αtωS ], and this action preserves the order
in X .
Let Y denote the set of order ideals of X (including ∅). Clearly, Y is a semi-

lattice under intersection. Define an action of S/ωS on Y , for which we use a
slightly different notation to usual to prevent confusion, by

I · tωS = 〈I tωS〉,

that is, I · tωS is the order ideal generated by I tωS = {[α]tωS : [α] ∈ I}.
An entirely routine argument, not specific to our given partially ordered set

X nor our given action, shows that · is an action of S/ωS on Y and is order
preserving.

Lemma 3.7. The monoid S/ωS acts by morphisms on the semilattice Y.
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Proof. Let I, J ∈ Y and sωS ∈ S/ωS. Since the action is order preserving, clearly

(I ∩ J) · sωS ⊆ (I · sωS) ∩ (J · sωS).

Conversely, let [β] ∈ (I · sωS)∩ (J · sωS). Then there exists [γ] ∈ I and [δ] ∈ J
such that [β] ≤ [γ]sωS and [β] ≤ [δ]sωS , so that β � γsωS and β � δsωS .
Let β = (e, uωS), γ = (f, vωS) and δ = (g, wωS). By definition of �, there

exist r, z ∈ S with

uωS = (rωS)(vωS)(sωS), e = r+, rf = r,
uωS = (zωS)(wωS)(sωS), e = z+, zg = z.

Since S/ωS is right cancellative we have that (rωS)(vωS) = (zωS)(wωS). Now
let µ = (e, (rωS)(vωS)). Then β = µsωS and it is easy to check that µ � γ and
µ � δ, so that [µ] ≤ [γ] and [µ] ≤ [δ] and consequently, [µ] ∈ I ∩ J . Hence
[β] ∈ (I ∩J)sωS ⊆ (I ∩J) · sωS. It follows that (I ∩J) · sωS ⊇ (I · sωS)∩ (J · sωS)
and so we deduce that (I ∩ J) · sωS = (I · sωS)∩ (J · sωS) and we have an action
as claimed. �

Lemma 3.8. The action of S/ωS on Y produces a W -pair (Y , S/ωS).

Proof. Let I, J ∈ Y and suppose that I · tωS ⊆ J · tωS. Let [β] ∈ I. Then
[β]tωS ∈ I tωS ⊆ I · tωS ⊆ J · tωS and so [β]tωS ≤ [α]tωS for some [α] ∈ J .
Consequently, βtωS � αtωS so that by Lemma 3.6 we have β � α, giving that
[β] ≤ [α] and hence [β] ∈ J . We have shown that I ⊆ J .
Suppose now that I ⊆ J · tωS. Let

K = {[α] : [α] ∈ J and [α]tωS ∈ I}.

It is easy to check that K ∈ Y . Moreover, KtωS ⊆ I so that as I is an order
ideal, K · tωS ⊆ I. We show the reverse inclusion.
Let [β] ∈ I. Then [β] ≤ [γ]tωS for some [γ] ∈ J so that β � γtωS . Let

β = (e, uωS) and γ = (f, vωS) so that (e, uωS) � (f, (vωS)(tωS)). Therefore
there exists r ∈ S with

uωS = (rωS)(vωS)(tωS), e = r+ and rf = r.

Let δ = (e, (rωS)(vωS)). Then δtωS = (e, (rωS)(vωS)(tωS)) = (e, uωS) = β. By
Lemma 3.6, δ � γ so that [δ] ∈ J and [δ]tωS = [δtωS ] = [β]. It follows that [δ] ∈ K
and [β] ∈ KtωS ⊆ K · tωS. Hence I = K · tωS as required. �

We now remark that S/σS acts on Y via (I, sσS) 7→ IsσS = I · sωS. It is clear
that (S/σS,Y) is a W -pair.
Define θ : S → W = W (S/σS,Y) by

sθ = (sσS, I(s
+)sσS) = (sσS, I(s

+) · sωS)

where for any projection e, I(e) =
〈

[(e, 1S/ωS
)]
〉

. It is immediate that

s+θ = (s+σS, I(s
+)s

+σS) = (1S/σS
, I(s+)) = (sθ)+.
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If s, t ∈ S and sθ = tθ, then

(sσS, I(s
+)sσS) = (tσS, I(t

+)tσS),

so that sσS = tσS and I(s+) = I(t+), since (S/σS,Y) is a W -pair. But then

[(s+, 1S/ωS
)] ≤ [(t+, 1S/ωS

)] ≤ [(s+, 1S/ωS
)],

so that Lemma 3.5 gives s+ = t+ and consequently, s = t as S is proper. Hence
θ is one-one.
To see that θ preserves the binary operation, let s, t ∈ S, so that

sθtθ = (sσS, I(s
+) · sωS)(tσS, I(t

+) · tωS)
=

(

(st)σS, (I(s
+) · sωS)

tσS ∩ (I(t+) · tωS)
)

=
(

(st)σS, (I(s
+) · (st)ωS) ∩ (I(t+) · tωS)

)

and

(st)θ = ((st)σS, I((st)
+) · (st)ωS).

We must show that

(I(s+) · (st)ωS) ∩ (I(t+) · tωS) = I((st)+) · (st)ωS.

Let [β] ∈ I((st)+) · (st)ωS. Then [β] ≤ [γ](st)ωS , for some [γ] ∈ I((st)+), so that
[γ] ≤

[

((st)+, 1S/ωS
)
]

. Now (st)+ ≤ s+, so that by Lemma 3.5,

((st)+, 1S/ωS
) � (s+, 1S/ωS

).

It follows that

[β] ≤ [γ](st)ωS ≤
[

((st)+, 1S/ωS
)
](st)ωS ≤ [(s+, 1S/ωS

)](st)ωS

and so [β] ∈ I(s+) · (st)ωS. Further, from the above inequality we have

[β] ≤ [((st)+, 1S/ωS
)](st)ωS = [((st)+, sωS)]

tωS .

Now

sωS = (st+)ωS 1S/ωS
, (st)+ = (st+)+, st+t+ = st+,

so that

((st)+, sωS) � (t+, 1S/ωS
),

giving

[β] ≤ [(t+, 1S/ωS
)]tωS

and so [β] ∈ I(t+) · tωS.
Conversely, suppose that [β] ∈ (I(s+) · (st)ωS) ∩ (I(t+) · tωS). This gives

that [β] ≤ [α](st)ωS for some [α] ∈ I(s+), so that [α] ≤ [(s+, 1S/ωS
)]. Hence

[β] ≤ [(s+, (st)ωS)] and similarly, [β] ≤ [(t+, tωS)].
Let β = (e, uωS). Then there exist r, x ∈ S such that

uωS = (rωS)((st)ωS), e = r+, rs+ = r,
uωS = (xωS)(tωS), e = x+, xt+ = x.
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By right cancellation in S/ωS we obtain that rs ωS x and so by Condition (D) we
have that r(st)+ = r. This gives us that β � ((st)+, (st)ωS) and so

[β] ≤ [((st)+, (st)ωS)] = [((st)+, 1S/ωS
)](st)ωS .

Consequently, [β] ∈ I((st)+) · (st)ωS.
We have completed the proof that θ is an embedding, so that (v) ⇒ (i) holds.

�

The connection between Conditions (C) and (D) for a left restriction semigroup
appears at first sight a little mysterious. In Theorem 3.3 we have shown that,
given S is proper, (C) holds if and only if (D) holds. We proved the forward
implication directly and think it is worthwhile here giving a short direct argument
for the reverse implication.

Lemma 3.9. Let S be a left restriction semigroup satisfying (D). Then S satisfies
(C).

Proof. Suppose that a, b ∈ S with a+ = b+ and aωS b. Take e ∈ E and let

r = (ae)+, x = ae, s = b and t = e.

Then r+ = x+,

rs+ = (ae)+b+ = (ae)+a+ = (ae)+ = r,

xt+ = aee = ae = x and

rs = (ae)+b ωS b ωS aωS x.

By (D) we deduce that r(st)+ = r and so (ae)+(be)+ = (ae)+. Reversing the
roles of a and b now gives that (ae)+ = (be)+. �

If S is proper left ample, then ρS is the identity relation and so certainly is
projection separating. From (i) ⇔ (iii) in Theorem 3.3 we deduce the following.

Corollary 3.10. [4] Each proper left ample semigroup is embeddable into a W -
product.

In fact, our proof of (v) ⇒ (i) in Theorem 3.3 uses a technique effectively
established in [4]. In that paper the technique is couched in categorical language,
which we have avoided above. The approach in [4] was inspired by an argument
in [3] which is itself based on Munn’s proof of McAlister’s P -theorem in [13].
Without the categorical machinery, the use of Munn’s ideas becomes more visible.
From Result 1.9 we know that any proper left restriction semigroup embeds into

a semidirect product Y ⋊ T , which is itself proper left restriction by Result 1.8.

Corollary 3.11. Let Y⋊T be the semidirect product of a semilattice by a monoid.
Then Y ⋊ T embeds into a W -product if and only if for all e ∈ Y and s, t ∈ T ,
s ωT t implies that se = te.
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Proof. From Theorem 3.3, Y ⋊ T embeds into a W -product if and only if Y ⋊ T
satisfies (C). Condition (C) holds if and only if for all (e, s), (f, t) ∈ Y ⋊ T , if
(e, s)+ = (f, t)+ and (e, s)ωY⋊T (f, t), then for any (g, 1) ∈ Y⋊T , ((e, s)(g, 1))+ =
((f, t)(g, 1))+. That is, for any e, g ∈ Y and s, t ∈ T if s ωT t then e∧ sg = e∧ tg.
Taking e = sg and e = tg the latter is equivalent to the condition in the statement
of the corollary. �

Example 3.12. Let T = Y be the two element semilattice {0, 1}. Certainly T
acts on Y (on the left) by multiplication. Clearly 0ωT 1 but 11 6= 01. Hence the
semidirect product Y ⋊ T does not embed into a W -product.

4. The least right cancellative congruence on a semigroup

We recall from Result 1.2 that the relation σS on a left restriction semigroup
S has a pleasant closed form. Given the importance of the role played by ωS

in Theorem 3.3, one might ask for a good description of ωS. Unfortunately ωS

proves to be not as amenable as σS. However, for completeness, we give a defin-
ing set of relations for the least right cancellative congruence on any semigroup.
Notice that for a left restriction semigroup, the least right cancellative semigroup
congruence and the least right cancellative unary semigroup congruence coincide.
The interested reader could perform a similar (although more complicated) pro-
cedure, this time certainly in the context of unary semigroups, to obtain ρS where
S is left restriction.
Let S be a semigroup. We define a sequence ω1, ω2, . . . of congruences on S

such that

ω1 ⊆ ω2 ⊆ . . .

and
⋃

i∈N ωi = ωS.
Let

H1 = {(a, b) ∈ S × S : ∃t ∈ S with at = bt},

and put

ω1 = H♯
1,

the congruence generated by H1. Assume now that we have defined subsets

H1 ⊆ H2 ⊆ . . . ⊆ Hn

of S × S so that with ωi = H♯
i ,

ω1 ⊆ ω2 ⊆ . . . ⊆ ωn.

Define

Hn+1 = {(a, b) ∈ S × S : ∃t ∈ S with at ωn bt}.

Notice that as ωn = H♯
n we have that Hn ⊆ Hn+1 and so with ωn+1 = H♯

n+1 we
have ωn ⊆ ωn+1. Further, if S/ωi is right cancellative for some i, then ωi = ωj

for all j ≥ i.
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Let ω′ =
⋃

i∈N ωi and let H =
⋃

i∈N Hi. If (a, b) ∈ H♯ then as only finitely
many members of H are needed to relate a to b, we must have that (a, b) ∈ ωi

for some i ∈ N. It follows that ω′ = H♯.

Proposition 4.1. Let S be a semigroup. Then ωS (the least right cancellative
congruence on S) is the congruence ω′ defined above.

Proof. Suppose that at ω′ bt for some a, b, t ∈ S. Then at ωi bt for some i ∈ N and
so (a, b) ∈ Hi+1 ⊆ H. It follows that aω′ = bω′, so that S/ω′ is right cancellative.
Let T be a right cancellative monoid and suppose that φ : S → T is a morphism.

We show by induction that ωi ⊆ kerφ. If at = bt for some a, b, t ∈ S, then
(aφ)(tφ) = (bφ)(tφ), so that as T is right cancellative, aφ = bφ. Hence H1 ⊆ kerφ
and so ω1 ⊆ kerφ.
Suppose for induction that ωi ⊆ kerφ and (a, b) ∈ Hi+1. Then (aωi)(tωi) =

(bωi)(tωi) for some t ∈ S, that is, at ωi bt. Since by assumption we have ωi ⊆ kerφ,
we can deduce that (at)φ = (bt)φ so that as φ is a morphism and T is right
cancellative, aφ = bφ. Hence Hi+1 ⊆ kerφ and so ωi+1 ⊆ kerφ. Applying
induction we deduce that ω′ ⊆ kerφ.
It follows that ω′ is the least right cancellative congruence on S, that is,

ω′ = ωS. �

We note that if S is left ample, then ω1 = σS = ωS. For if e, f ∈ E, then
e(ef) = f(ef), so that (e, f) ∈ H1 and so σS ⊆ ω1. On the other hand, if
a, b, t ∈ S and at = bt, then as S is left ample, at+ = bt+ so that

(at)+a = at+ = bt+ = (bt)+b,

whence a σS b. Thus H1 ⊆ σS and so ω1 ⊆ σS. We have already commented that
for a left ample semigroup, ωS = σS.
If S is a commutative semigroup, then the description of ωS, which is in this

case the least cancellative congruence on S, simplifies considerably. In this case,
ωS = ω1 by [9, Proposition II.2.3].
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