

Conjugacy in epigroups

António Malheiro
(CMA/FCT/NOVA University of Lisbon)
@ the York semigroup

(joint work with João Araújo, Michael Kinyon, Janusz Konieczny)

Acknowledgement:

This work was supported by CMA within the projects
UID/MAT/00297/2013
PTDC/MHC-FIL/2583/2014
PTDC/MAT-PUR/31174/2017
financed by 'Fundação para a Ciência e a Tecnologia'

Epigroups

Epigroups

A semigroup S is an *epigroup* if for any element x of S some power of x lies in a subgroup of S .

Nice classes of epigroups:

- ▶ finite semigroups;
- ▶ periodic semigroups;
- ▶ completely regular semigroups;
- ▶ completely 0-simple semigroups;
- ▶ algebraic monoids.

Some concrete examples:

- ▶ the semigroup of all matrices over a division ring;
- ▶ the infinite cyclic epigroup $C_{n,\infty}$ given by the presentation

$$\langle a, b \mid ab = ba, ab^2 = b, a^{n+1}b = a^n \rangle$$

Epigroups as unary semigroups

Let S be a semigroup:

- ▶ $a \in S$ is an *epigroup element* ($a \in \text{Epi}(S)$) (or a *group-bound element*) if $\exists n : a^n$ is in a subgroup of S ;
- ▶ the maximum subgroup of S containing a^n is its \mathcal{H} -class H ; with identity e ;
- ▶ we define the *pseudo-inverse* a' of a by

$$a' := (ae)^{-1}$$

\mathcal{H} -class H	
• $(ae)^{-1}$	$G =: a'$
• e	• $a\epsilon =: a''$
• a^n	

the inverse of ae in the group H ;

⋮

- ▶ $a \in \text{Epi}(S)$ iff $\exists n \ \exists a' \in S$ such that:

$$a'aa' = a', \quad aa' = a'a, \quad a^{n+1}a' = a^n;$$

$$\bullet a^2$$

the smallest such n is the *index* of a ;

$$\bullet a$$

- ▶ we set $a^\omega = aa'$; so $a^{\omega+1} = aa'a = a''$.
- ▶ $\text{Epi}_n(S) = \{a \in \text{Epi}(S) \text{ with index no more than } n\}$;
- ▶ $\text{Epi}_1(S)$ are the *completely regular*;
- ▶ S is an *epigroup* if $S = \text{Epi}(S)$.

Conjugacy... in groups

G a group

$a, b \in G$ are conjugate ($a \sim b$) if:

- ▶ $\exists_{u,v \in G} a = uv$ and $b = vu$
- ▶ $\exists_{g \in G} a = g^{-1}bg$
- ▶ $\exists_{g \in G} ga = bg$
- ▶ $\exists_{g \in G} ag = gb$
- ▶ consider a representation $\rho : G \rightarrow GL_n(\mathbb{C})$;

the character $\begin{array}{c} \chi_\rho : G \rightarrow \mathbb{C} \\ g \mapsto \text{Tr}(\rho(g)) \end{array}$ is a class function;

irreducible characters \longleftrightarrow conjugacy classes

Some known generalizations of conjugacy...

S a semigroup (with zero) / monoid / inverse semigroup / epigroup

$$a \sim_p b \iff \exists_{u,v \in S^1} \quad a = uv \wedge b = vu$$

$$a \sim_u b \iff \exists_{g \in U(S)} \quad g^{-1}ag = b \wedge gbg^{-1} = a$$

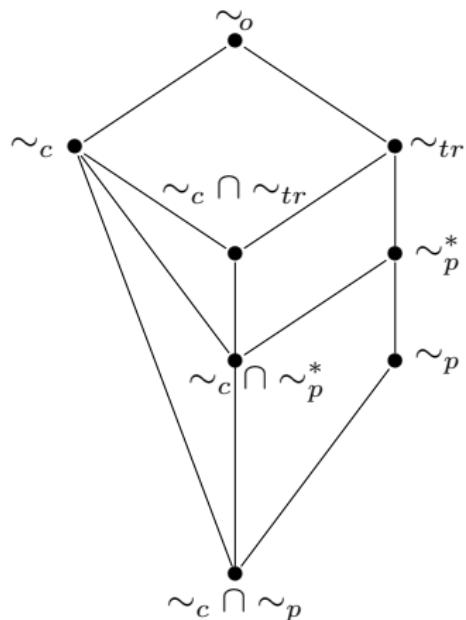
$$a \sim_i b \iff \exists_{g \in S^1} \quad g^{-1}ag = b \wedge gbg^{-1} = a$$

$$a \sim_o b \iff \exists_{g,h \in S^1} \quad ag = gb \wedge bh = ha$$

$$a \sim_c b \iff \exists_{g \in \mathbb{P}^1(a)} \quad \exists_{h \in \mathbb{P}^1(b)} \quad ag = gb \wedge bh = ha$$

$$\begin{aligned} a \sim_{tr} b \iff & \exists_{g,h \in S^1} \quad ghg = g \wedge hgh = h \wedge \\ & ga^{\omega+1}h = b^{\omega+1} \wedge \\ & hg = a^\omega \wedge gh = b^\omega. \end{aligned}$$

Known inclusions between conjugacies



.	0	1	2	3	4	5	6
0	0	0	0	0	4	4	0
1	0	0	0	0	4	4	0
2	0	0	0	0	4	4	0
3	0	0	0	0	4	4	0
4	4	4	4	4	4	4	4
5	4	4	4	4	4	4	4
6	0	0	2	3	4	5	6

SmallSemigroup(7,542155)

Epigroups

For $a, b \in \text{Epi}(S)$, we set

$$a \sim_{tr} b \iff \exists_{g,h \in S^1} ghg = g, hgh = h, ha''g = b'', gh = aa', hg = bb'.$$

Theorem

Let S be a semigroup. For $a, b \in \text{Epi}(S)$, the following are equivalent:

1. $a \sim_{tr} b$;
2. $\exists_{g,h \in S^1} ha''g = b'', gh = a^\omega, hg = b^\omega$;
3. $\exists_{g,h \in S^1} a''g = gb'', gh = a^\omega, hg = b^\omega$;
4. $\exists_{g,h \in S^1} ag = gb, bh = ha, gh = a^\omega, hg = b^\omega$;
5. $\exists_{g,h \in S^1} hgh = h, ha''g = b'', gb''h = a''$;
6. $a'' \sim_p b''$.

Epigroups

Theorem

Let S be a semigroup. Then:

1. \sim_{tr} is an equivalence relation on $\text{Epi}(S)$;
2. for all $x \in \text{Epi}(S)$, $x \sim_{tr} x''$;
3. for all $x, y \in S$ such that $xy, yx \in \text{Epi}(S)$, $xy \sim_{tr} yx$;
4. \sim_{tr} is the smallest equivalence relation on $\text{Epi}(S)$ such that (2) and (3) hold.

Theorem

Let S be a semigroup. As relations on $\text{Epi}(S)$, the following inclusions hold:

$$\sim_p \subseteq \sim_p^* \subseteq \sim_{tr} \subseteq \sim_o .$$

Completely regular semigroups and beyond ...

Completely regular as semigroup variety:

$$xx' = x'x \quad x'xx' = x' \quad xx'x = x$$

Corollary

Let S be a semigroup. As relations on $\text{Epi}_1(S)$, we have

$\sim_p = \sim_p^* = \sim_{tr}$. In particular, (as [Kudryavtseva](#) showed) \sim_p is transitive on completely regular semigroups.

\mathcal{W} - Another semigroup variety:

$$xx' = x'x \quad x'xx' = x' \quad x^3x' = x^2 \quad (xy)'' = xy$$

Theorem

Let S be an epigroup in \mathcal{W} . Then $\sim_p = \sim_p^* \subset \sim_{tr}$.

Variants of CS semigroups

Theorem

Let $(S, \cdot, ')$ be a completely regular semigroup, and fix $a \in S$. Let $(S, \circ, *)$ be the variant of S at a , that is,

$$x \circ y = xay \quad \text{and} \quad x^* = (xa)'x(ax)'$$

for all $x, y \in S$. Then $(S, \circ, *)$ is in \mathcal{W} .

Corollary

The relation \sim_p is transitive in every variant of a completely regular semigroup.

In general, for epigroups ...

\sim_p transitive $\not\Rightarrow$ \sim_p transitive in all of the variants.

Epigroups and idempotents

Proposition

Let S be an epigroup. Then $\sim_{tr} \cap \leq$ is the identity relation on $E(S)$.

Proposition

Let S be an epigroup in which $\sim_{tr} = \sim_o$. Then $E(S)$ is an antichain.

Completely simple semigroups

- ▶ no proper ideals;
- ▶ idempotents form an antichain.

Theorem

In completely simple semigroups, we have $\sim_p = \sim_p^* = \sim_{tr} = \sim_o$.

Theorem

Let S be a regular epigroup without zero. The following are equivalent:

1. $\sim_p = \sim_o$ in S ;
2. S is completely simple.

Epigroups with zero

Completely 0-simple semigroups

Rees matrix representation $\mathcal{M}^0(G; I, \Lambda; P)$:

- ▶ I and Λ are nonempty sets;
- ▶ G is a group;
- ▶ $P = (p_{\lambda j})$ is a $\Lambda \times I$ matrix with entries in $G \cup \{0\}$ such that no row or column of P consists entirely of zeros
- ▶ elements from $(I \times G \times \Lambda) \cup \{0\}$;
- ▶ multiplication is defined by $(i, a, \lambda)(j, b, \mu) = (i, ap_{\lambda j}b, \mu)$ if $p_{\lambda j} \neq 0$, $(i, a, \lambda)(j, b, \mu) = 0$ if $p_{\lambda j} = 0$, and $(i, a, \lambda)0 = 0(i, a, \lambda) = 0$.

Proposition

For a completely 0-simple semigroup $\mathcal{M}^0(G; I, \Lambda; P)$, we have $\sim_c \subseteq \sim_p$. Moreover, $\sim_c = \sim_p$ if and only if the sandwich matrix P has only nonzero elements.

Epigroups with zero

Lemma

Let S be an epigroup with zero and suppose $\sim_c \subseteq \sim_{tr}$. Then $E(S) \setminus \{0\}$ is an antichain.

Theorem

Let S be a regular epigroup with zero. The following are equivalent:

1. $\sim_c \subseteq \sim_p$;
2. $\sim_c \subseteq \sim_{tr}$;
3. S is a 0-direct union of completely 0-simple semigroups.

0-direct union

A semigroup S with zero is called a *0-direct union* of completely 0-simple semigroups if $S = \bigcup_{i \in I} S_i$, where each S_i is a completely 0-simple semigroup and $S_i \cap S_j = S_i S_j = \{0\}$ if $i \neq j$

The conjugacies \sim_o and \sim_c in epigroups

Recall \sim_o

$$a \sim_o b \iff \exists_{g,h \in S^1} ag = gb \wedge bh = ha$$

Theorem

Let S be an epigroup and suppose $a \sim_o b$ for some $a, b \in S$. Then there exist mutually inverse $g, h \in S^1$ such that $ag = gb$ and $bh = ha$.

Recall \sim_c

$$a \sim_c b \iff \exists_{g \in \mathbb{P}^1(a)} \exists_{h \in \mathbb{P}^1(b)} ag = gb \wedge bh = ha$$

Theorem

Let S be an epigroup with zero in \mathcal{W} and suppose $a \sim_c b$ for some $a, b \in S$. Then there exist mutually inverse $g \in \mathbb{P}^1(a)$, $h \in \mathbb{P}^1(b)$ such that $ag = gb$ and $bh = ha$.

Conjugacy in symmetric inverse semigroups - $\mathcal{I}(X)$

X countable set

Basic partial injective transformations on X :

- ▶ *cycle* - $\delta = (x_0 x_1 \dots x_{k-1})$, with $x_i \delta = x_{i+1}$ for all $0 \leq i < k-1$, and $x_{k-1} \delta = x_0$.
- ▶ *chain* - $\theta = [x_0 x_1 \dots x_k]$, with $x_i \theta = x_{i+1}$ for all $0 \leq i \leq k-1$.
- ▶ *double ray* - $\omega = \langle \dots x_{-1} x_0 x_1 \dots \rangle$, with $x_i \omega = x_{i+1}$ for all i .
- ▶ *right ray* - $v = [x_0 x_1 x_2 \dots \rangle$, with $x_i v = x_{i+1}$ for all $i \geq 0$.
- ▶ *left ray* - $\lambda = \langle \dots x_2 x_1 x_0 \rangle$, with $x_i \lambda = x_{i-1}$ for all $i > 0$.

An element $\beta \in \mathcal{I}(X)$ has a unique *cycle-chain-ray decomposition*:

$$\beta = (2 \ 4) \sqcup [6 \ 8 \ 10] \sqcup \langle \dots -6 -4 -2 -1 -3 -5 \dots \rangle \sqcup [1 \ 5 \ 9 \ 13 \dots] \sqcup \langle \dots 15 \ 11 \ 7 \ 3 \dots \rangle$$

The *cycle-chain-ray type* of

$$\alpha = (2 \ 6 \ 8) \sqcup [1 \ 3] \sqcup [4 \ 5 \ 9]$$

(has the form $(* \ * \ *)[* \ *][* \ * \ *]$)

is the sequence of cardinalities

$$\langle 0, 0, 1, 0, \dots; 0, 1, 1, 0, \dots; 0, 0, 0 \rangle.$$

The *cycle-chain-ray type* of

$$\beta = (2 \ 4) \sqcup [6 \ 8 \ 10] \sqcup \langle \dots -6 -4 -2 -1 -3 -5 \dots \rangle \sqcup [1 \ 5 \ 9 \ 13 \dots] \sqcup \langle \dots 15 \ 11 \ 7 \ 3 \dots \rangle$$

(has the form $(* \ *)[* \ * \ *] \langle \dots * \ * \ * \dots \rangle [* \ * \ * \dots] \langle \dots * \ * \ * \dots \rangle$)

is the sequence of cardinalities

$$\langle 0, 1, 0, \dots; 0, 0, 1, 0, \dots; 1, 1, 1 \rangle.$$

$$\langle |\Delta_\alpha^1|, |\Delta_\alpha^2|, |\Delta_\alpha^3|, \dots; |\Theta_\alpha^1|, |\Theta_\alpha^2|, |\Theta_\alpha^3|, \dots; |\Omega_\alpha|, |\Upsilon_\alpha|, |\Lambda_\alpha| \rangle$$

Conjugacy in symmetric inverse semigroups - $\mathcal{I}(X)$

Theorem

Suppose that X is countable. Let $\alpha, \beta \in \mathcal{I}(X)$. Then $\alpha \sim_c \beta$ if and only if the following conditions are satisfied:

(a) $|\Delta_\alpha^k| = |\Delta_\beta^k|$ for every $k \in \mathbb{Z}_+$, $|\Omega_\alpha| = |\Omega_\beta|$, and $|\Lambda_\alpha| = |\Lambda_\beta|$;

(b) if Ω_α is finite, then $|\Upsilon_\alpha| = |\Upsilon_\beta|$; and

(c) if Λ_α is finite, then

(i) $k_\alpha = k_\beta$ ($k_\alpha = \sup\{k \in \mathbb{Z}_+ : \Theta_\alpha^k \neq \emptyset\}$); and

(ii) if $k_\alpha \in \mathbb{Z}_+$, then $m_\alpha = m_\beta$

$(m_\alpha = \max\{m \in \{1, 2, \dots, k_\alpha\} : |\Theta_\alpha^m| = \aleph_0\})$ and for every $k \in \{m_\alpha + 1, \dots, k_\alpha\}$, $|\Theta_\alpha^k| = |\Theta_\beta^k|$.

$$\langle |\Delta_\alpha^1|, |\Delta_\alpha^2|, |\Delta_\alpha^3|, \dots; |\Theta_\alpha^1|, |\Theta_\alpha^2|, |\Theta_\alpha^3|, \dots; |\Omega_\alpha|, |\Upsilon_\alpha|, |\Lambda_\alpha| \rangle$$

$$\langle |\Delta_\beta^1|, |\Delta_\beta^2|, |\Delta_\beta^3|, \dots; |\Theta_\beta^1|, |\Theta_\beta^2|, |\Theta_\beta^3|, \dots; |\Omega_\beta|, |\Upsilon_\beta|, |\Lambda_\beta| \rangle$$

Conjugacy in symmetric inverse semigroups - $\mathcal{I}(X)$

Corollary

Suppose that X is finite and $\alpha, \beta \in \mathcal{I}(X)$. Then the following are equivalent:

- ▶ $\alpha \sim_c \beta$;
- ▶ α and β have the same cycle-chain type;
- ▶ there exists a permutation σ on the set X such that $\alpha = \sigma^{-1}\beta\sigma$.

Theorem (Ganyushkin, Kormysheva, 1993)

Suppose that X is finite and $\alpha, \beta \in \mathcal{I}(X)$. Then $\alpha \sim_p^* \beta$ if and only if α and β have the same cycle type.

Conjugacy in symmetric inverse semigroups - $\mathcal{I}(X)$

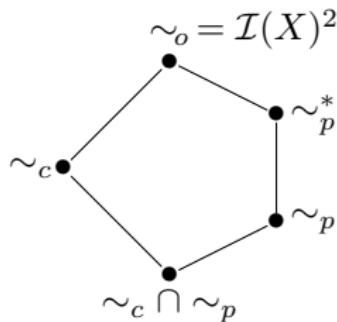
Proposition

Suppose that X is finite with $|X| \geq 2$. Then $\sim_c \subset \sim_p$ in $\mathcal{I}(X)$.

Proposition

Suppose that X is countably infinite. Then, with respect to inclusion, \sim_p and \sim_c are not comparable in $\mathcal{I}(X)$.

For a countably infinite X :



Epigroup elements of $\mathcal{I}(X)$

Lemma

Let $\alpha \in \mathcal{I}(X)$. Then α is an epigroup element if and only if $\Omega_\alpha = \Upsilon_\alpha = \Lambda_\alpha = \emptyset$ and there is a positive integer n such that $\Theta_\alpha^k = \emptyset$ for all $k > n$.

Lemma

Let $\alpha \in \text{Epi}(\mathcal{I}(X))$. Then α and α'' have the same cycle type.

Theorem

Let X be a countable set. Then for all $\alpha, \beta \in \text{Epi}(\mathcal{I}(X))$, $\alpha \sim_{tr} \beta$ if and only if α and β have the same cycle type.

When is conjugacy the identity relation?

Fact:

In a group \sim is the identity if and only if G is commutative.

Theorem

Let S be a semigroup. Then, \sim_p is the identity relation in S if and only if S is commutative.

Theorem

Let S be an epigroup. Then, \sim_{tr} is the identity relation in S if and only if S is a commutative completely regular epigroup.

Theorem

Let S be a semigroup. Then:

1. if S is commutative, then \sim_o is the minimum cancellative congruence on S ;
2. \sim_o is the identity relation in S if and only if S is commutative and cancellative.

When is conjugacy the identity relation?

Corollary

Let S be a commutative and cancellative semigroup. Then \sim_p , \sim_o , and \sim_c all coincide, and are equal to the identity relation.

Corollary

Let S be an epigroup. Then \sim_p , \sim_o , \sim_{tr} and \sim_c all coincide and are equal to the identity relation if and only if S is a commutative group.

When is conjugacy the universal relation?

Theorem

Let S be an epigroup. The following are equivalent:

1. \sim_{tr} is the universal relation;
2. $E(S)$ is an antichain and for all $x \in S$, $x'' = x^\omega$;
3. for all $x, y \in S$, $x'yx' = x'$;
4. for all $x, y \in S$, $x^\omega y x^\omega = x^\omega$;
5. for all $x \in S$, $e \in E(S)$, $exe = e$.

Theorem

Let S be a semigroup.

1. If S is a rectangular band, then \sim_p is the universal relation.
2. If \sim_p is the universal relation in S , then S is simple. If, in addition, S contains an idempotent, then S is a rectangular band.

Corollary

In a finite semigroup (or more generally, an epigroup) S , \sim_p is the universal relation if and only if S is a rectangular band.

Some research problems:

For inverse semigroups we can define the conjugacy notion

$$a \sim_i b \Leftrightarrow \exists g \in S^1, \quad g^{-1}ag = b \quad \wedge \quad gbg^{-1} = a.$$

This can be naturally generalized for epigroups setting

$$a \sim b \Leftrightarrow \exists g \in S^1, \quad g'ag = b \quad \wedge \quad gbg' = a.$$

In general, \sim is not transitive so we should consider \sim^* .

Left restriction

In $P(X)$ (the semigroup of partial transformations on any nonempty set X) which can be regarded as a left restriction semigroup with respect to the set of partial identities $E = \{id_Y : Y \subseteq X\}$ we have

$$\alpha \sim_c \beta \Leftrightarrow \exists \phi, \psi \in S^1 : \alpha\phi = \phi\beta \wedge \beta\psi = \psi\alpha \wedge (\alpha\phi)^+ = \alpha^+ \wedge (\beta\psi)^+ = \beta^+.$$

Thanks for your attention!