# **Quasivarieties, Adequate Monoids and Expansions**

### Daniel Heath

 ${\rm He}/{\rm Him}$ 

### University of Manchester

York Semigroup Seminar, 11th December 2024



The University of Manchester

| asivarieties | Expansions | Pretzel Monoids |  |
|--------------|------------|-----------------|--|
| 0000000      | 00         | 0000            |  |
|              |            |                 |  |

- Some pre-announcements...
  - Solution The next NBSAN will be in Manchester on Friday 11th April 2025.
  - Introduction to Modern Advances in Algebra 2025 in Manchester 9th 11th April.



https://sites.google.com/view/itmaia2025/

| Quas | siva         | rieties |  |
|------|--------------|---------|--|
| 00   | $\mathbf{o}$ | 0000    |  |

# Universal Algebra

### Definition

The *type* of an algebraic structure A (in the sense of universal algebra) is a tuple  $\sigma = (\sigma_1, \ldots, \sigma_k)$  of functions  $\sigma_i : A^{n_i} \to A$  each corresponding to some  $n_i$ -ary operation on A. The corresponding tuple of arities  $(n_1, \ldots, n_k)$  is called the *signature* of A.

### Examples.

- Semigroups have type  $(\cdot)$  and signature (2).
- **2** Monoids have type  $(\cdot, \mathbf{1})$  and signature (2, 0).
- Solution Groups have type  $(\cdot, {}^{-1}, \mathbf{1})$  and signature (2, 1, 0).

### Definition

For a fixed set of symbols X and type  $\sigma$ , an *identity* is a formal equation u = v where u, v are formal terms in  $\mathcal{T}(X)$ .

### Definition

For a fixed set of symbols X and type  $\sigma$ , a *quasi-identity* is a formal implication  $(\bigwedge_{i=1}^{n} u_i = v_i) \rightarrow u = v$  where  $u_1, \ldots, u_n, v_1, \ldots, v_n, u, v$  are formal terms in  $\mathcal{T}(X)$ .

| varieties | Pretzel Monoids |  |
|-----------|-----------------|--|
| 00000     |                 |  |
|           |                 |  |

# Varieties and Quasivarieties

#### Definition

Quas

A  $\sigma$ -variety of algebraic structures Q is a class of all models of algebraic structures of type  $\sigma$  satisfying a defining list of identities.

### Examples.

- Semigroups: a(bc) = (ab)c.
- **2** Monoids: a(bc) = (ab)c  $\mathbf{1}a = a$   $a\mathbf{1} = a$ .
- **③** Groups: a(bc) = (ab)c **1**a = a a**1**= a  $aa^{-1} =$ **1** $a^{-1}a =$ **1**.

### Definition

A  $\sigma$ -quasivariety of algebraic structures of type  $\sigma$  is a class of all models of algebraic structures of type  $\sigma$  satisfying a defining list of quasi-identities.

### Examples.

- Any variety!
- **2** Right Cancellative Monoids: a(bc) = (ab)c 1a = a a1 = a  $ac = bc \rightarrow a = b$ .

# Birkhoff's Theorem

# Theorem (Birkhoff 1935)

Let V be a class of algebraic structures of the same type. Then V forms a variety if and only if V is closed under:

- Taking homomorphic images (quotients).
- Taking subalgebras.
- Arbitrary direct products.

# Theorem (Adámek, Rosicky 1994)

Let Q be a class of algebraic structures of the same type. Then Q forms a quasi-variety if and only if Q is closed under:

- Taking subalgebras.
- Arbitrary direct products.
- Filtered colimits.

In particular, quasivarieties might not be closed under quotients!

| Quasivarieties<br>000●0000 |   | Expansions<br>OO | Pretzel Monoids<br>0000 |  |
|----------------------------|---|------------------|-------------------------|--|
| -                          | _ |                  |                         |  |

# Presentation Problems

What does **Mon** $\langle a, b \mid ab = 1 \rangle$  actually mean?

Formally: Take the free monoid on  $\{a, b\}$  and quotient by the smallest (2, 0)-congruence  $\sigma$  s.t.

 $(ab, 1) \in \sigma$ .

If we do the same in a quasivariety  $\mathcal{Q}$ , then:

- Free objects always exist! ③
- But  $\mathcal{Q}\langle X \mid R \rangle$  might not be in  $\mathcal{Q}_{\cdots}$   $\bigcirc$

**Example.** Take  $\mathbf{RC}\langle a \mid a^2 = a \rangle$ . The free right cancellative monoid on  $\{a\}$  is  $\{a\}^*$ . The smallest (2,0)-congruence containing  $(a^2, a)$  is  $\sigma = \{(1,1), (a^n, a) : n \in \mathbb{N}\}$ . The quotient is  $\{a\}^* \nearrow \sigma \cong (\{0, 1\}, \lor)$ . Not right cancellative!

Intuitively,  $\mathbf{RC}\langle a \mid a^2 = a \rangle$  should be the trivial monoid...

| Quasivarieties | Expansions | Pretzel Monoids |  |
|----------------|------------|-----------------|--|
| 0000●000       | OO         | 0000            |  |
| The Fix        |            |                 |  |

#### Definition

Let Q be a quasivariety of signature  $\mathfrak{s}$ . Let X be a set and let R be a collection of identities. By  $Q\langle X \mid R \rangle$ , we mean  $F_{\sigma}$  where:

- F is the free object of rank |X| in Q.
- $\bullet~\sigma$  is the smallest  $\mathfrak{s}\text{-congruence}$  such that:
  - $\begin{array}{ccc} \bullet & R \subseteq \sigma. \\ \bullet & F_{/\sigma} \in \mathcal{Q}. \end{array}$

(Note that such a  $\sigma$  always exists.)

**Example.**  $\mathsf{RC}\langle a \mid a^2 = a \rangle \cong \{1\}.$   $\bigcirc$ 

| Quasivarieties | Expansions | Pretzel Monoids |  |
|----------------|------------|-----------------|--|
| 000000000      | OO         | 0000            |  |
|                |            |                 |  |

# Left Adequate Monoids

#### Definition

Left adequate monoids form the quasivariety with type  $(\cdot,^+, 1)$  and signature (2, 1, 0) with defining quasi-identities:

$$a(bc) = (ab)c, \quad a1 = a = 1a,$$
  
 $a^+a = a, \quad (a^+b^+)^+ = a^+b^+, \quad a^+b^+ = b^+a^+, \quad (ab)^+ = (ab^+)^+,$   
 $a^2 = a \rightarrow a = a^+ \text{ and } ac = bc \rightarrow ac^+ = bc^+.$ 

### Definition

Equivalently, a monoid M is left adequate if:

Idempotents of *M* commute;

**③** For all  $a \in M$ , there exists a unique idempotent  $a^+ \in E(M)$  such that

$$\forall x, y \in M \quad xa = ya \iff xa^+ = ya^+.$$



Groups

| Quasivarieties<br>00000000 | Expansions<br>OO | OOOO | O O |
|----------------------------|------------------|------|-----|
| Free Objects               |                  |      |     |
|                            |                  |      |     |

Many of these (quasi)varieties have free objects described by operations on directed graphs.

**Fountain, Gomes, Gould 2009**: Free (left) ample / restriction monoids,  $(\cdot, +, 1)$ , FLAm $(X) = \text{LAm}\langle X \mid \emptyset \rangle$ .



**Kambites 2011**: Free (left) adequate / Ehresmann monoids,  $(\cdot, +, 1)$ , FLAd $(X) = LAd\langle X \mid \emptyset \rangle$ .



Expansions O Pretzel Monoids

# Semigroup Expansions

### Definition (Birget, Rhodes 1984)

Let  $C \subseteq D \subseteq$ **Sgp**. An *expansion of* C *to* D is a functor  $F : C \to D$  such that there is a natural transformation  $\eta : F \implies Id_C$  whose components  $\eta_S$  are all surjective.

I.e. for all  $S \in C$ , there is a semigroup  $F(S) \in D$  and a surjective morphism  $\eta_S : F(S) \to S$  such that whenever  $\tau : S \to T$  is a morphism, there is a morphism  $F(\tau) : F(S) \to F(T)$  making the following diagram commute:

# 

Theorem (Birget, Rhodes 1984 / Szendrei 1989)

There is an expansion  $Sz : \mathbf{Gp} \to \mathbf{FInv}$  given by  $Sz(G) = \{(H,g) : H \subseteq G \text{ finite and } 1, g \in H\}.$ 

### Theorem (Szendrei 1989)

Sz is left adjoint to the maximal group image functor  $\sigma^{\natural}$ : **FInv**  $\rightarrow$  **Gp**.

| 200 |  |
|-----|--|

Expansions OO Pretzel Monoids

# Expansions of other Categories

Recall that FI(X) was constructed by 'tracing' the Cayley graph of FG(X)... what about other Cayley graphs?

### Theorem (Margolis, Meakin 1989)

Let X be a set and let G be an X-generated group. There is an expansion  $\mathcal{M} : \mathbf{XGp} \to \mathbf{XEInv}$ given by  $\mathcal{M}(G) = \{(\Gamma, g) : \Gamma \text{ is a finite connected subgraph of } Cay(G), 1, g \in V(\Gamma)\}.$  $\mathcal{M}$  is left adjoint to the maximal group image functor  $\sigma^{\natural} : \mathbf{XEInv} \to \mathbf{XGp}.$ 

### Theorem (Gould 1996, + Gomes 2000)

Let X be a set and let M be an X-generated monoid. Define

 $\mathcal{G}(M) = \{(\Gamma, m) : \Gamma \text{ is a finite connected subgraph of } Cay(M), 1, m \in V(\Gamma)\}.$ 

Then  $\mathcal{G}$  forms expansions **XRC**  $\rightarrow$  **XPLAm** and **XU**  $\rightarrow$  **XPWLAm**. Moreover,  $\mathcal{G}$  is left adjoint to taking the maximal right cancellative image and maximal unipotent image respectively.

#### Question

Can we find an expansion  $XRC \rightarrow XLAd$ ? Preferably with some graphical interpretation?

| Quasivarieties | Expansions | Pretzel Monoids |  |
|----------------|------------|-----------------|--|
| 00000000       | OO         | ●000            |  |
| Pretzelsl      |            |                 |  |

Fix a set X and an X-generated right cancellative monoid C.

#### Definition

An *idempath* in an X-labelled digraph  $\Gamma$  is a path labelled by a word  $x_1x_2\cdots x_n$  which is equal to the identity in C. We take the empty path with label  $\epsilon$  to have  $\epsilon =_C 1$ . An *idempath identification* in  $\Gamma$  is the process of 'cycling up' an idempath.

### Lemma (H., Kambites, Szakács 2024)

Given a tree  $T \in FLAd(X)$ , there exists a unique graph obtainable by sequentially performing all non-trivial idempath identifications (in any order) to T.

### Definition

Given any tree  $T \in FLAd(X)$ , perform the following:

- Idempath identify as far as possible...
- ...then retract anything in the result which can retract (take minimal image under idempotent graph endomorphisms).

We call the (uniquely obtained) result the *pretzel* of T, denoted  $\widetilde{T}$ .

| Quasivarieties | Expansions | Pretzel Monoids |  |
|----------------|------------|-----------------|--|
| 00000000       | OO         | 0●00            |  |
| Evennele       |            |                 |  |

V

Х

х

х

#### Example

Take  $X = \{x, y\}$  and  $C = \mathbb{Z}_3 \times \mathbb{Z}_3 = \operatorname{Mon}\langle x, y \rangle$ .



| Quasivarieties     | Expansions | Pretzel Monoids |  |
|--------------------|------------|-----------------|--|
| 00000000           | OO         | OO●O            |  |
| (2, 1, 0)-algebras |            |                 |  |

Define a multiplication  $\cdot$  on pretzels as follows:

- Glue  $\overline{\widetilde{T}}$  to  $\overline{\widetilde{S}}$ , start-to-end.
- Pretzel-ify the result (note that new idempaths could have been created!).

Define a unary operation + on pretzels as follows:

- Move the end vertex of  $\overline{\widetilde{T}}$  to the start vertex.
- Pretzel-ify the result (note that new retractions might be possible!).

### Theorem (H., Kambites, Szakács 2024)

The set of all pretzels  $\mathcal{PT}(C)$  forms an X-generated left adequate monoid.

Theorem (H., Kambites, Szakács 2024)

 $\mathcal{PT}(C; X) \cong \mathbf{LAd}\langle X \mid w^2 = w \text{ for } w \in X^* \text{ s.t. } w =_C 1 \rangle.$ 

| uasivarieties |      | Expansions<br>00 |   | Pretzel Monoids<br>000● |  |
|---------------|------|------------------|---|-------------------------|--|
| _             | <br> |                  | _ |                         |  |

# Margolis-Meakin Expansions vs. Pretzels

### Properties of $\mathcal{M}(G)$

- Solution Elements are subgraphs of Cay(G).

• 
$$\mathcal{M}(G) \cong \operatorname{Inv}\langle X \mid w^2 = w \text{ for } w \in X^* \text{ s.t. } w =_G 1 \rangle.$$

**(5)**  $\mathcal{M}$  defines an expansion **XGp**  $\rightarrow$  **XEInv**.

### Properties of $\mathcal{PT}(C)$

- $\ \, {\cal PT}(C) \ \, {\rm is \ finite} \ \iff \ C \ \, {\rm is \ finite} \ \implies \ C \ \, {\rm is \ a \ group}.$
- Solution Elements are trees of strongly connected subgraphs of Cay(C).

• 
$$\mathcal{PT}(C; X) \cong \mathbf{LAd}\langle X \mid w^2 = w \text{ for } w \in X^* \text{ s.t. } w =_C 1 \rangle.$$

### Theorem (H., Kambites, Szakács 2024)

 $\mathcal{PT}$  defines an expansion  $\mathbf{XRC} \rightarrow \mathbf{XLAd}$ .

| 00C |  |  |  |
|-----|--|--|--|
|     |  |  |  |

Pretzel N 0000 The Wrap-Up

# Open Questions and What's Next

• Can we describe other presentations using similar combinatorial methods? E.g. can we describe:

**LAm** $\langle X \mid w^2 = w$  for  $w \in X^*$  s.t.  $w =_C 1 \rangle$  for right cancellative C ?

FInv
$$\langle X \mid w^2 = w$$
 for  $w \in X^*$  s.t.  $w =_G 1 
angle$  for group  $G$  ?

- What about right adequate and two-sided adequate pretzel monoids?
- Can we find geometric interpretations of other analogues of Margolis-Meakin expansions in the left adequate setting, perhaps one such that M(C) has maximal right cancellative image C?
- Can we apply similar pretzel-style techniques in *F*-inverse land? In particular for the free *F*-inverse monoid...?
- What about other interesting presentations of (left) adequate monoids?