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Let us study the growth rate of generating sets for direct powers of
an algebra A.

For A we have a function fA : N→ N, giving the cardinality of the
minimal generating sets of the sequence

• A,A2,A3, . . . as

• f (1), f (2), f (3), . . ..

We say A has the g -GP if f (m) ≤ g(m) for all m.

(PGP) polynomial, when fA = O(ic), for some c ; and

(EGP) exponential, when exists b so that fA = Ω(bi ).



History

Theorem (Wiegold 1987)

Let B be a finite semigroup. If B is a monoid then B has the
(linear) PGP. Otherwise, B has the EGP.

Proof of PGP.
If B is a monoid with identity 1 and |B| = n, then

(B, 1, . . . , 1, 1)
(1,B, . . . , 1, 1)

...
(1, 1, . . . ,B, 1)
(1, 1, . . . , 1,B)

is a generating set for Bm of size mn.



Theorem (Wiegold 1987)

Let B be a finite semigroup. If B is a monoid then B has the
(linear) PGP. Otherwise, B has the EGP.

Proof of EGP.
Otherwise, without an identity, B and Bm have the properties that

|x · B| ≤ n − 1, for each x ∈ B.
|z · Bm| ≤ (n − 1)m, for each z ∈ Bm.

Thus, a subset of Bm of size r can generate no more r + r(n− 1)m

elements in Bm. Thus, a generating set must be of size

≥
(

2n
2n−1

)m
.



Constraint Satisfaction Problems

The constraint satisfaction problem (CSP) is a popular formalism
in Artificial Intelligence in which one is given

• a triple (V ,D,C) of variables, domain, constraints

and in which one asks for an assignment of the variables to the
domain that satisfies the constraints.

A popular parameterisation involves fixing D and restricting

• the constraint language C.

This can be formulated combinatorially as CSP(C) with

• Input: a structure A.

• Question: does A have a homomorphism to C?

or logically as CSP(C) with

• Input: a sentence φ of {∃,∧,=}-FO.

• Question: does C |= φ?



Example

CSP(K3), or CSP({r , g , b}; 6=), is Graph 3-colourability.
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Combinatorially, one looks for a homomorphism from C5 to K3.
Logically, one asks if K3 |= Φ.

Φ := ∃v1, v2, v3, v4, v5 E (v1, v2) ∧ E (v2, v1) ∧ E (v2, v3) ∧ E (v3, v2)
E (v3, v4) ∧ E (v4, v3) ∧ E (v4, v5)
E (v5, v4) ∧ E (v5, v1) ∧ E (v!, v5).



Quantified Constraint Satisfaction

The quantified constraint satisfaction problem QCSP(B) has

• Input: a sentence φ of {∀, ∃,∧,=}-FO.

• Question: does B |= φ?

It is the CSP with ∀ returned.



“The QCSP might be thought of as the dissolute younger brother
of its better-studied restriction, the CSP. . . . CSPs are ubiquitous
in CS . . . , while QCSPs can not nearly claim to be so important in
applications.”

useful QCSPs classified?

relativised (∀x ∈ X , ∃y ∈ Y )
√

Boolean (QBF or QSAT)
√

“. . . what is left of the true non-Boolean QCSP is a problem I
believe to be mostly of interest to theorists.”



First-order structures

Relational structures:

B := (B;R1,R2, . . .)

Functional structures:

B := (D; f1, f2, . . .)

functional structures = algebras.

What is the interplay between relational and functional structures?

Model Theory = Logic + Universal Algebra

All our structures are finite-domain.



Interplay

Let R be an m-ary relation on B. We say that a k-ary operation
f : Bk → B preserves R (or R is invariant) under f if:

f , f , . . . , f
(x11, x12, . . . , x1m) ∈ R
(x21, x22, . . . , x2m) ∈ R
...

...
...

(xk1, xk2, . . . , xkm) ∈ R

(y1, y2, . . . , ym) ∈ R

where each yi = f (x1i , x2i , . . . , xki ).

• operations that preserve each of the relations of B are Pol(B).

• relations invariant under each operation of B are Inv(B).



one-side of a Galois Correspondence

Let B and B be over the same finite domain B.

Inv(Pol(B)) = 〈B〉{∃,∧,=}
Inv(surPol(B)) = 〈B〉{∀,∃,∧,=}

Idempotent operations are surjective! The algebraic definition for
QCSP(B) has

• Input: a sentence φ of {∀, ∃,∧}-FO with some relations
B ∈ Inv(B).

• Question: does B |= φ?

What if Inv(B) is infinite?



Infinite languages on a finite domain

Each relation R can be given as a list of tuples, but this is far too
lengthy! How about a Boolean formula φ in atoms

• v = v ′ and v = c,

where c is a domain element. The problem is that recognising,
e.g., non-emptiness of the relation can be NP-hard! Following
others, e.g. [Bodirsky & Dalmau 2006] we will ask for

• φ in DNF,

However, our main result will be a separation NP versus
co-NP-hard, so this is not a big deal!



Infinite languages on a finite domain

Example 1.

{ (1, 2), (2, 1), (x 6= y ∨ x = 1)
(2, 3), (3, 2),
(1, 3), (3, 1),
(1, 1) }

Example 2.

{ (1, 0, 0), (0, 1, 0), (0, 0, 1), (x 6= y ∨ y 6= z)
(1, 1, 0), (1, 0, 1), (1, 1, 0), }



Back to PGP

Call an algebra B k-PGP-switchable if Bm is generated from the
set of m-tuples of the form

• (x1, . . . , x1, x2, . . . x2, . . . , . . . , xk ′ , . . . , xk ′) for some k ′ ≤ k .

switchability were originally introduced in connection with the
QCSP by Hubie Chen!

Theorem (Chen 2008)

If A is switchable then QCSP(A) is in NP.

Theorem (LICS 2015)

A is PGP-switchable iff it is switchable.



A number of algebraists worked on the PGP-EGP dichotomy
conjecture.

Conjecture

Let B be a finite idempotent algebra, then either B has PGP or it
has EGP.

In 2015, Dmitriy Zhuk solved it.

Theorem (Zhuk 2015)

Let B be a finite algebra, then either B is PGP-switchable or it has
EGP.

In order to prove this result, Zhuk assumes B is not
PGP-switchable and finds the existence of a certain class of
relations in Inv(B).



Church of Switchability
B. M.
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Notes & Queries

Henceforth, let A be an idempotent algebra on a finite domain A.

Conjecture (Chen Conjecture 2012)

Let B be a finite relational structure expanded with all constants.
If Pol(B) has PGP, then QCSP(B) is in NP; otherwise QCSP(B) is
Pspace-complete.

Theorem (Revised Chen Conjecture)

If Inv(A) satisfies PGP, then QCSP(Inv(A)) is in NP. Otherwise,
if Inv(A) satisfies EGP, then QCSP(Inv(A)) is co-NP-hard.

Conjecture (Alternative Chen Conjecture)

If Inv(A) satisfies PGP, then for every finite reduct B ⊆ Inv(A),
QCSP(B) is in NP. Otherwise, there exists a finite reduct
B ⊆ Inv(A) so that QCSP(B) is co-NP-hard.



Notes & Queries

Henceforth, let A be an idempotent algebra on a finite domain A.

Conjecture (Chen Conjecture 2012)

Let B be a finite relational structure expanded with all constants.
If Pol(B) has PGP, then QCSP(B) is in NP; otherwise QCSP(B) is
Pspace-complete.

Theorem (Revised Chen Conjecture)

Either QCSP(Inv(A)) is co-NP-hard or QCSP(Inv(A)) has the
same complexity as CSP(Inv(A)).

Conjecture (Alternative Chen Conjecture False)

If Inv(A) satisfies PGP, then for every finite reduct B ⊆ Inv(A),
QCSP(B) is in NP. Otherwise, there exists a finite reduct
B ⊆ Inv(A) so that QCSP(B) is co-NP-hard.



Tractability

We know from Zhuk 2015 that

PGP −→ PGP-switchability

and from [LICS 2015]

PGP-switchability −→ switchability

whereupon Chen 2008 gives

switchability −→ QCSP tractability.



Henceforth, α, β be strict subsets of A so that α ∪ β = A.

Theorem (Zhuk 2015)

Algebra A (idempotent) has EGP iff exists such α, β with

σk(x1, y1, . . . , xk , yk) := ρ(x1, y1) ∨ . . . ∨ ρ(xk , yk),

where ρ(x , y) = (α× α) ∪ (β × β), is in Inv(A), for each k ∈ N.

We prefer the relation τk(x1, y1, z1 . . . , xk , yk , zk) defined by

τk(x1, y1, z1 . . . , xk , yk , zk) := ρ′(x1, y1, z1) ∨ . . . ∨ ρ′(xk , yk , zk),

where ρ′(x , y , z) = (α× α× α) ∪ (β × β × β).

Corollary

Algebra A (idempotent) has EGP iff exists such α, β with
τk(x1, y1, z1 . . . , xk , yk , zk) in Inv(A), for each k ∈ N.



co-NP-hardness

Theorem
If Inv(A) satisfies EGP, then QCSP(Inv(A)) is co-NP-hard.

Proof.
Reduce from the complement of (monotone) 3-not-all-equal-sat.

∃x11 , x21 , x31 , . . . , . . . , x1m, x2m, x3m NAE(x11 , x
2
1 , x

3
1 )∧. . .∧NAE(x1m, x

2
m, x

3
m)

becomes

∀x11 , x21 , x31 , . . . , . . . , x1m, x2m, x3m ρ′(x11 , x
2
1 , x

3
1 ) ∨ . . . ∨ ρ′(x1m, x2m, x3m)

where we note that τm(x1, y1, z1 . . . , xm, ym, zm) :=

ρ′(x1, y1, z1) ∨ . . . ∨ ρ′(xm, ym, zm)

has a DNF representation that is polynomially-sized in m.



Recall, α, β be strict subsets of A so that α ∪ β = A. Now ask
further that α ∩ β 6= ∅.

Corollary

QCSP(A; {τn : n ∈ N}, {a : a ∈ A}) is co-NP-hard.

In fact,

Proposition

QCSP(A; {τn : n ∈ N}, {a : a ∈ A}) is in co-NP.

Proof.
Roughly speaking, evaluate all existential variables to something in
α ∩ β.

Proposition

For every finite reduct B of (A; {τn : n ∈ N}, {a : a ∈ A}),
QCSP(B) is in NL.



Conjecture

Let A be an algebra. Either

• QCSP(Inv(A)) is in NP, or

• QCSP(Inv(A)) is co-NP-complete, or

• QCSP(Inv(A)) is Pspace-complete.

Or even

Conjecture

Let A be an algebra on a 3-element domain. Either

• QCSP(Inv(A)) is in NP, or

• QCSP(Inv(A)) is co-NP-complete, or

• QCSP(Inv(A)) is Pspace-complete.



3-element vignette

The closest we can do is

Theorem
Let A be an algebra on a 3-element domain. Either

• Πk -CSP(Inv(A)) is in NP, for all k; or

• Πk -CSP(Inv(A)) is co-NP-complete, for all k; or

• Πk -CSP(Inv(A)) is ΠP
2 -hard, for some k.


