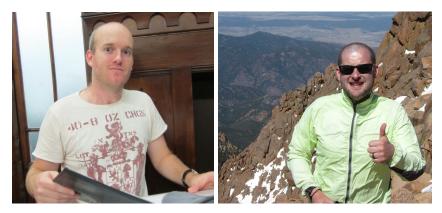
Subsemigroups of the semigroup of all mappings on an infinite set

Yann Péresse

University of St Andrews

6th of February 2013

Joint work with...



... James East and James Mitchell

Joint work with...

... Michał Morayne and Zak Mesyan

Your 3rd & 4th favourite semigroups

We will talk about these two semigroups:

- S_{Ω} the symmetric group on a set Ω ;
- Ω^{Ω} the full transformation semigroup on Ω .

Throughout, Ω will be infinite.

The **sub(semi)group lattice** of a (semi)group is just the sub(semi)groups ordered by inclusion where

$$A \lor B = \langle A, B \rangle$$
 and $A \land B = A \cap B$.

The sub(semi)group lattice of a (semi)group is an **algebraic lattice**: **complete:** the supremum $\bigvee A$ and infimum $\bigwedge A$ of any subset A exists; **compact:** every sub(semi)group is a supremum of f.g. sub(semi)groups. Complete answers are unlikely

Let Ω be any infinite set. Then there are $2^{2^{|\Omega|}}$ subsemigroups of Ω^{Ω} and subgroups of S_{Ω} .

Theorem (Pinsker 2005)

If $|\Omega| = \aleph_{\alpha}$ and $\lambda = \max\{|\alpha|, \aleph_0\}$, then there are $2^{2^{\lambda}}$ subsemigroups of Ω^{Ω} containing S_{Ω} .

The algebraic lattices with 2^{λ} compact elements are, up to isomorphism, the subalgebra lattices of algebras whose domain has 2^{λ} elements.

Theorem (Pinsker and Shelah 2011)

The complete sublattices of the lattice of submonoids of Ω^{Ω} are, up to isomorphism, the algebraic lattices with at most $2^{|\Omega|}$ compact elements.

Maximal sub(semi)groups

Let S be a (semi)group and let T be a proper sub(semigroup) of S. Then T is maximal if it is not contained in any other proper sub(semi)group.

Theorem (Baumgartner, Shelah, Thomas '93)

It is consistent and independent of ZFC that $\exists G \leq S_N$ not contained in any maximal subgroup.

Theorem (Zorn's Lemma)

Let G be any (semi)group and let $H \leq G$ such that $\exists K \subseteq G$ with $|K| < \infty$ and $\langle H, K \rangle = G$. Then H is contained in a maximal sub(semi)group of G.

Theorem (Macpherson, Praeger '90)

Let $G \leq S_{\mathbb{N}}$ such that G is not highly transitive, or $|G| \leq \aleph_0$. Then G is contained in a maximal subgroup.

Maximal subgroups of S_{Ω}

Theorem (Ball '66)

The setwise stabiliser of a finite set in S_{Ω} is a maximal subgroup of S_{Ω} .

Moiety: a subset Σ of Ω such that $|\Sigma| = |\Omega \setminus \Sigma| (= |\Omega|)$.

Finite partition: a partition \mathcal{P} of Ω into moieties $\Sigma_1, \ldots, \Sigma_n$.

Stabiliser: Stab(\mathcal{P}) = { $f \in S_{\Omega}$: $\forall i \exists j (\Sigma_i) f = \Sigma_j$ }.

Almost equal: $\Sigma \approx \Gamma$ if $|\Sigma \setminus \Gamma| + |\Gamma \setminus \Sigma| < |\Omega|$.

Almost stabiliser: AStab(\mathcal{P}) = { $f \in S_{\Omega}$: $\forall i \exists j (\Sigma_i) f \approx \Sigma_j$ }.

Theorem (Ball '66)

AStab(\mathcal{P}) is maximal for all $n \geq 2$.

More (a lot more) maximal subgroups of S_{Ω} : ultrafilters

If \mathcal{A} is a family of subsets of Ω , then the **stabiliser** of \mathcal{A} in S_{Ω} is

$$S_{\{\mathcal{A}\}} = \{ f \in S_{\Omega} : (\forall A \subseteq \Omega) (A \in \mathcal{A} \leftrightarrow f(A) \in \mathcal{A}) \}.$$

Theorem (Richman '67)

If \mathcal{F} is an ultrafilter on Ω , then:

(i)
$$S_{\{\mathcal{F}\}}$$
 has two orbits on moieties of Ω ;

(ii)
$$S_{\{\mathcal{F}\}}$$
 is a maximal subgroup of S_{Ω} ;

(iii)
$$S_{\{\mathcal{F}\}} = \{ f \in S_{\Omega} : \operatorname{fix}(f) \in \mathcal{F} \}.$$

Corollary

There are $2^{2^{|\Omega|}}$ non-conjugate maximal subgroups of S_{Ω} .

Maximal subsemigroups of Ω^{Ω} ... containing S_{Ω}

If $f \in \Omega^{\Omega}$, then a **transversal** of f is any $\Sigma \subseteq \Omega$ such that $f|_{\Sigma}$ is injective and $\Sigma f = \Omega f$.

$$\begin{array}{lll} d(f) &=& |\Omega \setminus f(\Omega)| & (\text{defect}) \\ c(f) &=& |\Omega \setminus \Sigma| \text{ where } \Sigma \text{ is any transversal of } f & (\text{collapse}) \\ k(f,\mu) &=& |\{ \alpha \in \Omega : |f^{-1}(\alpha)| \ge \mu \}| & \text{where } \mu \leqslant |\Omega|. \end{array}$$

Theorem (Heindorf '02 & Pinsker '05)

If $|\Omega|$ is regular, then the maximal subsemigroups of Ω^{Ω} containing S_{Ω} are:

$$\{ f \in \Omega^{\Omega} : c(f) < \mu \text{ or } d(f) \ge \mu \} \text{ for some } \aleph_0 \leqslant \mu \leqslant |\Omega|;$$

$$\{ f \in \Omega^{\Omega} : c(f) = 0 \text{ or } d(f) > 0 \};$$

$$\{ f \in \Omega^{\Omega} : c(f) \ge \mu \text{ or } d(f) < \mu \} \text{ for some } \aleph_0 \leqslant \mu \leqslant |\Omega|;$$

$$\{ f \in \Omega^{\Omega} : c(f) > 0 \text{ or } d(f) = 0 \};$$

$$\{ f \in \Omega^{\Omega} : k(f, |\Omega|) < |\Omega| \}.$$

Maximal subsemigroups of Ω^{Ω} ... containing AStab(\mathcal{P})

Let $\mathcal{P} = {\Sigma_1, \Sigma_2, \dots, \Sigma_n}$ where $n \ge 2$ be a finite partition of Ω and let $f \in \Omega^{\Omega}$. Then define

 $\rho_f = \{ (i,j) : |f(\Sigma_i) \cap \Sigma_j| = |\Omega| \} \text{ and } \rho_f^{-1} = \{ (i,j) : (j,i) \in \rho_f \}.$

A binary relation σ is **total** if $\forall i \exists j$ such that $(i, j) \in \sigma$.

Theorem (East, Mitchell, P '11)

The maximal subsemigroups of Ω^{Ω} containing $Stab(\mathcal{P})$ but not S_{Ω} are:

$$\{ f \in \Omega^{\Omega} : \rho_f \in S_n \text{ or } \rho_f \text{ is not total} \} \\ \{ f \in \Omega^{\Omega} : \rho_f \in S_n \text{ or } \rho_f^{-1} \text{ is not total} \}.$$

Theorem (East, Mitchell, P '11)

The maximal subsemigroups of Ω^{Ω} containing $\operatorname{Stab}(\mathcal{P})$ but not S_{Ω} are: $\{ f \in \Omega^{\Omega} : \rho_f \in S_n \text{ or } \rho_f \text{ is not total } \}$ $\{ f \in \Omega^{\Omega} : \rho_f \in S_n \text{ or } \rho_f^{-1} \text{ is not total } \}.$

Proof. Let $Stab(\mathcal{P}) \leq M \leq \Omega^{\Omega}$ but *M* is not contained in any of the semigroups in the above or previous theorem.

• $\exists f, g \in M$ such that ρ_f and ρ_g^{-1} are total and $\rho_f, \rho_g \notin \text{Sym}(n)$

•
$$\exists t \in M$$
 such that $\rho_t = n \times n$

- $\exists f', g' \in M$ such that f' is injective, g' is surjective, and $d(f') = c(g') = |\Omega|$
- Sym(Ω) is contained in M and so $M = \Omega^{\Omega}$.

... containing stabilisers of finite sets

Theorem (East, Mitchell, P '11)

Let Γ be a non-empty finite subset of Ω . Then the maximal subsemigroups of Ω^{Ω} containing the pointwise stabiliser of Γ but not S_{Ω} are:

$$\{f \in \Omega^{\Omega} : (f^{-1}(\Sigma) = \Sigma \text{ and } c(f) < \mu) \text{ or } d(f) \ge \mu \text{ or } \Sigma \not\subseteq f(\Omega) \} \cup \mathfrak{F}$$
$$\{f \in \Omega^{\Omega} : (f(\Sigma) = \Sigma \text{ and } d(f) < \nu) \text{ or } c(f) \ge \nu \text{ or } |f(\Sigma)| < |\Sigma| \} \cup \mathfrak{F}$$
$$\text{where } \emptyset \neq \Sigma \subseteq \Gamma, \aleph_0 \leqslant \mu, \nu \leqslant |\Omega^+|, \text{ and if } |\Sigma| = 1, \text{ then } \nu = |\Omega|^+.$$

... containing stabilisers of singleton sets

Corollary

Let $a \in \Omega$. Then the maximal subsemigroups of Ω^{Ω} containing the stabiliser of $\{a\}$ but not S_{Ω} are:

$$\{ f \in \Omega^{\Omega} : (c(f) < \mu \text{ and } f(a) = a) \text{ or } d(f) \ge \mu \text{ or } a \notin f(\Omega) \} \cup \mathfrak{F}$$

where $\aleph_0 \leqslant \mu \leqslant |\Omega^+|$ and

$$\{ f \in \Omega^{\Omega} : f(a) = a \} \cup \mathfrak{F}$$

The stabiliser of the singleton $\{a\}$ is identical to the stabiliser of the corresponding principal ultrafilter $\{A \subseteq \Omega : a \in A\}$ for some fixed $a \in A$. So the above corollary deals with stabilisers of principal ultrafilters.

... containing stabilisers of non-principal ultrafilters

Theorem (East, Mitchell, P '11)

Let \mathcal{F} be a non-principal ultrafilter on Ω and let κ be the least cardinality of an element of \mathcal{F} . Then the maximal subsemigroups of Ω^{Ω} containing the stabiliser of \mathcal{F} but not S_{Ω} are

- $U_1(\mathcal{F},\mu)$:= all $f \in \Omega^{\Omega}$ satisfying any of:
 - $\Sigma \not\in \mathcal{F}$ for all $\Sigma \not\in \mathcal{F}$ and $c(f) < \mu$
 - $d(f) \ge \mu$
 - $f(\Omega) \not\in \mathcal{F}$
- $U_2(\mathcal{F},\mu) := all \ f \in \Omega^{\Omega}$ satisfying any of:
 - $\Sigma \in \mathcal{F}$ for all $\Sigma \in \mathcal{F}$ and $d(f) < \mu$
 - $c(f) \ge \mu$
 - $c(f|_{\Sigma}) > 0$ for all $\Sigma \in \mathcal{F}$

where $\kappa < \mu \leqslant |\Omega|^+$.

... containing stabilisers of uniform ultrafilters

A filter is **uniform** if every set in the filter has the same cardinality. Every non-principal ultrafilter on a countable set is uniform.

Corollary

Let \mathcal{F} be a uniform ultrafilter on Ω . Then the maximal subsemigroups of Ω^{Ω} containing the stabiliser of \mathcal{F} but not S_{Ω} are $U_1(\mathcal{F}) = \{ f \in \Omega^{\Omega} : (f(\Sigma) \notin \mathcal{F}) (\forall \Sigma \notin \mathcal{F}) \}$ and $U_2(\mathcal{F}) = \{ f \in \Omega^{\Omega} : (f(\Sigma) \in \mathcal{F}) (\forall \Sigma \in \mathcal{F}) \text{ or } (c(f|_{\Sigma}) > 0) (\forall \Sigma \in \mathcal{F}) \}.$

Corollary

There are $2^{2^{|\Omega|}}$ non-conjugate maximal subsemigroups of Ω^{Ω} .

Maximal subsemigroups of the symmetric group

We have classified the maximal subsemigroups of Ω^{Ω} containing:

- the symmetric group;
- the stabilizer of a finite partition;
- the pointwise stabilizer of a finite set;
- the stabilizer of an ultrafilter.

The known maximal subsemigroups M of Ω^{Ω} satisfy $M \cap S_{\Omega}$ is a **maximal** subsemigroup.

Is $M \cap S_{\Omega}$ a maximal subsemigroup of S_{Ω} if M is maximal in Ω^{Ω} ?

Can $M \cap S_{\Omega}$ be trivial?

The man who wasn't there

 $\mathbb{N}^{\mathbb{N}}$ is a **Polish semigroup** - a complete, separable, topological semigroup (i.e. the map $(x, y) \mapsto xy$ is continuous)

 $S_{\mathbb{N}}$ is a **Polish group** - a complete, separable, topological group (i.e. the maps $x \mapsto x^{-1}$ and $(x, y) \mapsto xy$ is continuous)

Theorem (Folklore)

A subgroup of $S_{\mathbb{N}}$ is closed if and only if it is the group of automorphisms of a first-order structure.

A submonoid of $\mathbb{N}^{\mathbb{N}}$ is closed if and only if it is the monoid of endomorphisms of a first-order structure.

For example, G could be the automorphisms of $(\mathbb{Q}, <)$, the random graph, ...

Bergman and Shelah's Theorem

If $U, V \subseteq S_{\mathbb{N}}$, then $U \preccurlyeq V$ if \exists countable $C \subseteq S_{\mathbb{N}}$ such that

 $U \subseteq \langle V, C \rangle.$

We write $U \approx V$ if $U \preccurlyeq V$ and $V \preccurlyeq U$.

Theorem (Bergman and Shelah '06)

Let G be a closed subgroup of $S_{\mathbb{N}}$. Then:

- (i) $G_{(\Sigma)}$ has an infinite orbit for all finite $\Sigma \subseteq \mathbb{N}$ and $G \approx S_{\mathbb{N}}$;
- (ii) $G_{(\Sigma)}$ has only finite orbits for some finite $\Sigma \subseteq \mathbb{N}$, $G_{(\Gamma)}$ has orbits of unbounded length for all finite $\Gamma \subseteq \mathbb{N}$, and $G \approx S_2 \times S_3 \times S_4 \times \cdots$;
- (iii) $G_{(\Sigma)}$ has orbits of bounded length for some finite $\Sigma \subseteq \mathbb{N}$ and $G \approx S_2 \times S_2 \times \cdots$;

(iv) $G \approx \{1_{\mathbb{N}}\}.$

A simpler question we also cannot solve Consider the analogue of Bergman & Shelah's relations for Ω^{Ω} : If $U, V \subseteq \mathbb{N}^{\mathbb{N}}$, then $U \approx V$ if there is a countable $C \subseteq \mathbb{N}^{\mathbb{N}}$ such that

 $U \subseteq \langle V, C \rangle$ and $V \subseteq \langle U, C \rangle$.

Zak considering \preccurlyeq on $\mathbb{N}^{\mathbb{N}}$

The relations \preccurlyeq and \approx on $\mathbb{N}^{\mathbb{N}}$

Theorem (Z. Mesyan '07)

The following subsemigroups of $\mathbb{N}^{\mathbb{N}}$ are not \approx -equivalent.

•
$$\mathfrak{F}_i = \{ f \in \mathbb{N}^{\mathbb{N}} : |f(\mathbb{N})| = i \}$$
 for $i \in \mathbb{N}$
• $\mathfrak{F} = \bigcup_{i \in \mathbb{N}} \mathfrak{F}_i$
• $S_{0,x} = \{ f \in \mathbb{N}^{\mathbb{N}} : f(x) \in \{0,x\} \text{ for all } x \in \mathbb{N} \}$
• $S_2 = \{ f \in \mathbb{N}^{\mathbb{N}} : f(\{2n, 2n+1\}) = \{2n, 2n+1\} \}$
• $S_{\leq} = \{ f \in \Omega^{\Omega} : f(x) \leq x \text{ for all } x \in \mathbb{N} \}$
• $\mathbb{N}^{\mathbb{N}}$

In fact,

$$\emptyset \prec \mathfrak{F}_2 \prec \mathfrak{F}_3 \prec \cdots \prec \mathfrak{F} \prec S_{x,0} \prec S_2 \prec S_{\leqslant} \prec \mathbb{N}^{\mathbb{N}}.$$

Could \mathfrak{F}_2 be minimal?

The Cantor-Bendix theorem

Is it maybe true that $2^{\mathbb{N}} \preccurlyeq S$ for every uncountable subsemigroup S?

Theorem

Let X be a perfect Polish space. Then there exists an embedding of the Cantor set $2^{\mathbb{N}}$ into X.

Theorem (Cantor-Bendixon)

Let X be a Polish space. Then X can be written uniquely as $X = P \cup C$ where P is perfect and C is countable and open.

A closed subsemigroup of $\mathbb{N}^{\mathbb{N}}$ is a Polish space and so if it has cardinality 2^{\aleph_0} , then *S* contains a copy of the Cantor set $2^{\mathbb{N}}$.

A minimal class of subsemigroups?

Lemma

Let S be a closed subsemigroup of $\mathbb{N}^{\mathbb{N}}$ with $|S| = 2^{\aleph_0}$. Then there exist $U \subseteq S$ and $f \in 2^{\mathbb{N}}$ such that U is homeomorphic to $2^{\mathbb{N}}$ and $\lambda : U \longrightarrow 2^{\mathbb{N}}$ defined by $\lambda(g) = f \circ g$ for all $g \in U$ is a homeomorphism from U to $\lambda(U)$.

Theorem

Let S be a closed subsemigroup of $\mathbb{N}^{\mathbb{N}}$ of cardinality 2^{\aleph_0} . Then there exists a closed subsemigroup T of $2^{\mathbb{N}}$ with $|T| = 2^{\aleph_0}$ such that $T \preccurlyeq S$.

Proof.

- $\lambda(U)$, being homeomorphic to $2^{\mathbb{N}}$, is compact.
- $\mathbb{N}^{\mathbb{N}}$ is Hausdorff $\Rightarrow \lambda(U) \subseteq 2^{\mathbb{N}}$ is closed.

• let
$$T := \langle \lambda(U), (0 \ 1) \rangle$$

• $T \leq 2^{\mathbb{N}}$ is closed, $|T| = 2^{\aleph_0}$, and $T \approx \lambda(U)$.
• $\lambda(U) = \{ f \circ g : g \in U \} \subseteq \langle U, f \rangle$ and so

 $T \approx \lambda(U) \subseteq \langle U, f \rangle \approx U \subseteq S.$

The lost monoid

If A is a subset of \mathbb{N} , then define $s_A \in \mathbb{N}^{\mathbb{N}}$ by

$$s_A(n) = \begin{cases} n & \text{if } n \in A \\ 0 & \text{if } n \notin A. \end{cases}$$

If $\mathcal{A} \subseteq \mathcal{P}(\mathbb{N})$, then we define $S_{\mathcal{A}} = \{ s_{\mathcal{A}} \in \mathbb{N}^{\mathbb{N}} : A \in \mathcal{A} \}$ and we say that \mathcal{A} almost disjoint if

$$|A \cap B| < \infty$$
 for all $A, B \in \mathcal{A}$.

The subset S_A is closed if and only if A is closed in $2^{\mathbb{N}}$.

Theorem

If \mathcal{A} is an almost disjoint family of cardinality 2^{\aleph_0} , then $S_{\mathcal{A}}$ is incomparable under \preccurlyeq to \mathfrak{F} and \mathfrak{F}_n for all $n \ge 2$.

There exists $T \preccurlyeq S_A$ such that $\emptyset \prec T \preccurlyeq \mathfrak{F}_2$ and so $T \not\approx \mathfrak{F}_2$.

Theorem

There exists a chain, having length \aleph_1 , of \approx -classes containing (not necessarily closed) subsemigroups of $2^{\mathbb{N}}$.

Theorem

The following are equivalent:

- (i) $\aleph_1 = 2^{\aleph_0}$;
- (ii) there exists a subsemigroup S of $\mathbb{N}^{\mathbb{N}}$ such that $S \approx \mathbb{N}^{\mathbb{N}}$ and for all subsemigroups T of S either $T \approx \mathbb{N}^{\mathbb{N}}$ or $T \approx \{1_{\mathbb{N}}\}$.

Theorem

For all $i \in \mathbb{N}$, there exist i distinct closed subsemigroups contained in \mathfrak{F} that are mutually incomparable under \preccurlyeq .

The key message

Thank you for listening!