

Varieties of Restriction Semigroups

Claire Cornock

York Semigroup

2nd March 2011

Definition

An element $a' \in S$ is an *inverse* of $a \in S$ if $a = aa'a$ and $a' = a'aa'$. If each element of S has exactly one inverse in S , then S is an *inverse semigroup*.

Definition

For $a, b \in S$,

$$a \mathcal{R} b \Leftrightarrow a = bt \text{ and } b = as \text{ for some } s, t \in S$$

and

$$\begin{aligned} a \mathcal{\sigma} b &\Leftrightarrow ea = eb \text{ for some } e \in E(S) \\ &\Leftrightarrow af = bf \text{ for some } f \in E(S). \end{aligned}$$

E-unitary and Proper Inverse Semigroups

Definition

An inverse semigroup is *proper* if and only if $\mathcal{R} \cap \sigma = \iota$, i.e.

$$a \mathcal{R} b \text{ and } a \sigma b \Leftrightarrow a = b.$$

Definition

An inverse semigroup S is *E-unitary* if for all $a \in S$ and all $e \in E(S)$, if $ae \in E(S)$, then $a \in E(S)$.

Proposition

Let S be an inverse semigroup. Then the following are equivalent:

- i) S is E-unitary;
- ii) S is proper;
- iii) $\mathcal{L} \cap \sigma = \iota$.

Proper Covers

Definition

Let S be an inverse semigroup. A *proper cover* of S is a proper inverse semigroup U together with an onto morphism

$$\psi : U \rightarrow S$$

where ψ is idempotent separating.

McAlister's Covering Theorem

Every inverse semigroup has a proper cover.

Restriction Semigroups

Definition

Suppose S is a semigroup and E a set of idempotents of S . Let $a, b \in S$. Then $a \tilde{\mathcal{R}}_E b$ if and only if for all $e \in E$,

$$ea = a \text{ if and only if } eb = b.$$

Definition

A semigroup S is *left restriction* (formerly known as *weakly left E-ample*) if the following hold:

- 1) E is a subsemilattice of S ;
- 2) Every element $a \in S$ is $\tilde{\mathcal{R}}_E$ -related to an idempotent in E (idempotent denoted by a^+);
- 3) $\tilde{\mathcal{R}}_E$ is a left congruence;
- 4) For all $a \in S$ and $e \in E$,

$$ae = (ae)^+ a \text{ (the } \textit{left ample condition}).$$

Proper Restriction Semigroups

Let S be a left restriction semigroup with distinguished semilattice E . Then for $a, b \in S$,

$$a \sigma_S b \Leftrightarrow ea = eb \text{ for some } e \in E.$$

Definition

A left restriction semigroup is *proper* if and only if $\tilde{\mathcal{R}}_E \cap \sigma_S = \iota$.

A right restriction semigroup is *proper* if and only if $\tilde{\mathcal{L}}_E \cap \sigma_S = \iota$.

Definition

A *proper cover* of S is a proper left restriction semigroup U together with an onto morphism $\psi : U \rightarrow S$, which is idempotent-separating on E .

A *variety* is a non-empty class of algebras of a certain type which is closed under subalgebras, homomorphic images and direct products.

A variety \mathcal{V} of restriction semigroups has *proper covers* if, for every $S \in \mathcal{V}$, there is a proper cover of S in \mathcal{V} .

Theorem

Let \mathcal{V} be a variety of restriction semigroups. Then the following are equivalent:

- (i) \mathcal{V} has proper covers;
- (ii) the free objects in \mathcal{V} are proper;
- (iii) \mathcal{V} is generated by its proper members.

Definition

A left restriction semigroup has a *proper cover over \mathcal{U}* , where \mathcal{U} is a variety of monoids, if it has a proper cover R such that $R/\sigma \in \mathcal{U}$. We put

$$\hat{\mathcal{U}} = \{N \in \mathcal{LR} : N \text{ has a proper cover over } \mathcal{U}\}.$$

Theorem

The class of left restriction semigroups having a cover over \mathcal{U} , where \mathcal{U} is a variety of monoids, is a variety of left restriction semigroups and is determined by

$$\Sigma = \{\bar{u}^+ \bar{v} \equiv \bar{v}^+ \bar{u} : \bar{u} \equiv \bar{v} \text{ is a law in } \mathcal{U}\}.$$

Definition (Petrich/Reilly)

Let S and T be inverse semigroups. Then a mapping $\varphi : S \rightarrow 2^T$ is an inverse subhomomorphism of S into T , if for all $s, t \in S$,

- (i) $s\varphi \neq \emptyset$;
- (ii) $(s\varphi)(t\varphi) \subseteq (st)\varphi$;
- (iii) $s'\varphi = (s\varphi)'$,

where for any subset A of T , $A' = \{a' : a \in A\}$.

Subhomomorphisms

Definition

Let S and T be left restriction semigroups. Then a mapping $\varphi : S \rightarrow 2^T$ is a *left subhomomorphism* of S into T , if for all $s, t \in S$,

- (i) $s\varphi \neq \emptyset$;
- (ii) $(s\varphi)(t\varphi) \subseteq (st)\varphi$;
- (iii) $(s\varphi)^+ \subseteq s^+\varphi$,

where for any subset A of T , $A^+ = \{a^+ : a \in A\}$.

A left or right subhomomorphism is said to be *surjective* if $S\varphi = T$, where $S\varphi = \cup\{s\varphi : s \in S\}$.

Proposition

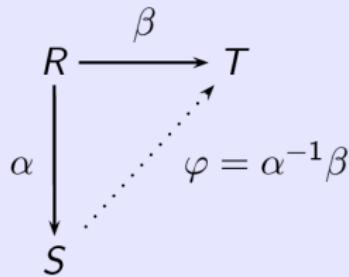
Let φ be a left subhomomorphism of S into T , where S and T are left restriction semigroups. Then $S\varphi$ is a left restriction semigroup with respect to the distinguished semilattice

$$E_{S\varphi} = \cup\{(s\varphi)^+ : s \in S\}.$$

Subhomomorphisms

Theorem

Let R, S and T be left restriction semigroups. Let $\alpha : R \rightarrow S$ be an epimorphism and $\beta : R \rightarrow T$ a morphism. Then $\varphi = \alpha^{-1}\beta$ is a left subhomomorphism of S into T and every such left subhomomorphism is obtained in this way.



Proposition

Let S and T be left restriction semigroups and let φ be a (surjective) left subhomomorphism of S into T . Then

$$\Pi(S, T, \varphi) = \{(s, t) \in S \times T : t \in s\varphi\}$$

is a left restriction semigroup (which is a subdirect product of S and T).

Conversely, suppose that V is a left restriction semigroup which is a subdirect product of S and T . Then φ , defined by

$$s\varphi = \{t \in T : (s, t) \in V\}$$

is a surjective left subhomomorphism of S into T . Furthermore, $V = \Pi(S, T, \varphi)$.

Proposition

Let φ be a left subhomomorphism of S into M , where S is a left restriction semigroup and M a monoid. Then $\Pi(S, M, \varphi)$ is E -unitary if and only if φ satisfies

$$1 \in s\varphi, es \in E_S \Rightarrow s \in E_S, \quad (S3)$$

for $s \in S$ and $e \in E_S$.

Proposition

Let φ be a left subhomomorphism of S into M , where S is a left restriction semigroup and M a monoid. Then $\Pi(S, M, \varphi)$ is proper if and only if φ satisfies

$$a\varphi \cap b\varphi \neq \emptyset, a(\tilde{\mathcal{R}}_{E_S} \cap \sigma_S) b \Rightarrow a = b, \quad (S1)$$

for $a, b \in S$.

Proposition

Let φ be a left subhomomorphism of S into T , where S and T are left restriction semigroups. Then the following are equivalent for $a, b \in S$:

- (i) (S4) $a\varphi \cap b\varphi \neq \emptyset \Rightarrow a^+b = b^+a$;
- (ii) (S6) $a\varphi \cap b\varphi \neq \emptyset, a^+ = b^+ \Rightarrow a = b$;
- (iii) Conditions (S1) and (S9).

$$a\varphi \cap b\varphi \neq \emptyset, a(\tilde{\mathcal{R}}_{E_S} \cap \sigma_S) b \Rightarrow a = b. \quad (\text{S1})$$

$$a\varphi \cap b\varphi \neq \emptyset \Rightarrow a\sigma_S b. \quad (\text{S9})$$

Proposition

Let φ be a left subhomomorphism of S into T , where S and T are left restriction semigroups. Then

(S4) $a\varphi \cap b\varphi \neq \emptyset \Rightarrow a^+b = b^+a$, for $a, b \in S$,

implies

(S9) $a\varphi \cap b\varphi \neq \emptyset \Rightarrow a \sigma_S b$, for $a, b \in S$.

Proposition

Let φ be an inverse subhomomorphism of S into G , where S is an inverse semigroup and G a group. Then

(S8) $1 \in s\varphi \Rightarrow s \in E(S)$, for $s \in S$,

implies

(S9) $s\varphi \cap t\varphi \neq \emptyset \Rightarrow s \sigma_S t$, for $s, t \in S$.

Subhomomorphisms

Let $\alpha : R \rightarrow S$ and $\beta : R \rightarrow T$ are morphisms between restriction semigroups R , S and T . Let

$$\text{Ker } \alpha = \{(a, b) \in R \times R : a\alpha = b\alpha\}$$

and

$$\ker \alpha = \{a \in R : a\alpha \in E_S\}.$$

Proposition

Let R , S and T be left restriction semigroups. Let $\alpha : R \rightarrow S$ and $\beta : R \rightarrow T$ be morphisms. Then

$$\text{Ker } \beta \subseteq \text{Ker } \alpha \text{ implies } \ker \beta \subseteq \ker \alpha.$$

Subhomomorphisms

Proposition

Let R , S and T be left restriction semigroups. Let $\alpha : R \rightarrow S$ be an epimorphism and $\beta : R \rightarrow T$ a morphism. Then the left subhomomorphism $\varphi = \alpha^{-1}\beta$ satisfies

$$a\varphi \cap b\varphi \neq \emptyset \Rightarrow a^+b = b^+a, \quad (\text{S4})$$

for $a, b \in S$, if and only if

$$s\beta = t\beta \Rightarrow (s^+t)\alpha = (t^+s)\alpha, \quad (*)$$

for $s, t \in R$.

Subhomomorphisms

Proposition

Let R and S be left restriction semigroups and let T be a monoid.

Let $\alpha : R \rightarrow S$ be an epimorphism and $\beta : R \rightarrow T$ a morphism.

Then the left subhomomorphism $\varphi = \alpha^{-1}\beta$ satisfies

$$a\varphi \cap b\varphi \neq \emptyset \Rightarrow a = b,$$

for $a, b \in S$, if and only if

$$\text{Ker } \beta \subseteq \text{Ker } \alpha.$$

for $s, t \in R$.

Proposition

Let R and S be left restriction semigroups and T a monoid. Let $\alpha : R \rightarrow S$ be an epimorphism and $\beta : R \rightarrow T$ a morphism. Then the left subhomomorphism $\varphi = \alpha^{-1}\beta$ satisfies

$$1 \in s\varphi \Rightarrow s \in E_S, \tag{S8}$$

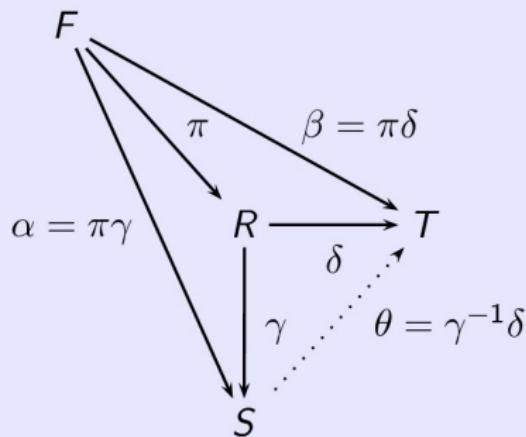
for $s \in S$, if and only if

$$\ker \beta \subseteq \ker \alpha.$$

Subhomomorphisms

Proposition

Let θ be a left subhomomorphism of S into T , where S and T are left restriction semigroups. Then there exist a free left restriction semigroup F , an epimorphism $\alpha : F \rightarrow S$, and a morphism $\beta : F \rightarrow T$ such that $\theta = \alpha^{-1}\beta$.



Proper Covers

Proposition

Let R be a left restriction semigroup and M a monoid. Let ϕ be a surjective left subhomomorphism of R into M such that

$$a\phi \cap b\phi \neq \emptyset \Rightarrow a^+b = b^+a, \quad (S4)$$

for $a, b \in S$. Then

$$\Pi(R, M, \phi) = \{(r, m) \in R \times M : m \in r\phi\}$$

is a proper cover of R over M .

Proper Covers

Conversely, let P be a proper cover of R over M with the induced morphism $\psi : P \rightarrow R \times M$. Then ϕ , defined by

$$s\phi = \{g \in M : (s, g) \in P\psi\},$$

for $s \in R$, is a surjective left subhomomorphism of R into M such that Condition (S4) holds and

$$P \cong \Pi(R, M, \phi).$$

Proper Covers

Proposition

Let R be a left restriction semigroup and M a monoid. Let ϕ be a surjective left subhomomorphism of R into M such that

$$1 \in s\phi \Rightarrow s \in E_R \tag{S8}$$

and

$$s\phi \cap t\phi \neq \emptyset \Rightarrow s \sigma_R t, \tag{S9}$$

for $s, t \in R$. Then

$$\Pi(R, M, \phi) = \{(r, m) \in R \times M : m \in r\phi\}$$

is an E -unitary cover of R over M .

Proper Covers

Conversely, let P be an E-unitary cover of R over M with the induced morphism $\psi : P \rightarrow R \times M$. Then ϕ defined by

$$s\phi = \{g \in M : (s, g) \in P\psi\},$$

for $s \in R$, is a surjective left subhomomorphism of R into M such that Conditions (S8) and (S9) hold.

Proper Covers

Theorem

Let S be a left restriction semigroup and \mathcal{U} a variety of monoids.

Then the following are equivalent:

- (1) S has proper covers over \mathcal{U} ;
- (2) if $\bar{u} \equiv \bar{v}$ is a law in \mathcal{U} , then $\bar{u}^+ \bar{v} \equiv \bar{v}^+ \bar{u}$ is a law in S .

References

- J. Fountain, Free Right Type A Semigroups, *Glasgow Math. J.* **33** (1991) 135-148
- J. Fountain, A. El Qallali, Proper covers for left ample semigroups, *Semigroup Forum*, **71** (2005), 411-427
- D. McAlister, N. Reilly, E-unitary Covers for Inverse Semigroups, *Pacific J. Math.* **68** 1 (1977), 161-174
- D. B. McAlister, Groups, Semilattices and Inverse Semigroups, *Trans. Amer. Math. Soc.* **192** (1974), 227-244
- M. Petrich, N. Reilly, E-unitary Covers and Varieties of Inverse Semigroups, *Acta Sci. Math. Szeged* **46** (1983) 59-72