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Our problem

Given an algebra A, we are interested in the problem of deciding whether a
given system of term equalities and inequalities has a solution in A.

Example

Let L be a left zero semigroup. Does the following system have a solution
over (L; ·)?

x1 · x2 = x3 · x4,
x3 · x4 · x5 = x2,

x2 · x5 6= x1 · x3.

Equivalent: does x1 = x3, x3 = x2, x2 6= x1 have a solution in (|L|; 6=)?

Given an algebra A, can we create a “fast” algorithm which solves
any given system over A?
Spoilers: The problem for a left zero semigroup is solvable in
polynomial time when |L| = 1, 2 or infinite.



Part 1: CSPs



A rough definition

A constraint satisfaction problem consists of:
1 a finite list of variables V ,
2 a domain of possible values A,
3 a set of constraints on those variables C.

Problem: Can we assign values to all the variables so that all the
constraints are satisfied?

Example (Graph 3-colouring)

Let G be a finite graph. Each vertex can be coloured either red, green or
blue. Problem: can we colour G such that no two adjacent variables have
the same colour?
V = vertices of G .
A = {Red, Green, Blue}.
C = “no two adjacent vertices have the same colour”.



Constraint language

Much attention has been paid to the case where the constraints arise from
finitely many relations and functions on a fixed domain.

Definition

Given a (first-order) structure (A; Γ) where Γ is finite, we define
CSP(A; Γ), or simply CSP(Γ), to be the CSP with:

Instance: I = (V ,A, C) in which each constraint is simply a relation
from Γ.

Question: Does I have a solution?

Example

Graph 3-colouring can be considered as CSP(A; 6=) where A = {R,B,G}
i.e. CSP(K3), where K3 is the complete graph on 3 vertices.



Graph 3-colouring



3-Graph colouring



Computational Complexity

Key question: How does the structure A affect the computational
complexity of CSP(A)?

Definition
1 P: the class of all problems solved in polynomial time. Its members

are called tractable.
2 NP: the class of problems solvable in nondeterministic polynomial

time.
3 NP-hard: the class of problems which at least as hard as the hardest

problems in NP.
4 NP-complete: the class of problems which are NP and NP-hard (the

“hardest problems in NP”).

Theorem (Ladner, 1975)

If P 6= NP then there are problems in NP \ P that are not NP-complete.



Dichotomy Theorem for finite structures

Example

Graph n-colouring is NP-complete if n > 2, and tractable otherwise.
Equivalently, CSP(n;6=) = CSP(Kn) is NP-complete when n > 2, and
tractable otherwise.

Example (Hell and Nes̆et̆ri, 90’)

Let G be a finite undirected graph. Then CSP(G ) is either tractable (if
bipartite) or NP-complete.

Theorem (Dichotomy Theorem (Bulatov, Zhuk 17’))

Let A be a finite structure. Then CSP(A) is either tractable or is
NP-complete.



Part 2: CSPs arising from algebras



System of equations satisfactibility

Definition (The system of equations satisfactibility problem)

Given a finite algebra A = (A;F ), the problem EQN∗A is:
Instance: a system of equations E over A (constants and variables).
Question: does E have a solution?

Example

Consider the abelian group Z5 = {0, 1, 2, 3, 4}. An instance of EQN∗Z5

could be

x + y = 1,

z + u + 2 = x + v ,

u = v + 1.

Solve by Gaussian Elimination e.g. x = v = 0, y = u = 1, z = 2.



System of equations satisfactibility

The problem EQN∗A is equivalent to CSP(A, c1, . . . , cn) where
A = {c1, . . . , cn}.

Theorem (Goldmann, Russell 2002)

Let G be a finite group. If G is abelian then EQN∗G is tractable, and is
NP-complete otherwise.

Theorem (Kĺıma, Tesson, Thérien 2007)

Every CSP over a finite domain is polynomial-time equivalent to EQN∗S for
some finite semigroup S.



To infinity...

We are interested in building non-trivial CSPs from an infinite algebra
A = (A;F ). Possibilities include:

1. EQN∗A
Pro: Natural problem.

Cons: CSP(A, a : a ∈ A) has an infinite language.

2. Get rid of constants i.e. CSP(A).

Pros: Natural problem, finite language.

Con: Often a trivial problem e.g. if A is a group, then every equation can
be solved by substituting in the identity element.

3. Replace constants by disequality i.e. CSP(A, 6=)

Pros: natural problem, finite language, non-trivial, core,...

Con: rather boring for finite algebras - NP-complete if 2 < |A| < ω.



Our problem

We study CSP(A, 6=) for algebras A. Motivation include:

A natural problem: CSP(A, 6=) is polynomial time equivalent to the
problem of deciding whether a given set of term equalities and
inequalities has a solution in A.

A non-trivial problem: As we will see, even in our very restrictive
setting we obtain both tractability and hardness.

Constraint entailment: Testing if a list of equations E implies an
equation u = v is equivalent of testing if E ∪ {u 6= v} is satisfiable.

The Identity Checking Problem ICP(A): CSP(A, 6=) ∈ P ⇒
ICP(A)∈ P.

Sporadically studied problem: CSP(A, 6=) for a number of
well-known algebras have served as key examples:

the lattice reduct of the atomless Boolean algebra (A;∪,∩) (NP-hard;
Bodirsky, Hils, Krimkevitch, 2011)
the infinite-dimensional vector space over the finite field Fq (tractable;
Bodirsky, Chen, Kára, von Oertzen, 2007).



ω-categoricity

Much progress has been made in understanding the CSPs of infinite
structures: often in the (highly symmetric) ω-categorical setting.
e.g. If M and N are ω-categorical then CSP(M)=CSP(N) if and only if
M → N and N → M.

Definition

A structure M is ω-categorical if Th(M) has one countable model, up to
isomorphism. Equivalently, if Aut(M) has only finitely many orbits on its
action on Mn for each n ≥ 1.

Example

A right zero semigroup S has Aut(S) = S|S | and is ω-categorical:

∀x , y , z [(xy)z = x(yz)]

∀x , y [xy = y ]

‘correct cardinality’



ω-categoricity

Example

An abelian group is ω-categorical if and only if it has finite exponent i.e.
∃n ∈ N with gn = 1 for all g ∈ G .

Example

CSP(Q;<) and CSP(N; 6=) are tractable (!).

Well studied ω-categorical algebras also include:

Groups (Rosenstein, Felgner, Apps,...),

Rings (Baldwin, Rose,...),

Semigroups (my PhD,...),

Boolean algebras (classified - finitely many atoms),

Fields (must be finite).



Part 3: The power of polymorphisms



Polymorphisms

The hardness of a problem often comes from a lack of symmetry.

Our usual objects that capture symmetry (automorphism group or
endomorphism monoid) are not sufficient.

We require a more general symmetry - polymorphisms!

Definition

A polymorphism of a structure M is an n-ary homomorphism
f : Mn → M. The set of all polymorphisms of M is denoted Pol(M).

For any structure M, the set Pol(M) forms a clone i.e. is closed under
composition and contains the projections.



Polymorphisms of (A; 6=)

Lemma

Let A = (A;F ) be an algebra. Then f : An → A is a polymorphism of
(A, 6=) if and only if f is an algebra homomorphism and

x1 6= y1, . . . , xn 6= yn ⇒ f (x1, . . . , xn) 6= f (y1, . . . , yn)

or, equivalently, if

f (x1, . . . , xn) = f (y1, . . . , yn)⇒ xi = yi for some 1 ≤ i ≤ n.

In particular, every endomorphism of (A, 6=) is an embedding.
i.e. A is a core.

Hence if A and B are ω-categorical then CSP(A, 6=)=CSP(B, 6=) if and
only if A and B are bi-embeddable i.e. A ↪→ B and B ↪→ A.

We can thus work up to bi-embeddablity!



Siggers vs pseudo-Siggers

Definition

A 6-ary operation f ∈ Pol(A) is called a Siggers polymorphism if

f (x , y , x , z , y , z) ≈ f (y , x , z , x , z , y).

For finite CSPs, the existence of a Siggers polymorphism is necessary and
sufficient for tractability (Bulatov, Zhuk 2017).
For infinite structures this is no longer true...We need greater generality!

Definition

A 6-ary operation f ∈ Pol(A) is called a pseudo-Siggers polymorphism if

αf (x , y , x , z , y , z) ≈ βf (y , x , z , x , z , y)

for some unary operations α, β ∈ Pol(A).



Model-complete

We call a structure M model-complete if every first-order sentence is
equivalent to an existential sentence over M.

Theorem (Bodirsky, 07’)

Every ω-categorical structure is homomorphically equivalent to a
model-complete core, which is unique and ω-categorical.

Corollary

Let A be an ω-categorical algebra. Then there exists a unique
ω-categorical algebra B which is bi-embeddable with A and with (B, 6=)
model-complete.

Example

The abelian groups Z2 ⊕ Z(ω)
4 and Z(ω)

4 are bi-embeddable, and (Z(ω)
4 , 6=)

is model-complete.



The pseudo-Siggers theorem

Let P denote the clone of projections on a two-element set.

Theorem (Barto, Pinsker 06’)

Let M be an ω-categorical structure which is a model-complete core.
Then at least one of the following holds.

M has a pseudo-Siggers polymorphism.

M Pol(M) is “small” (has a uniformly continuous minor-preserving
map to P); in this case, CSP(M) is NP-hard.

However, the two possibilities in the theorem are not mutually exclusive.

If A is the atomless Boolean algebra then (A; 6=) has a pseudo-Siggers
polymorphism, but Pol(A, 6=) has a u.c. minor-preserving map to P.

Aim

Show that a dichotomy exists for both abelian groups and semilattices;
Either (A; 6=) has a pseudo-Siggers polymorphism, or Pol(A; 6=) has a u.c.
minor-preserving map to P.



Part 4: Groups



Groups

Given an ω-categorical algebra A, if f is a pseudo-Siggers operation
of (A, 6=) then for all x , y , z , u, v ,w ∈ A

f (x , y , x , z , y , z) = f (u, v , u,w , v ,w) (Property 1)

⇔ f (y , x , z , x , z , y) = f (v , u,w , u,w , v).

Let G be a group with identity 1 and f ∈ Pol(G ; 6=). Then

f (x1, . . . , xn) = f (x1, 1, 1, . . . , 1)f (1, x2, 1, . . . , 1) · · · f (1, 1, . . . , 1, xn).

This, together with Property (1) shows that if (G ; 6=) has a
pseudo-Siggers polymorphism then it is ‘close’ to being bi-embeddable
with G × G .



Groups

Proposition (Bodirsky, TQG)

Let G be an ω-categorical group such that (G , 6=) has a pseudo-Siggers
polymorphism. Then at least one of the following holds.

G is bi-embeddable with G × G.

G is bi-embeddable with G × (G/〈x〉) for some x ∈ G of order 2.

Rough proof.

One of the maps x 7→ f (x , 1, x , 1, 1, 1) and x 7→ f (1, x , 1, x , x , x) is
injective as f preserves 6=:

f (1, x , 1, x , x , x) = 1 = f (y , x , y , x , x , x)⇒ f (y , x , y , x , x , x) = 1.

Similarly, their images are disjoint. For y 6= 1, use Property (1):

f (1, y , 1, y , y , y) = 1 = f (1, 1, 1, 1, 1, 1)⇒ f (y , 1, y , 1, y , y) = 1.

Hence f (y , y , y , y , y2, y2) = 1 = f (1, 1, 1, 1, 1, 1), so y2 = 1 etc...



Abelian groups

Theorem

Every abelian group of finite exponent is a direct sum of cyclic groups Zn.

It is then a relatively simple exercise to find those which satisfy the
necessary condition to having a pseudo-Siggers:

Proposition (Bodirsky, TQG)

Let G be an abelian group of finite exponent. Then (G , 6=) has a

pseudo-Siggers polymorphism if and only if G is bi-embeddable with Z(ω)
m

or with Z(ω)
m ⊕ Z2m for some m ≥ 1.



Abelian groups

Theorem (Bodirsky, TQG)

Let G be an ω-categorical abelian group. Then the following are
equivalent:

(i) Pol(G , 6=) has no u.c. minor-preserving map to P,

(ii) (G , 6=) has a pseudo-Siggers polymorphism,

(iii) G is bi-embeddable with Z(ω)
m or with Z(ω)

m ⊕ Z2m for some m ≥ 1.

Moreover, in this case CSP(G , 6=) is in P, and is NP-hard otherwise.

Key: If M is an ω-categorical structure with both a pseudo-Siggers
polymorphism and with Pol(M) having a u.c. minor-preserving map to P,
then M is not ω-stable.



General groups

The non-abelian case remains open.

In particular, we have no example of an ω-categorical non-abelian group G
with CSP(G ; 6=) in P.

Theorem (Sarcino, Wood 1982)

There are 2ω distinct (up to isomorphism) ω-categorical groups which are
pairwise non bi-embeddable.

⇒ ∃ ω-categorical groups G such that CSP(G ; 6=) is undecidable.



Part 5: Semilattices



Semilattices

A semilattice is an algebra (Y ;∧) where ∧ is an associative,
commutative, and idempotent binary operation.

There exists a unique ω-categorical semilattice which embeds all finite
semilattices and is homogeneous. We call this the universal
semilattice, denoted U.

U is bi-embeddable with the meet-reduct of the atomless boolean
algebra (A;∧,∨,¬, 0, 1).

Lemma (Bodirsky, TQG)

CSP(U; 6=) is tractable.

While semilattices do not necessarily possess an identity, property (1) still
proves to be useful for proving hardness of CSP(Y ; 6=).

f (x , y , x , z , y , z) = f (u, v , u,w , v ,w) (Property 1)

⇔ f (y , x , z , x , z , y) = f (v , u,w , u,w , v).



Semilattices

Theorem (Bodirsky, TQG)

Let Y be a non-trivial ω-categorical semilattice. Then CSP(Y ; 6=) is
tractable if Y is bi-embeddable with U, and is NP-hard otherwise.

Proof idea:

Y is bi-embeddable with U if and only if it embeds all finite Boolean
algebras (Pn;∧).

Show that every Pn embeds into Y if CSP(Y ; 6=) is not NP-hard.

Use induction: true for n = 2 (since CSP(Y , 6=) is NP-hard for
Y = (Q; min) - Bodirsky ’09).

Induction step: Use the existence of a pseudo-Siggers polymorphism.



Dichotomy

Theorem (Bodirsky,TQG)

Let Y be a countable ω-categorical semilattice. Then either

(i) there is a u.c. minor-preserving map from Pol(Y ; 6=) to P, in which
case CSP(Y , 6=) is NP-hard, or

(ii) the model-complete core of (Y , 6=) is isomorphic to (U, 6=), in which
case CSP(Y , 6=) is in P.

Proof.

The following (height one) identities, discovered by Jakub Rydval, are
preserved by all minor-preserving maps and are not satisfied by P:
There are f , g1, . . . , g4 ∈ Pol(U, 6=) such that for all x , y ∈ U

g1(y , x , x) = f (x , y , x , x),
g1(x , y , x) = f (x , x , y , x),
g1(x , x , y) = f (x , x , x , y),

g2(y , x , x) = f (y , x , x , x),
g2(x , y , x) = f (x , x , y , x),
g2(x , x , y) = f (x , x , x , y),

etc



Lattices

Similar occurrences holds for lattices:

An ω-categorical lattice L in which (L; 6=) has a pseudo-Siggers
polymorphism is bi-embeddable with L× L.

If L is distributive then CSP(L; 6=) is NP-hard.

However: the universal lattice (which embeds all finite lattices) is not
ω-categorical.

Open: Let L be a non-distributive ω-categorical lattice which is
bi-embeddable with L× L. What is the computational complexity of
CSP(L; 6=)?

Key: Can we classify the ω-categorical (model-complete) lattices L such
that L is bi-embeddable with L× L?
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