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What we shall do

In this talk, I shall show how to construct a family of groups

from what we term k-monoids.

k-monoids are a class of one-vertex higher rank graphs and gen-

eralize free monoids.

The groups we construct generalize the Thompson groups Gn,1
and Brin’s higher dimensional analogues nV .

The groups will be topological full groups of a class of étale

groupoids.

3



How we shall do it

We shall construct both groups and groupoids from inverse monoids.

The group will be constructed using the minimum group con-

gruence.

The groupoid will be constructed using non-commutative Stone

duality.

Why inverse monoids? Because they provide the link between

groups and groupoids.

4



Motivation: Free monoids

Let An = {a1, . . . , an} be a finite alphabet where n ≥ 2. The set

of all finite strings over An is denoted by A∗n. This is a monoid

under concatenation of strings with the empty string ε as the

identity. In fact, A∗n is the free monoid on An. The key property

of the free monoid that we shall need is the following. This is

an arithmétic property.

Lemma The free monoid A∗n is singly aligned. This means that

for any strings x and y we have that xA∗n ∩ yA∗n is either empty

or again a principal right ideal.
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The free monoid A∗n comes equipped with a monoid homomor-

phism A∗n → N given by x 7→ |x| which measures the length of the

string.

Strings are 1-dimensional entities.

If |x| = m + n then there are unique strings u and v such that

x = uv where |u| = m and |u| = n. We call this the unique

factorization property of the length function.

We now generalize free monoids to higher dimensions.
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k-monoids

A countable monoid S is said to be a k-monoid if there is a monoid homo-
morphism d : S → Nk satisfying the unique factorization property (UFP): if
d(x) = m + n then there are unique elements x1, x2 ∈ S such that x = x1x2

and d(x1) = m and d(x2) = n.

Let ei ∈ Nk have a 1 in the ith position and 0’s elsewhere. Put Xi = d−1(ei)
for each 1 ≤ i ≤ k. We call (X1, . . . , Xk) the set of k-alphabets associated
with S.

In what follows, we assume that not all alphabets contain exactly one element.

A couple of facts:

1. k-monoids are cancellative and have no non-trivial invertible elements.

2. If S is a k-monoid and T is an l-monoid then S × T is a (k + l)-monoid.
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Picture: multiplication in 2-monoids

Given x and y to calculate xy

x

y

use UFP

x

y

and now we get the result xy

xy
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Remarks

1. The 1-monoids are precisely the countable free monoids by Levi’s The-
orem (see Corollary 1.6 of Lallement, Semigroups and combinatorial ap-
plications, John Wiley & Sons, 1979.)

2. Direct products of k free monoids are no longer free but are k-monoids.

3. The elements of S in the case of 2-monoids should be regarded as rect-
angles, in the case of 3-monoids cuboids, and so on. This justifies us in
regarding the elements of k-monoids as being higher-dimensional strings.

4. Our definition of k-monoid is simply the one-vertex case of the usual
definition of a higher rank graph introduced by Kumjian and Pask, Higher
rank graph C∗-algebras, New York J. Math. 6 (2000), 1–20.

5. The theory of free monoids leads to automata theory; where might the
theory of k-monoids lead? (Real question)

6. How can we construct examples of k-monoids? (Another real question)
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Finite alignment

Let S be a k-monoid. Suppose that x and y are dependent. We

say that S is m-aligned if xS ∩ yS =
⋃m
i=1 xiS.

If m = 1, then we refer to singly aligned.

We say that S is finitely aligned if it is m-aligned for some m.

Lemma If S is k-aligned and T is l-aligned then S×T is kl-aligned.

WE SHALL ALWAYS ASSUME THAT OUR k-MONOIDS ARE

FINITELY ALIGNED.
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Codes

Let S be a k-monoid. Elements x, y ∈ S are said to be indepen-

dent if xS ∩ yS = ∅, otherwise they are said to be dependent.

A finite subset X ⊆ S is called a code if the elements are pairwise

independent.

A code is maximal if every element of S is dependent on an

element of X.

Example In free monoids, a code is a prefix code and a maximal

code is a maximal prefix code.
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Aperiodicity

There is a technical condition that we shall mention now and

assume from this point on. (It will ensure that the groupoid we

construct is effective).

Let S be a k-monoid. We say that S is effective if for all distinct

a, b ∈ S there exists u ∈ S such that au and bu are independent.
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Ideals and morphisms

Let S be any monoid. A subset R ⊆ S is called a right ideal if

RS ⊆ R.

If X is any subset then XS is a right ideal; this is finitely gener-

ated if X is a finite set.

Let R1 and R2 be right ideals of S. Then a function θ : R1 → R2

is said to be a morphism if θ(rs) = θ(r)s.

(Just think right-module morphisms).
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Inverse semigroups

Groups are the abstract versions of groups of bijections whereas inverse semi-
groups are the abstract versions of inverse semigroups of partial bjiections.

A semigroup S is an inverse semigroup if for each a ∈ S there exists a unique
element a−1 such that a = aa−1a and a−1 = a−1aa−1.

Inverse semigroups contain lots of idempotents since a−1a and aa−1 are idem-
potents. (An inverse semigroup with exactly one idempotent is a group).

The idempotents of an inverse semigroup commute with each other. If e is
an idempotent so too is aea−1 for any a ∈ S.

Observe that ae = a(a−1ae) = a(ea−1a) = (aea−1)a. Thus idempotents can

‘pass through elements’ whilst still remaining idempotents.
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The natural partial order on an inverse semigroup

Let S be an inverse semigroup. Define a ≤ b iff a = be for some

idempotent e.

• ≤ is a partial order called the natural partial order.

• If a ≤ b then a−1 ≤ b−1.

• If a ≤ b and c ≤ d then ac ≤ bd.

If e and f are idempotents then e ≤ f iff e = ef .
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Observe that if a, b ≤ c then both a−1b and ab−1 are idempotents.

More generally, we say that a and b are compatible if both a−1b

and ab−1 are idempotents.

It follows, that a necessary condition for a and b to have a join

is that they be compatible.

An inverse semigroup S is said to be distributive if the join of a

and b exists whenever a and b are compatible and multiplication

distributes over such joins from the left and the right.

An inverse semigroup is a meet-semigroup if every pair of ele-

ments has a meet.
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Two inverse semigroups constructed from a k-monoid

Let S be a k-monoid. Then there are in general two inverse

semigroups associated with S; as we shall see, they will give rise

to the same group.

In the case of free monoids these are the same.

One of these inverse semigroups gives us more insight into the

group we shall construct, whereas the other is important in con-

structing our groupoid.
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Let S be a k-monoid. Define R(S) to be the set of all bijective

morphisms between finitely generated right ideals.

Theorem R(S) is a distributive inverse meet monoid.

Define P(S) to be the set of all bijective morphisms between

right ideals generated by codes. (Suggested by John Fountain).

Theorem P(S) is an inverse submonoid of R(S).
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How to get a group from an inverse semigroup

Let S be any inverse semigroup. The congruence σ is defined

on S by a σ b if and only if there exists an element c such that

c ≤ a, b.

Observe that S/σ is an inverse semigroup with a unique idempo-

tent and so is a group.

Not only is S/σ is a group but if ρ is any congruence on S such

that S/ρ is a group then σ ⊆ ρ.

Thus σ is the minimum group congruence on S.
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The essential part of an inverse semigroup

Let S be any inverse monoid with zero. Then S/σ is trivial. So,

we look for the ‘big’ elements in S.

A non-zero idempotent e in S is said to be essential if ef 6= 0 for

all non-zero idempotents f .

An element a of S is said to be essential if both a−1a and aa−1

are essential.

Define Se, the essential part of S, to consist of all essential

elements of S. It is an inverse monoid (without zero). The

group Se/σ will be interesting to us.
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The group associated with a k-monoid

Theorem Let S be a k-monoid. Then

G(S) = R(S)e/σ ∼= P(S)e/σ.

We call G(S) the group associated with the k-monoid S.

The most natural way to think about this group is as

P(S)e/σ

where P(S)e is the inverse semigroup of all bijective morphisms
between right ideals generated by maximal code.

But, we shall need the inverse semigroup R(S) to get our groupoid.
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Boolean inverse monoids

A distributive inverse monoid is said to be Boolean if its semi-
lattice of idempotents is a Boolean algebra.

Boolean inverse monoids should be regarded as non-commutative
generalizations of Boolean algebras.

Boolean algebras are associated with Boolean spaces ( = compact,
Hausdorff spaces with a basis of clopen sets) via classical Stone
duality. We call the unique atomless countable Boolean algebra
the Tarski algebra. Its Stone dual is the Cantor space.

Boolean inverse monoids are associated with Boolean groupoids
( = étale topological groupoids the identity space of which is a
Boolean space) via non-commutative Stone duality.
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An important congruence

We shall need a definition from the following paper:

D. Lenz, An order-based construction of a topological groupoid

from an inverse semigroup, Proc. Edinb. Math. Soc. 51 (2008),

387–406.

Let S be an inverse semigroup with zero. We shall define a

congruence ≡ on S which we call the Lenz congruence.
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Define ≡ on S as follows: s ≡ t if and only if the following two

conditions hold:

1. If 0 < x ≤ s then there exists a non-zero element x′ such that

x′ ≤ x, t.

2. If 0 < y ≤ t then there exists a non-zero element y′ such that

y′ ≤ y, s.
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A Boolean inverse monoid

Theorem Let S be a k-monoid. Put C(S) = R(S)/ ≡. Then this

is a countably infinite Boolean inverse meet-monoid whose group

of units is isomorphic to G(S). Its idempotents form the Tarski

Boolean algebra. As an inverse semigroup it is congruence-free.

The proof of this result is non-trivial. In particular, we have

to use the structures determined by S, called k-tilings, to show

that the set of idempotents forms a Boolean algebra. k-tilings

are the analogues of the right-infinite strings in the case of free

monoids.
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Groups from groupoids

Let G be a Boolean groupoid.

A subset A ⊆ G is called a local bisection if g, h ∈ A and g−1g =
h−1h (respectively, gg−1 = hh−1) implies that g = h.

This subset is called a bisection if it is a local bisection and every
identity of G is of the form g−1g where g ∈ A (respectively, hh−1

where h ∈ A).

The set of compact-open bisections of the groupoid G forms a
group called the topological full group of G.

The topological full group of a Boolean groupoid is isomorphic
to the group of units of the Boolean inverse monoid associated
with the groupoid under non-commutative Stone duality.
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The synthesis

We now apply non-commutative Stone duality to the Boolean

inverse monoid C(S).

Theorem The Boolean groupoid G (S) associated with the Boolean

inverse monoid C(S) is second countable, Hausdorff and its topo-

logical full group is isomorphic to G(S).
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By Theorem 4.16 of the paper by H. Matui, Topological full
groups of one-sided shifts of finite type, J. Reine Angew. Math.
705, 35–84 combined with the above theorem we obtain the
following.

Theorem Let S be a k-monoid. Then the group G(S) is count-
able with a simple commutator subgroup.

Our groups therefore generalize the finite symmetric groups (on
at least 5 letters).

Two concrete examples.

Theorem G(A∗n) ∼= Gn,1.

Theorem G((A∗2)n) ∼= nV .
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Concluding remarks

1. In this talk, I have concentrated on constructing groups from
one-vertex higher rank graphs. The generalization to arbi-
trary higher rank graphs is carried out in paper (3).

2. Higher rank graphs are themselves generalized in paper (2).
We show there how this extension of the definition accom-
modates the theory of graphs of groups.

3. We construct groups, but say very little about them. We
would like to construct presentations. We would like to con-
struct invariants — see paper (3) for some information on
these.
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