Quasivarieties, Adequate Monoids and Expansions

Daniel Heath

He/Him

University of Manchester

York Semigroup Seminar, 11th December 2024

The University of Manchester

Some pre-announcements...

1 The next **NBSAN** will be in Manchester on Friday 11th April 2025.

2 Introduction to Modern Advances in Algebra 2025 in Manchester 9th – 11th April.

<https://sites.google.com/view/itmaia2025/>

Definition

The type of an algebraic structure A (in the sense of universal algebra) is a tuple $\sigma=(\sigma_1,\ldots,\sigma_k)$ of functions $\sigma_i:A^{n_i}\to A$ each corresponding to some n_i -ary operation on A . The corresponding tuple of arities (n_1, \ldots, n_k) is called the *signature* of A.

Examples.

- **1** Semigroups have type (\cdot) and signature (2) .
- Monoids have type $(\cdot, 1)$ and signature $(2, 0)$.
- \bullet Groups have type $(\cdot,^{-1},\boldsymbol{1})$ and signature $(2,1,0).$

Definition

For a fixed set of symbols X and type σ , an *identity* is a formal equation $u = v$ where u, v are formal terms in $T(X)$.

Definition

For a fixed set of symbols X and type σ , a quasi-identity is a formal implication $(\bigwedge_{i=1}^n u_i = v_i) \to u = v$ where $u_1, \ldots, u_n, v_1, \ldots, v_n, u, v$ are formal terms in $\mathcal{T}(X)$.

Varieties and Quasivarieties

Definition

A σ -variety of algebraic structures Q is a class of all models of algebraic structures of type σ satisfying a defining list of identities.

Examples.

- **1** Semigroups: $a(bc) = (ab)c$.
- **2** Monoids: $a(bc) = (ab)c$ $1a = a$ $a1 = a$.
- \bullet Groups: $a(bc)=(ab)c$ $1a=a$ $a1=a$ $aa^{-1}=1$ $a^{-1}a=1$.

Definition

A σ -quasivariety of algebraic structures of type σ is a class of all models of algebraic structures of type σ satisfying a defining list of quasi-identities.

Examples.

- **4** Any variety!
- **2** Right Cancellative Monoids: $a(bc) = (ab)c$ **1** $a = a$ **a1** $= a$ **ac** $= bc \rightarrow a = b$.

Birkhoff's Theorem

Theorem (Birkhoff 1935)

Let V be a class of algebraic structures of the same type. Then V forms a variety if and only if V is closed under:

- Taking homomorphic images (quotients).
- Taking subalgebras.
- Arbitrary direct products.

Theorem (Adámek, Rosicky 1994)

Let Q be a class of algebraic structures of the same type. Then Q forms a quasi-variety if and only if Q is closed under:

- Taking subalgebras.
- Arbitrary direct products.
- Filtered colimits.

In particular, quasivarieties might not be closed under quotients!

Presentation Problems

What does **Mon** $\langle a, b \mid ab = 1 \rangle$ actually mean?

Formally: Take the free monoid on $\{a, b\}$ and quotient by the smallest (2,0)-congruence σ s.t.

 $(ab, 1) \in \sigma$.

If we do the same in a quasivariety Q , then:

- Free objects always exist! \odot
- But $Q(X | R)$ might not be in $Q...$ \odot

Example. Take $RC\langle a | a^2 = a \rangle$. The free right cancellative monoid on $\{a\}$ is $\{a\}^*$. The smallest (2,0)-congruence containing (a^2, a) is $\sigma = \{(1, 1), (a^n, a) : n \in \mathbb{N}\}.$ The quotient is ${a}^{*} / {\sigma} \cong (\{0,1\}, \vee).$ Not right cancellative!

Intuitively, $RC\langle a \mid a^2 = a \rangle$ should be the trivial monoid...

Definition

Let Q be a quasivariety of signature s . Let X be a set and let R be a collection of identities. By $Q\langle X \mid R \rangle$, we mean $F_{\sqrt{\sigma}}$ where:

- F is the free object of rank $|X|$ in Q .
- \bullet σ is the smallest s-congruence such that:
	- $\bigcirc R \subset \sigma$. $\mathbf{a} \cdot \overline{F}(\overline{\mathbf{a}}) \in \mathcal{Q}.$

(Note that such a σ always exists.)

Example. RC $\langle a | a^2 = a \rangle \cong \{1\}$. \odot

Left Adequate Monoids

Definition

Left adequate monoids form the quasivariety with type $(\cdot,^+, 1)$ and signature $(2, 1, 0)$ with defining quasi-identities:

$$
a(bc) = (ab)c, \quad a1 = a = 1a,
$$

$$
a^+a = a, \quad (a^+b^+)^+ = a^+b^+, \quad a^+b^+ = b^+a^+, \quad (ab)^+ = (ab^+)^+,
$$

$$
a^2 = a \rightarrow a = a^+ \quad \text{and} \quad ac = bc \rightarrow ac^+ = bc^+.
$$

Definition

Equivalently, a monoid M is left adequate if:

- \bullet Idempotents of M commute;
- For all $a\in M$, there exists a unique idempotent $a^+\in E(M)$ such that

$$
\forall x, y \in M \quad xa = ya \iff xa^+ = ya^+.
$$

Many of these (quasi)varieties have free objects described by operations on directed graphs.

Munn 1974: Free inverse monoids, (·, −1 , 1), FI(X) = Inv⟨X | ∅⟩. bb[−]¹ abaa[−]¹b [−]¹ + × b b a b a a b + × b a b a

Fountain, Gomes, Gould 2009: Free (left) ample / restriction monoids, $(\cdot,^+,1)$, $FLAm(X) = LAm\langle X | \varnothing \rangle$.

Kambites 2011: Free (left) adequate / Ehresmann monoids, $(\cdot,^+,1)$, $\text{FLAd}(X) = \text{LAd}\langle X | \varnothing \rangle.$

Definition (Birget, Rhodes 1984)

Let $C \subset \mathcal{D} \subset$ Sgp. An expansion of C to D is a functor $F : C \to \mathcal{D}$ such that there is a natural transformation $\eta : F \implies \text{Id}_{\mathcal{C}}$ whose components η_s are all surjective.

I.e. for all $S \in \mathcal{C}$, there is a semigroup $F(S) \in \mathcal{D}$ and a surjective morphism $\eta_S : F(S) \to S$ such that whenever $\tau : S \to T$ is a morphism, there is a morphism $F(\tau) : F(S) \to F(T)$ making the following diagram commute:

$F(S) \xrightarrow{F(\tau)} F(T)$ $S \xrightarrow{\tau} T$ η s | η τ

Theorem (Birget, Rhodes 1984 / Szendrei 1989)

There is an expansion Sz : $Gp \rightarrow$ Flnv given by Sz(G) = { (H, g) : $H \subseteq G$ finite and $1, g \in H$ }.

Theorem (Szendrei 1989)

 Sz is left adjoint to the maximal group image functor $\sigma^\natural:$ <code>Flnv</code> \to <code>Gp</code>.

[Quasivarieties](#page-2-0) enterpretations of the Wrap-Up **[Expansions](#page-10-0) [Pretzel Monoids](#page-12-0) According to the Wrap-Up of the Wrap-Up**

Expansions of other Categories

Recall that $FI(X)$ was constructed by 'tracing' the Cayley graph of $FG(X)$... what about other Cayley graphs?

Theorem (Margolis, Meakin 1989)

Let X be a set and let G be an X-generated group. There is an expansion $M : XGp \rightarrow XElnv$ given by $M(G) = \{(\Gamma, g) : \Gamma \text{ is a finite connected subgraph of } \text{Cay}(G), 1, g \in V(\Gamma) \}.$ ${\mathcal M}$ is left adjoint to the maximal group image functor $\sigma^\natural: \mathsf{XElnv} \to \mathsf{XGp}.$

Theorem (Gould 1996, $+$ Gomes 2000)

Let X be a set and let M be an X -generated monoid. Define

 $\mathcal{G}(M) = \{(\Gamma, m) : \Gamma \text{ is a finite connected subgraph of } \text{Cay}(M), 1, m \in V(\Gamma)\}.$

Then G forms expansions $XRC \rightarrow XPLAm$ and $XU \rightarrow XPWLAm$. Moreover, G is left adjoint to taking the maximal right cancellative image and maximal unipotent image respectively.

Question

Can we find an expansion $XRC \rightarrow XLAd$? Preferably with some graphical interpretation?

Fix a set X and an X -generated right cancellative monoid C.

Definition

An *idempath* in an X-labelled digraph Γ is a path labelled by a word $x_1x_2 \cdots x_n$ which is equal to the identity in C. We take the empty path with label ϵ to have $\epsilon =_{\mathcal{C}} 1$. An idempath identification in Γ is the process of 'cycling up' an idempath.

Lemma (H., Kambites, Szakács 2024)

Given a tree $T \in \text{FLAd}(X)$, there exists a unique graph obtainable by sequentially performing all non-trivial idempath identifications (in any order) to T.

Definition

Given any tree $T \in \text{FLAd}(X)$, perform the following:

- \bullet Idempath identify as far as possible...
- ² ...then retract anything in the result which can retract (take minimal image under idempotent graph endomorphisms).

We call the (uniquely obtained) result the pretzel of T, denoted \tilde{T} .

Take $X = \{x, y\}$ and $C = \mathbb{Z}_3 \times \mathbb{Z}_3 = \text{Mon}\langle x, y \rangle$.

Define a multiplication \cdot on pretzels as follows:

- **1** Glue $\overline{\widetilde{T}}$ to $\overline{\widetilde{S}}$, start-to-end.
- **2** Pretzel-ify the result (note that new idempaths could have been created!).

Define a unary operation $+$ on pretzels as follows:

- **1** Move the end vertex of \overline{t} to the start vertex.
- **2** Pretzel-ify the result (note that new retractions might be possible!).

Theorem (H., Kambites, Szakács 2024)

The set of all pretzels $PT(C)$ forms an X-generated left adequate monoid.

Theorem (H., Kambites, Szakács 2024)

$$
\mathcal{PT}(C;X)\cong \mathsf{LAd}\langle X\mid w^2=w\ \text{for}\ w\in X^*\ \text{s.t.}\ w=c\ 1\rangle.
$$

Margolis-Meakin Expansions vs. Pretzels

Properties of $\mathcal{M}(G)$

- \bigcirc M(FG(X)) ≅ FI(X).
- **2** $M(G)$ is finite \iff G is finite.
- \bullet Elements are subgraphs of $\text{Cay}(G)$.

$$
\bullet \ \mathcal{M}(G) \cong \text{Inv}\langle X \mid w^2 = w \text{ for } w \in X^* \text{ s.t. } w =_G 1 \rangle.
$$

 \bullet M defines an expansion $XGp \rightarrow XElnv$.

Properties of $PT(C)$

$$
\bullet \ \mathcal{PT}(X^*) \cong \mathrm{FLAd}(X).
$$

- **②** $PT(C)$ is finite $\iff C$ is finite $\implies C$ is a group.
- \bullet Elements are trees of strongly connected subgraphs of $\text{Cav}(C)$.

$$
\text{P}\mathcal{T}(C;X) \cong \text{LAd}\langle X \mid w^2 = w \text{ for } w \in X^* \text{ s.t. } w =_C 1 \rangle.
$$

Theorem (H., Kambites, Szakács 2024)

 PT defines an expansion $XRC \rightarrow XLAd$.

Open Questions and What's Next

Can we describe other presentations using similar combinatorial methods? E.g. can we describe:

> $\mathsf{LAm}\langle X\mid w^2=w$ for $w\in X^*$ s.t. $w=_\mathcal{C} 1\rangle$ for right cancellative $\mathcal C$? **Finv** $\langle X | w^2 = w$ for $w \in X^*$ s.t. $w =_G 1$ for group G?

- What about right adequate and two-sided adequate pretzel monoids?
- Can we find geometric interpretations of other analogues of Margolis-Meakin expansions in the left adequate setting, perhaps one such that $M(C)$ has maximal right cancellative image C?
- \bullet Can we apply similar pretzel-style techniques in F -inverse land? In particular for the free F-inverse monoid...?
- What about other interesting presentations of (left) adequate monoids?