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Combinatorics: (0, 1)-matrices
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(0, 1)-matrices and connectedness
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» The 1s in the matrix are connected if any pair of entries 1 is connected

by a sequence of 1s where adjacent terms in the sequence belong to
same row/column.
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Combinatorics

Symbols
A={0 0,1 5
Table
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For each symbol x we can ask whether the xs are connected in M.

Let A(x) be a graph with vertices the occurrences of the symbol x and
symbols in the same row/col connected by an edge.



Connectedness in tables
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A(}) is not connected A(3¥) is connected



Tables in algebra

Multiplication tables

Group multiplication tables

o Qe =
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» The multiplication table of a group is a Latin square, so..

» None of the graphs A(x) will be connected.



Tables in algebra

Multiplication tables

Multiplication table of a field.

Field with three elements F = {0, 1,2}.

» A(0) is connected
» A(f) is not connected for every f # 0



Tables in algebra

Vectors

F = {0, 1}, vectors in [F, entries in table from F

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1
©, 0, 0)] 0 0 0 0 0 0 0 0
©, 0, | 0 1 0 1 0 1 0 1
© 1, 0| 0 0 1 1 0 0 1 1
© 1, | 0 1 1 0 0 1 1 0
(1, 0, 0)| 0 0 0 0 1 1 1 1
(1, 0, | o0 I 0 I 1 0 1 0
(1, 1, 0| o0 0 1 1 1 1 0 0
a, 1, | o 1 1 0 1 0 0 1

» For every symbol x in the table A(x) is connected.
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Idempotent generated semigroups

S - semigroup, E = E(S) - idempotents e = ¢* of §

Definition. S is idempotent generated if (E(S)) = S

» Many natural examples
» Howie (1966) - T, \ S,, the non-invertible transformations;
» Erdés (1967) - singular part of M, (IF), semigroup of all n X n matrices
over a field IF;
> Putcha (2006) - conditions for a reductive linear algebraic monoid to have
the same property.
» Idempotent generated semigroups are “general”

> Every semigroup S embeds into an idempotent generated semigroup.



Free idempotent generated semigroups
A problem in algebra

S - semigroup, E = E(S) - idempotents of S
E carries a certain abstract structure: that of a biordered set.

Idea: Fix a biorder E and investigate those semigroups whose idempotents
carry this fixed biorder structure.

Within this family there is a unique “free” object IG(E) which is the
semigroup defined by presentation:

IGE) = (E|e-f=ef (e.f €E, {e.f}n{ef fe} #0))
IG(E) is called the free idempotent generated semigroup on E.



First steps towards understanding IG(E)

Theorem (Easdown (1985))

Let S be an idempotent generated semigroup with E = E(S). Then IG(E) is
an idempotent generated semigroup and there is a surjective homomorphism
¢ : IG(E) — S which is bijective on idempotents.

Conclusion. It is important to understand /G(E) if one is interested in
understanding an arbitrary idempotent generated semigroups.
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Maximal subgroups of IG(E)

Question. Which groups can arise as maximal subgroups of a free
idempotent generated semigroups?
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Maximal subgroups of IG(E)

Question. Which groups can arise as maximal subgroups of a free
idempotent generated semigroups?

» Work of Pastijn (1977, 1980), Nambooripad & Pastijn (1980), McElwee
(2002) led to a conjecture that all these groups must be free groups.
» Brittenham, Margolis & Meakin (2009) - gave the first counterexamples
to this conjecture obtaining the groups
> 7 @ Z and F* where F is an arbitrary field.
» Gray & Ruskuc (2012) proved that every group is a maximal subgroup
of some free idempotent generated semigroup.

New focus
What can be said about maximal subgroups of IG(E) where E = E(S) for
semigroups S that arise in nature?
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The full linear monoid

F - arbitrary field, n €N

M, (F) = {n x n matrices over F}.

» Plays an analogous role in semigroup theory as the general linear group
does in group theory.
» Important in a range of areas:
> Representation theory of semigroups
> Putcha—Renner theory of linear algebraic monoids and finite monoids of

Lie type. Here the biordered set of idempotents of the monoid may be
viewed as a generalised building, in the sense of Tits.

Aim
Investigate the above problem in the case S = M, (F) and E = E(S).



Properties of M,,(IF)

Theorem (J.A. Erdos (1967))

(E(M,(F))) = {identity matrix and all non-invertible matrices}.

» M,(F) may be partitioned into the sets
D, ={A :rank(A) =r}, r<n,

(these are the D-classes).

» The maximal subgroups in D, are isomorphic to GL,(TF).



The problem

By Easdown (1985) we may identify
E = E(M,(F)) = E(IG(E)).
Let

I 0
W= { 0 O}GD,QMH(IF)

where I, denotes the r X r identity matrix.

W is an idempotent matrix of rank r.

Problem: Identify the maximal subgroup Hy of

IGE) = (E|e-f=¢f (e.f €E, {e.f}n{ef fe} #0))

containing W.

General fact: Hy is a homomorphic preimage of GL,(FF).
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Results

neN, F-field E=EWM,F)),
W € M, (F) - idempotent of rank r

Hy = maximal subgroup of IG(E)

Theorem (Brittenham, Margolis, Meakin (2009))
Forn >3 andr =1 we have Hy = GL,(F) = F*.

Theorem (Dolinka, Gray (2012))
Let n and r be positive integers with r < n/3. Then Hy = GL,(T).
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Step 1: Writing down a presentation for Hy

Definition
A matrix is in reduced row echelon form (RRE form) if:

» rows with at least one nonzero element are above any rows of all zeros

» the leading coefficient (the first nonzero number from the left) of a
nonzero row is always strictly to the right of the leading coefficient of
the row above it, and

» every leading coefficient is 1 and is the only nonzero entry in its

column.
Examples
1 0 0 5 1 2 0 5 1 0 2 0
o1 0 3], o0 1 7], 01 1 0
0 0 1 7 0 0 0 O 0 0 0 1



Step 1: Writing down a presentation for Hy

n,r € Nfixed withr < n

V. = {r X n rank r matrices in RRE form}
X, = {transposes of elements of ), }

» Matrices in ), have no rows of zeros, so have r leading columns.

egn=4,r=3, € ).

S O =
- o O

0 2
11
0 0

» Define a matrix P, = (P,(Y, X)) defined for Y € V,, X € X, by

P,(Y,X) = YX € M,(F).



Yr

Ag

A

YX € M, (F)




Graham—Houghton 2-complex GH

1-skeleton: a connected bipartite graph

Vertices: )V, U &, (disjoint union)

Edges: Y ~ X < YX € GL,(F)

2-cells
X X5
Y, Y
X X5

54

(ViX) "L Y1 X,) = (VX)) "N (1X,).
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The group Hy is defined by the presentation with...

P, X,
n (X) Generating symbols
Aj A=1 ] a =1
Yr
n
(v )| 4 YX € M, (F) a []

Generators: {a; | A, is an entry in P, satisfying A; € GL,(F) }

Relations:

(I) a; = 1 for all entries A; in P, satisfying A; = I, A;

(II) ajak_l = aa,' < (A;,Ar, A1, Ay) is a singular square of
invertible » X r matrices from P, with Aj_lAk = Al_]Am. A

A m



Structure of the proof that Hy = GL,(IF)

/23 P
n (X) Generating symbols
Aj Ar=1, ] a =1
Y
n
(¥ )4 YX € M, (F) a []

Step 1: Write down a presentation for Hy.

Step 2: Prove that for any two entries A;, Ay in the table P,, if
Aj = Ay € GL,(F) then a; = ay is deducible from the relations.

Step 3: Find defining relations for GL,(F) using the singular square relations
(.



Step 2: Strong edges and relations

Definition
We say entries A; and A with A; = Ay are connected by a strong edge if

Aj — A Aj I,
or
I, I, Ak I,

Lemma: If A; = A; € GL,(F) are connected by a strong edge then a; = ay
is a consequence of the relations.

Aj —— Ay aj a
= = a; = a; can be deduced
I, I, | 1

A singular square Using relations (I)



Step 2: Proving A; = A; invertible = a; = q;

Definition
Strong path = path composed of strong edges.

Aim
Prove that for every pair A;, A; of entries in P,, if A; = A; then there is a
strong path from A; to Ay.

Once proved this will have the following:

Corollary

For every pair A; = Ay € GL,(F) in the table P, the relation ¢; = a; is a
consequence of the defining relations in the presentation.



The small box Q

Is the subtable of P, containing entries whose row and column are labelled
by matrices of the form (Ir | A ) and their transposes, where A is an
r X (n — r) matrix over F.

L 7 X,
B n—r
P,
(1 A) I, +AB
——
/8 n—F
Y




Strongly connecting the small box Q

(I | A )L A I, +AB

Observation: In the small box every edge is a strong edge.

*. strongly connecting the small box = connecting the small box.



An equivalent problem

T = matrix obtained by taking Q and subtracting /, from every entry

i ’
il
0 ( 0 ) ( B) { n—r
@&l O Y@ o T L I, (o )]o o o 0, 0,
/i 0,
i’ 0,
&1 AL I, +AB rI(C A )]o AB
—
n—r
T 0,
0 ;

For every symbol X in the table Q the graph A(X) in Q is connected.
< For every symbol X in the table T the graph A(X) in T is connected.



Connecting the small box

So, we have reduced the problem of strongly connecting the small box in P,
to the following:

Let m,k € N with k < m, and let

B = {all k x m matrices over F},

A = {all m x k matrices over F}.
Define the matrix T = T(B,A) by
T(B,A) = BA € M(F), BE B, A € A.

Question: Is it true that for every symbol X € M;(F) in the table T the
graph A(X) is connected?



Déja vu

F = {0, 1}, vectors in F, entries in table from F

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1
©, 0, )] 0 0 0 0 0 0 0 0
© 0, | 0 1 0 1 0 1 0 1
© 1, 00| 0 0 1 1 0 0 1 1
© 1, | 0 1 1 0 0 1 1 0
(1, 0, 0)| 0 0 0 0 | 1 1 1
(1, o, | o0 1 0 1 1 0 1 0
(1, 1, 0| o0 0 1 1 1 1 0 0
a, 1, | o 1 1 0 1 0 0 1

» For every symbol x in the table A(x) is connected.



Combinatorial properties of tables

And it generalises...
Proposition
Let m, k € N with k < m, and let

B = {all k x m matrices over F},

A = {all m x k matrices over F}.
Define the matrix T = T(B, A) by
T(B,A)=BA e M(F), Be B, Ac A.

Then for every symbol X € M, (IF) in the table T the graph A(X) is
connected.

Corollary

For every pair A;, A; in the small box, if A; = Ay then there is a strong path
in the small box from A; to Ay.



Finishing off Step 2

I\ r X
B n—r
P,
Ll A) I, +AB
—
r m—r
X
y |
1
X—)l( Q
X X
X X

Proposition: For every pair A;, A; of entries in P,, if A; = A; then there is a

strong path between A; and Ay. Thus, for every pair A; = Ay € GL,(F) in the
table P, the relation a; = gy is deducible.



Structure of the proof that Hy = GL,(IF)

/23 P
n (X) Generating symbols
2y Ar=1 ] a=1
Y
n
(¥ )4 YX € M, (F) a []

Step 1: Write down a presentation for Hy.

Step 2: Prove that for any two entries A;, Ay in the table P,, if
Aj = Ay € GL,(F) then a; = ay is deducible from the relations.

Step 3: Find defining relations for GL,(IF) among the singular square
relations (II).



Finishing off the proof

For any pair of matrices A, B € GL,(IF) we can find the following singular
square in P,:

05 I,

0rxr 0rxr

1, B
0(n—3r)><r 0(n—3r)><r

[0r><r ‘ I, ‘ A ‘ 0r><(n73r) ] A AB
[0r><r ‘ Or><r ‘ Ir ‘ 0(n73r)><r ] Ir B

» Every relation in the presentation holds in GL,(IF).

» Conversely, every relation that holds in GL,(IF) can be deduced from
the multiplication table relations that arise from the squares above.

» It follows that Hy = GL,(F) (when r < n/3).



Open problems

» What happens in higher ranks?

Conjecture (Brittenham, Margolis, Meakin (2009))
Let n and r be positive integers with » < n/2. Then Hy = GL,(F).

» The same result might even be true for r < n — 1.

» The analogous result does hold for 7, with r < n — 1, with the
symmetric groups S, arising as maximal subgroups of IG(E) (Gray &
Ruskuc (2012)).
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