

Free idempotent generated semigroups over the full linear monoid

Robert Gray
(joint work with Igor Dolinka)

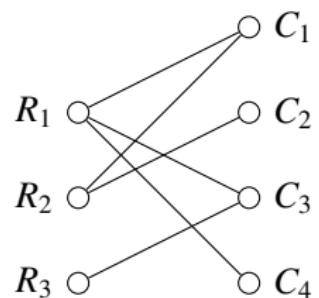
Centro de Álgebra
da Universidade de Lisboa

York, May 2012

Combinatorics: $(0, 1)$ -matrices

$$\begin{array}{cccc} & C_1 & C_2 & C_3 & C_4 \\ R_1 & \left(\begin{array}{cccc} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right) \\ R_2 & \\ R_3 & \end{array}$$

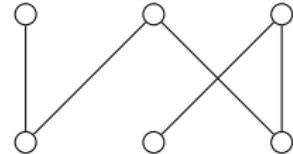
$(0, 1)$ -matrix



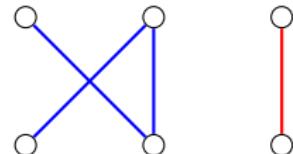
Bipartite graph

$(0, 1)$ -matrices and connectedness

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$



$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$



- ▶ The 1s in the matrix are **connected** if any pair of entries 1 is connected by a sequence of 1s where adjacent terms in the sequence belong to same row/column.

Combinatorics

Symbols

$$A = \{\heartsuit, \odot, \circledast, \natural\}$$

Table

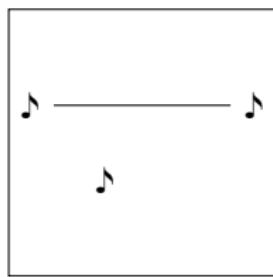
$$M = \begin{pmatrix} \circledast & \heartsuit & \odot & \heartsuit \\ \natural & \circledast & \circledast & \natural \\ \circledast & \natural & \circledast & \circledast \\ \odot & \circledast & \odot & \heartsuit \end{pmatrix}$$

For each symbol x we can ask whether the xs are connected in M .

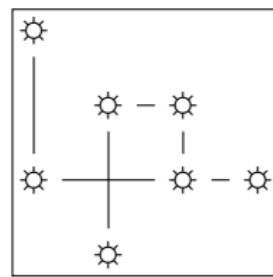
Let $\Delta(x)$ be a graph with vertices the occurrences of the symbol x and symbols in the same row/col connected by an edge.

Connectedness in tables

$$M = \begin{pmatrix} \odot & \heartsuit & \odot & \heartsuit \\ \natural & \odot & \odot & \natural \\ \odot & \natural & \odot & \odot \\ \odot & \odot & \odot & \heartsuit \end{pmatrix}$$



$\Delta(\natural)$ is not connected



$\Delta(\odot)$ is connected

Tables in algebra

Multiplication tables

Group multiplication tables

	1	a	b	c
1	1	a	b	c
a	a	1	c	b
b	b	c	1	a
c	c	b	a	1

- ▶ The multiplication table of a group is a Latin square, so..
- ▶ None of the graphs $\Delta(x)$ will be connected.

Tables in algebra

Multiplication tables

Multiplication table of a field.

Field with three elements $\mathbb{F} = \{0, 1, 2\}$.

	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

- ▶ $\Delta(0)$ is connected
- ▶ $\Delta(f)$ is not connected for every $f \neq 0$

Tables in algebra

Vectors

$\mathbb{F} = \{0, 1\}$, vectors in \mathbb{F}^3 , entries in table from \mathbb{F}

	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
(0, 0, 0)	0	0	0	0	0	0	0	0
(0, 0, 1)	0	1	0	1	0	1	0	1
(0, 1, 0)	0	0	1	1	0	0	1	1
(0, 1, 1)	0	1	1	0	0	1	1	0
(1, 0, 0)	0	0	0	0	1	1	1	1
(1, 0, 1)	0	1	0	1	1	0	1	0
(1, 1, 0)	0	0	1	1	1	1	0	0
(1, 1, 1)	0	1	1	0	1	0	0	1

- For every symbol x in the table $\Delta(x)$ is connected.

Outline

Free idempotent generated semigroups

- Background and recent results

- Maximal subgroups of free idempotent generated semigroups

The full linear monoid

- Basic properties

- The free idempotent generated semigroup over the full linear monoid

- Proof sketch: connectedness properties in tables

Open problems

Idempotent generated semigroups

S - semigroup, $E = E(S)$ - idempotents $e = e^2$ of S

Definition. S is **idempotent generated** if $\langle E(S) \rangle = S$

- ▶ Many natural examples
 - ▶ Howie (1966) - $T_n \setminus S_n$, the non-invertible transformations;
 - ▶ Erdős (1967) - singular part of $M_n(\mathbb{F})$, semigroup of all $n \times n$ matrices over a field \mathbb{F} ;
 - ▶ Putcha (2006) - conditions for a reductive linear algebraic monoid to have the same property.
- ▶ Idempotent generated semigroups are “general”
 - ▶ Every semigroup S embeds into an idempotent generated semigroup.

Free idempotent generated semigroups

A problem in algebra

S - semigroup, $E = E(S)$ - idempotents of S

E carries a certain abstract structure: that of a **biordered set**.

Idea: Fix a biorder E and investigate those semigroups whose idempotents carry this fixed biorder structure.

Within this family there is a unique “free” object $IG(E)$ which is the semigroup defined by presentation:

$$IG(E) = \langle E \mid e \cdot f = ef \ (e, f \in E, \{e, f\} \cap \{ef, fe\} \neq \emptyset) \rangle$$

$IG(E)$ is called the **free idempotent generated semigroup on E** .

First steps towards understanding $IG(E)$

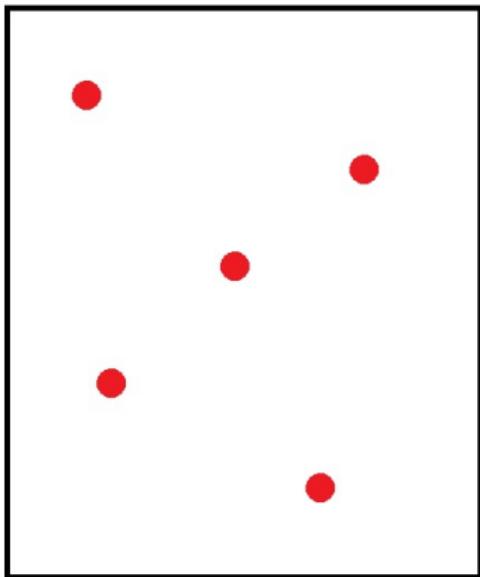
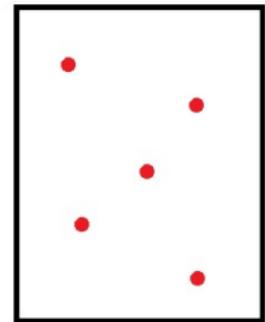
Theorem (Easdown (1985))

Let S be an idempotent generated semigroup with $E = E(S)$. Then $IG(E)$ is an idempotent generated semigroup and there is a surjective homomorphism $\phi : IG(E) \rightarrow S$ which is bijective on idempotents.

Conclusion. It is important to understand $IG(E)$ if one is interested in understanding an arbitrary idempotent generated semigroups.

$|G(E)|$

$S = \langle E(S) \rangle$



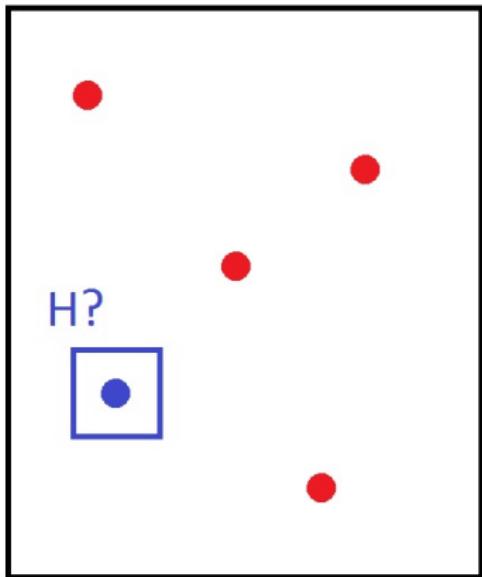
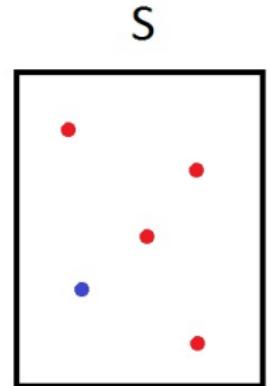
E $\xleftarrow{\text{bijection}}$ E

Maximal subgroups of $IG(E)$

Question. Which groups can arise as maximal subgroups of a free idempotent generated semigroups?

$IG(E)$

$E = E(S)$



E \longleftrightarrow E
bijection

Maximal subgroups of $IG(E)$

Question. Which groups can arise as maximal subgroups of a free idempotent generated semigroups?

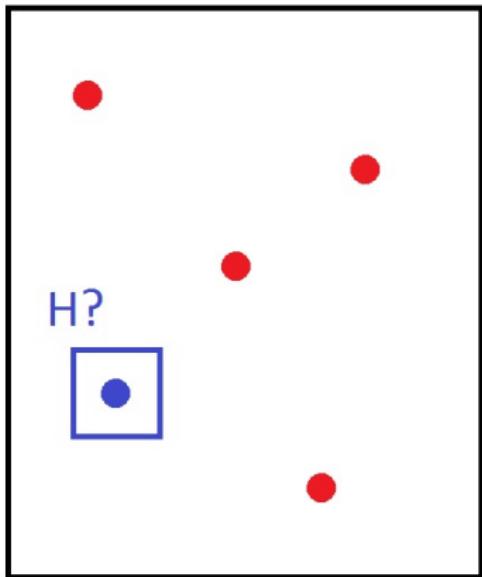
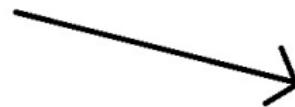
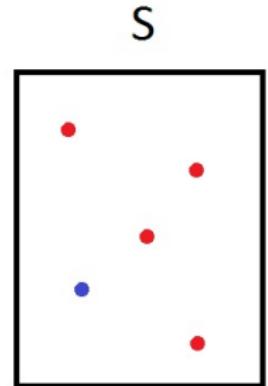
- ▶ Work of Pastijn (1977, 1980), Nambooripad & Pastijn (1980), McElwee (2002) led to a conjecture that all these groups must be free groups.
- ▶ Brittenham, Margolis & Meakin (2009) - gave the first counterexamples to this conjecture obtaining the groups
 - ▶ $\mathbb{Z} \oplus \mathbb{Z}$ and \mathbb{F}^* where \mathbb{F} is an arbitrary field.
- ▶ Gray & Ruskuc (2012) proved that every group is a maximal subgroup of some free idempotent generated semigroup.

New focus

What can be said about maximal subgroups of $IG(E)$ where $E = E(S)$ for semigroups S that arise in nature?

$IG(E)$

$E = E(S)$



E \longleftrightarrow E
bijection

The full linear monoid

\mathbb{F} - arbitrary field, $n \in \mathbb{N}$

$$M_n(\mathbb{F}) = \{n \times n \text{ matrices over } \mathbb{F}\}.$$

- ▶ Plays an analogous role in semigroup theory as the general linear group does in group theory.
- ▶ Important in a range of areas:
 - ▶ Representation theory of semigroups
 - ▶ Putcha–Renner theory of linear algebraic monoids and finite monoids of Lie type. Here the biordered set of idempotents of the monoid may be viewed as a generalised building, in the sense of Tits.

Aim

Investigate the above problem in the case $S = M_n(\mathbb{F})$ and $E = E(S)$.

Properties of $M_n(\mathbb{F})$

Theorem (J.A. Erdös (1967))

$$\langle E(M_n(\mathbb{F})) \rangle = \{ \text{identity matrix and all non-invertible matrices} \}.$$

- ▶ $M_n(\mathbb{F})$ may be partitioned into the sets

$$D_r = \{A : \text{rank}(A) = r\}, \quad r \leq n,$$

(these are the \mathcal{D} -classes).

- ▶ The maximal subgroups in D_r are isomorphic to $GL_r(\mathbb{F})$.

The problem

By Easdown (1985) we may identify

$$E = E(M_n(\mathbb{F})) = E(IG(E)).$$

Let

$$W = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} \in D_r \subseteq M_n(\mathbb{F})$$

where I_r denotes the $r \times r$ identity matrix.

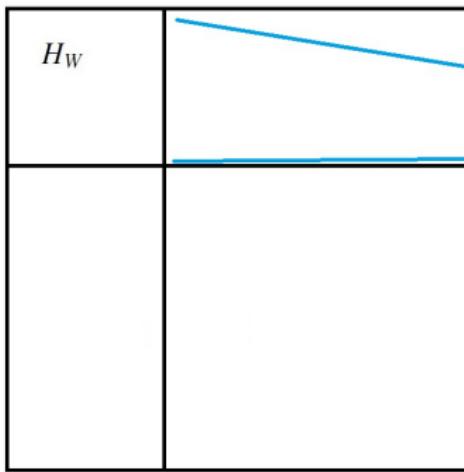
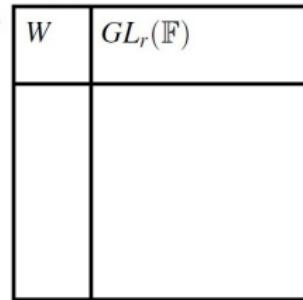
W is an idempotent matrix of rank r .

Problem: Identify the maximal subgroup H_W of

$$IG(E) = \langle E \mid e \cdot f = ef \quad (e, f \in E, \{e, f\} \cap \{ef, fe\} \neq \emptyset) \rangle$$

containing W .

General fact: H_W is a homomorphic preimage of $GL_r(\mathbb{F})$.

$IG(E)$ $S = M_n(\mathbb{F})$ $E = E(S)$ $GL_n(\mathbb{F})$ D_n  D_r \square D_0

Results

$n \in \mathbb{N}$, \mathbb{F} - field, $E = E(M_n(\mathbb{F}))$,

$W \in M_n(\mathbb{F})$ - idempotent of rank r

H_W = maximal subgroup of $IG(E)$

Theorem (Brittenham, Margolis, Meakin (2009))

For $n \geq 3$ and $r = 1$ we have $H_W \cong GL_r(\mathbb{F}) \cong \mathbb{F}^$.*

Theorem (Dolinka, Gray (2012))

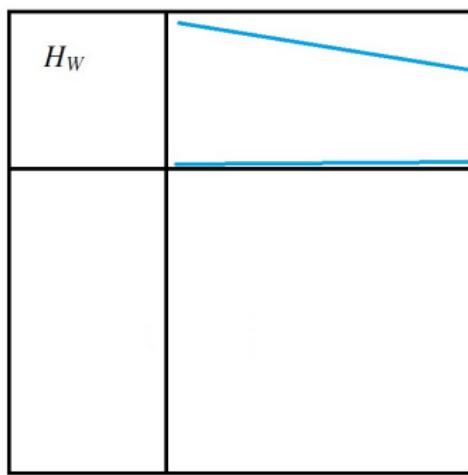
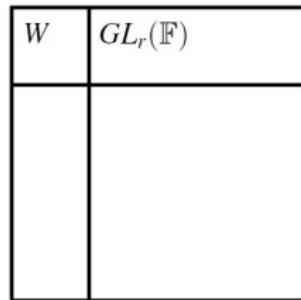
Let n and r be positive integers with $r < n/3$. Then $H_W \cong GL_r(\mathbb{F})$.

Recent results

- **I. Dolinka and R. Gray,**
Maximal subgroups of free idempotent generated semigroups over the full linear monoid.
Trans. Amer. Math. Soc. (to appear).

Our paper builds on ideas developed in the following recent papers:

- **M. Brittenham, S. W. Margolis, and J. Meakin,**
Subgroups of the free idempotent generated semigroups need not be free.
J. Algebra 321 (2009), 3026–3042.
- **M. Brittenham, S. W. Margolis, and J. Meakin,**
Subgroups of free idempotent generated semigroups: full linear monoids.
arXiv: 1009.5683.
- **R. Gray and N. Ruškuc,**
On maximal subgroups of free idempotent generated semigroups.
Israel J. Math. (to appear).
- **R. Gray and N. Ruškuc,**
Maximal subgroups of free idempotent generated semigroups over the full transformation monoid.
Proc. London Math. Soc. (to appear)

$IG(E)$ $S = M_n(\mathbb{F})$ $E = E(S)$ $GL_n(\mathbb{F})$ D_n  D_r \square D_0

Step 1: Writing down a presentation for H_W

Definition

A matrix is in **reduced row echelon form** (RRE form) if:

- ▶ rows with at least one nonzero element are above any rows of all zeros
- ▶ the leading coefficient (the first nonzero number from the left) of a nonzero row is always strictly to the right of the leading coefficient of the row above it, and
- ▶ every leading coefficient is 1 and is the only nonzero entry in its column.

Examples

$$\left[\begin{array}{cccc} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 7 \end{array} \right], \left[\begin{array}{cccc} 1 & 2 & 0 & 5 \\ 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 0 \end{array} \right], \left[\begin{array}{cccc} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right].$$

Step 1: Writing down a presentation for H_W

$n, r \in \mathbb{N}$ fixed with $r < n$

$$\begin{aligned}\mathcal{Y}_r &= \{r \times n \text{ rank } r \text{ matrices in RRE form}\} \\ \mathcal{X}_r &= \{\text{transposes of elements of } \mathcal{Y}_r\}\end{aligned}$$

- Matrices in \mathcal{Y}_r have no rows of zeros, so have r leading columns.

e.g. $n = 4, r = 3$, $\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \in \mathcal{Y}_3$.

- Define a matrix $P_r = (P_r(Y, X))$ defined for $Y \in \mathcal{Y}_r, X \in \mathcal{X}_r$ by

$$P_r(Y, X) = YX \in M_r(\mathbb{F}).$$

$$P_r \mathcal{X}_r \overset{r}{\sim} n \begin{pmatrix} X \end{pmatrix}$$

370

$$r \left(\begin{array}{c|c} n & \\ \hline Y & \end{array} \right) \quad A_k \quad YX \in M_r(\mathbb{F})$$

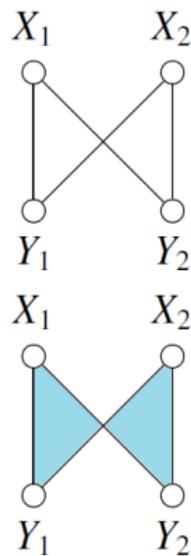
Graham–Houghton 2-complex \mathcal{GH}

1-skeleton: a connected bipartite graph

Vertices: $\mathcal{Y}_r \cup \mathcal{X}_r$ (disjoint union)

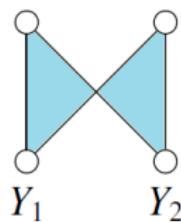
Edges: $Y \sim X \Leftrightarrow YX \in GL_r(\mathbb{F})$

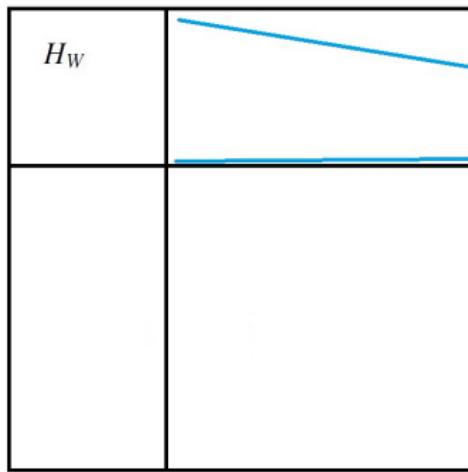
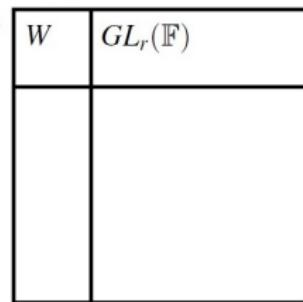
2-cells



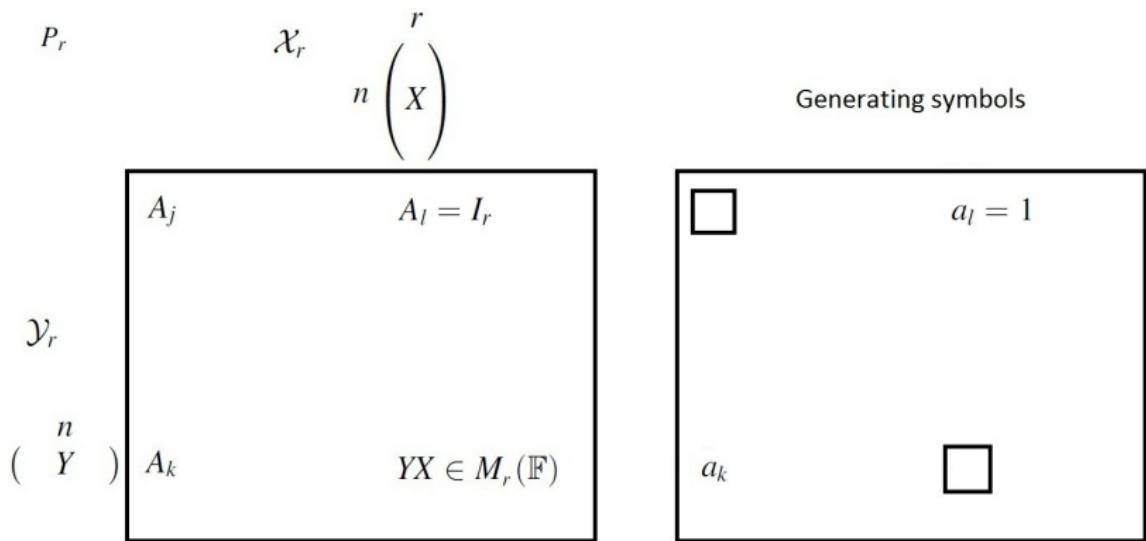
\Leftrightarrow

$$(Y_1 X_1)^{-1} (Y_1 X_2) = (Y_2 X_1)^{-1} (Y_2 X_2).$$



$IG(E)$ $S = M_n(\mathbb{F})$ $E = E(S)$ $GL_n(\mathbb{F})$ D_n  \square D_0

The group H_W is defined by the presentation with...



Generators: $\{a_j \mid A_j \text{ is an entry in } P_r \text{ satisfying } A_j \in GL_r(\mathbb{F})\}$

Relations:

- (I) $a_j = 1$ for all entries A_j in P_r satisfying $A_j = I_r$ A_j A_k
- (II) $a_j a_k^{-1} = a_l a_m^{-1} \Leftrightarrow (A_j, A_k, A_l, A_m)$ is a **singular square** of invertible $r \times r$ matrices from P_r with $A_j^{-1} A_k = A_l^{-1} A_m$. A_l A_m

Structure of the proof that $H_W \cong GL_r(\mathbb{F})$

P_r	\mathcal{X}_r	$n \begin{pmatrix} r \\ X \end{pmatrix}$	Generating symbols
A_j		$A_l = I_r$	\square
\mathcal{Y}_r	$\begin{pmatrix} n \\ Y \end{pmatrix}$	A_k	$a_l = 1$

Step 1: Write down a presentation for H_W .

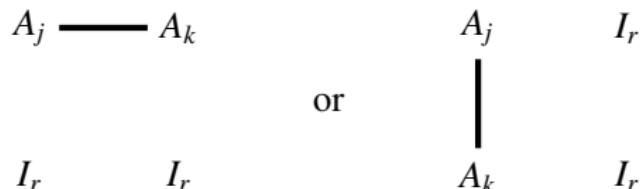
Step 2: Prove that for any two entries A_j, A_k in the table P_r , if $A_j = A_k \in GL_r(\mathbb{F})$ then $a_j = a_k$ is deducible from the relations.

Step 3: Find defining relations for $GL_r(\mathbb{F})$ using the singular square relations (II).

Step 2: Strong edges and relations

Definition

We say entries A_j and A_k with $A_j = A_k$ are connected by a **strong edge** if



Lemma: If $A_j = A_k \in GL_r(\mathbb{F})$ are connected by a strong edge then $a_j = a_k$ is a consequence of the relations.

$$\begin{array}{ccc} A_j & \text{---} & A_k \\ I_r & & I_r \end{array} \quad \begin{array}{ccc} a_j & & a_k \\ \Rightarrow & & \Rightarrow \end{array} \quad a_j = a_k \text{ can be deduced}$$
$$\begin{array}{cccc} 1 & & 1 & \\ & & & \end{array}$$

A singular square Using relations (I)

Step 2: Proving $A_i = A_j$ invertible $\Rightarrow a_i = a_j$

Definition

Strong path = path composed of strong edges.

Aim

Prove that for every pair A_j, A_k of entries in P_r , if $A_j = A_k$ then there is a strong path from A_j to A_k .

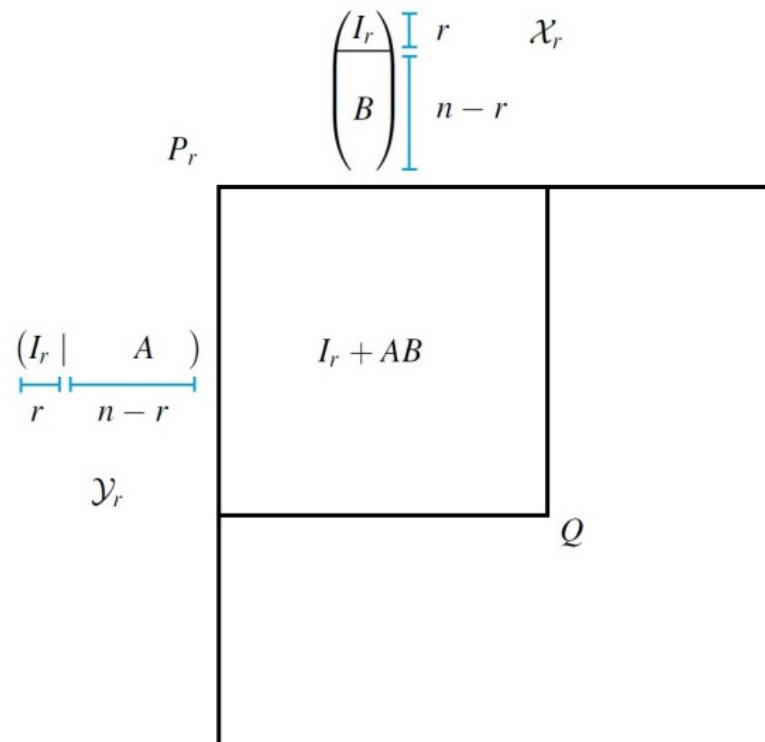
Once proved this will have the following:

Corollary

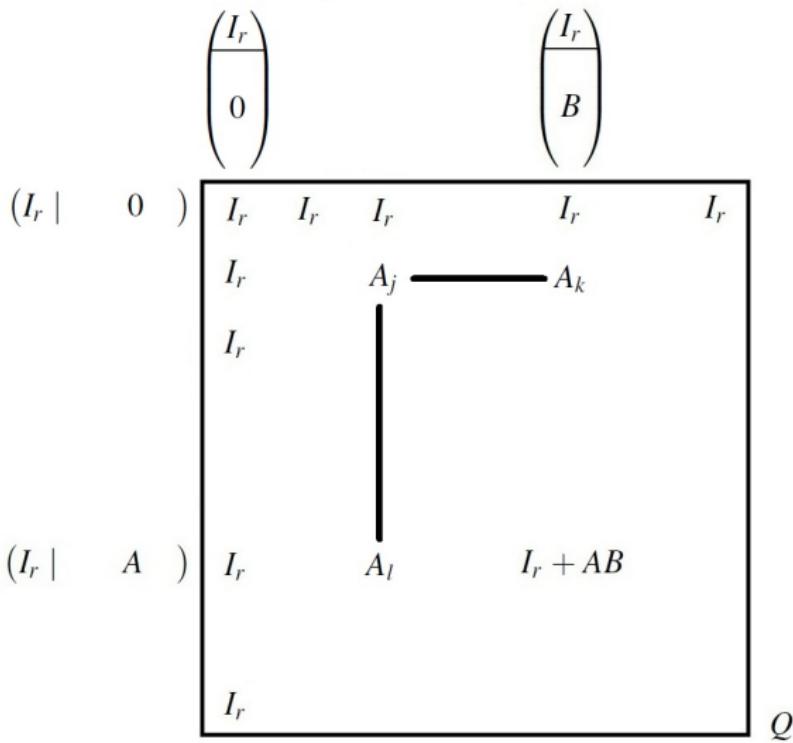
For every pair $A_j = A_k \in GL_r(\mathbb{F})$ in the table P_r , the relation $a_j = a_k$ is a consequence of the defining relations in the presentation.

The small box Q

Is the subtable of P_r containing entries whose row and column are labelled by matrices of the form $(I_r \mid \quad A \quad)$ and their transposes, where A is an $r \times (n - r)$ matrix over \mathbb{F} .



Strongly connecting the small box Q



Observation: In the small box every edge is a strong edge.

\therefore strongly connecting the small box \equiv connecting the small box.

An equivalent problem

T = matrix obtained by taking Q and subtracting I_r from every entry

For every symbol X in the table Q the graph $\Delta(X)$ in Q is connected.

\Leftrightarrow For every symbol X in the table T the graph $\Delta(X)$ in T is connected.

Connecting the small box

So, we have reduced the problem of strongly connecting the small box in P_r to the following:

Let $m, k \in \mathbb{N}$ with $k < m$, and let

$$\begin{aligned}\mathcal{B} &= \{\text{all } k \times m \text{ matrices over } \mathbb{F}\}, \\ \mathcal{A} &= \{\text{all } m \times k \text{ matrices over } \mathbb{F}\}.\end{aligned}$$

Define the matrix $T = T(B, A)$ by

$$T(B, A) = BA \in M_k(\mathbb{F}), \quad B \in \mathcal{B}, \quad A \in \mathcal{A}.$$

Question: Is it true that for every symbol $X \in M_k(\mathbb{F})$ in the table T the graph $\Delta(X)$ is connected?

Déjà vu

$\mathbb{F} = \{0, 1\}$, vectors in \mathbb{F}^3 , entries in table from \mathbb{F}

	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
(0, 0, 0)	0	0	0	0	0	0	0	0
(0, 0, 1)	0	1	0	1	0	1	0	1
(0, 1, 0)	0	0	1	1	0	0	1	1
(0, 1, 1)	0	1	1	0	0	1	1	0
(1, 0, 0)	0	0	0	0	1	1	1	1
(1, 0, 1)	0	1	0	1	1	0	1	0
(1, 1, 0)	0	0	1	1	1	1	0	0
(1, 1, 1)	0	1	1	0	1	0	0	1

- ▶ For every symbol x in the table $\Delta(x)$ is connected.

Combinatorial properties of tables

And it generalises...

Proposition

Let $m, k \in \mathbb{N}$ with $k < m$, and let

$$\begin{aligned}\mathcal{B} &= \{\text{all } k \times m \text{ matrices over } \mathbb{F}\}, \\ \mathcal{A} &= \{\text{all } m \times k \text{ matrices over } \mathbb{F}\}.\end{aligned}$$

Define the matrix $T = T(B, A)$ by

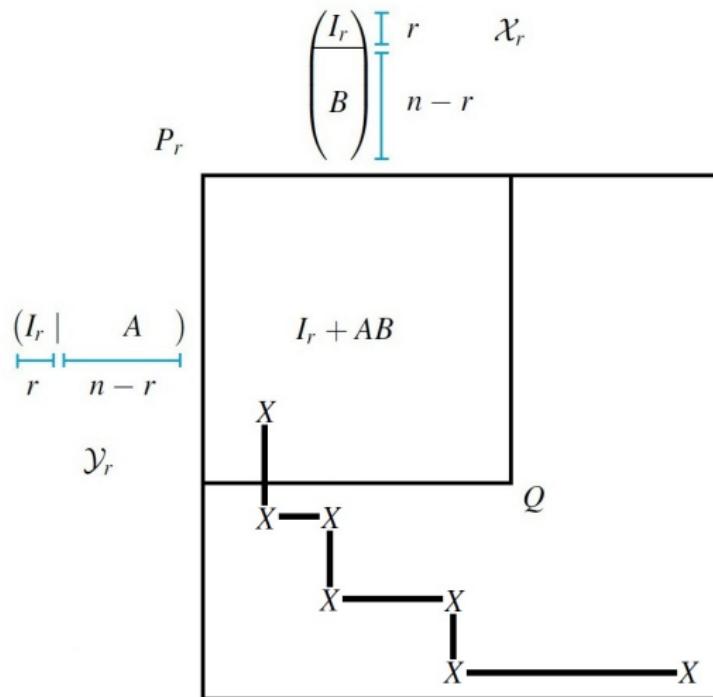
$$T(B, A) = BA \in M_k(\mathbb{F}), \quad B \in \mathcal{B}, \quad A \in \mathcal{A}.$$

Then for every symbol $X \in M_k(\mathbb{F})$ in the table T the graph $\Delta(X)$ is connected.

Corollary

For every pair A_j, A_k in the small box, if $A_j = A_k$ then there is a strong path in the small box from A_j to A_k .

Finishing off Step 2



Proposition: For every pair A_j, A_k of entries in P_r , if $A_j = A_k$ then there is a strong path between A_j and A_k . Thus, for every pair $A_j = A_k \in GL_r(\mathbb{F})$ in the table P_r the relation $a_j = a_k$ is deducible.

Structure of the proof that $H_W \cong GL_r(\mathbb{F})$

P_r	\mathcal{X}_r	$n \begin{pmatrix} r \\ X \end{pmatrix}$	Generating symbols
A_j		$A_l = I_r$	\square
\mathcal{Y}_r			$a_l = 1$

$$\left(\begin{array}{c|c} n & \\ \hline Y & \end{array} \right) A_k \quad YX \in M_r(\mathbb{F})$$

Step 1: Write down a presentation for H_W .

Step 2: Prove that for any two entries A_j, A_k in the table P_r , if $A_j = A_k \in GL_r(\mathbb{F})$ then $a_j = a_k$ is deducible from the relations.

Step 3: Find defining relations for $GL_r(\mathbb{F})$ among the singular square relations (II).

Finishing off the proof

For any pair of matrices $A, B \in GL_r(\mathbb{F})$ we can find the following singular square in P_r :

$$\begin{array}{c|c} \left[\begin{array}{c|c|c|c} \hline 0_{r \times r} & I_r & A & 0_{r \times (n-3r)} \\ \hline 0_{r \times r} & 0_{r \times r} & I_r & 0_{(n-3r) \times r} \\ \hline \end{array} \right] & \left[\begin{array}{c|c} \hline 0_{r \times r} & I_r \\ \hline 0_{r \times r} & 0_{r \times r} \\ \hline I_r & B \\ \hline 0_{(n-3r) \times r} & 0_{(n-3r) \times r} \\ \hline \end{array} \right] \\ \hline \end{array}$$

- ▶ Every relation in the presentation holds in $GL_r(\mathbb{F})$.
- ▶ Conversely, every relation that holds in $GL_r(\mathbb{F})$ can be deduced from the multiplication table relations that arise from the squares above.
- ▶ It follows that $H_W \cong GL_r(\mathbb{F})$ (when $r < n/3$).

□

Open problems

- ▶ What happens in higher ranks?

Conjecture (Brittenham, Margolis, Meakin (2009))

Let n and r be positive integers with $r \leq n/2$. Then $H_W \cong GL_r(\mathbb{F})$.

- ▶ The same result might even be true for $r < n - 1$.
- ▶ The analogous result does hold for T_n , with $r < n - 1$, with the symmetric groups S_r arising as maximal subgroups of $IG(E)$ (Gray & Ruskuc (2012)).