Motivation 00	Combinatorics of the stylic monoid 0000	Tracking insertion	\sim -relations 00	Gaps 00000	Cancellativity properties

Solving semigroup questions through combinatorics:

extended Green's relations in the Stylic monoid

Ambroise Grau Universidade Nova de Lisboa

(joint work with Duarte Ribeiro)

York Semigroup seminar - 14th May

ΝΟΥΔΜΛΤΗ

CENTER FOR MATHEMATICS + APPLICATIONS Fundação para a Ciência e a Tecnologia

EDUCAÇÃO, CIÊNCIA E INOVAÇÃO

This work is funded by national funds through the FCT – Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 (https://doi.org/10.54499/UIDB/00297/2020) and UIDP/00297/2020 (https://doi.org/10.54499/UIDP/00297/2020) (Center for Mathematics and Applications).

Motivation	Combinatorics of the stylic monoid	Tracking insertion	\sim -relations	Gaps	Cancellativity properties
●O	0000	000	00	00000	0000
The St	ylic Monoid				

Throughout this talk, we let $n \in \mathbb{N}$, $\mathcal{A}_n = \{1 < 2 < \cdots < n\}$, $w \in \mathcal{A}_n^*$ and ε be the empty word on \mathcal{A}_n^* . Set $\mathcal{S} = \{(a^2, a) \mid a \in \mathcal{A}_n\}$ and $\mathcal{K} = \{(acb, cab) \mid a \le b < c \in \mathcal{A}_n\} \cup \{(bac, bca) \mid a < b \le c \in \mathcal{A}_n\}$.

Definition

The following are equivalent definitions of the *Stylic monoid of rank n*, denoted by $styl_n$ or $Styl(A_n)$:

- styl_n is given by the monoid presentation $\langle \mathcal{A}_n \mid \mathcal{K} \cup \mathcal{S} \rangle$;
- $styl_n$ is the finite quotient of the plactic monoid of rank *n* by the relations in S.

Remarks:

- For $u, v \in \mathcal{A}_n^*$, [u] denotes the equivalence class of u in styl_n , and $u \equiv v$ if and only if [u] = [v].
- Idempotents correspond to the classes of strictly decreasing words.
- The stylic monoid styl_n is a finite monoid with a zero, which is the idempotent [n(n-1)...1].

Motivation O●	Combinatorics of the stylic monoid 0000	Tracking insertion 000	\sim -relations 00	Gaps 00000	Cancellativity properties 0000
	d Cusan's valatio				

Extended Green's relations

Since $styl_n$ is \mathcal{J} -trivial, it is not regular and we can get more insight into its structure by looking at some *extended Green's relations*:

Definition

Let $a, b \in \operatorname{styl}_n$, then:

- $a \widetilde{\mathcal{L}} b$ if and only if $(ae = a \Leftrightarrow be = b \quad \forall e = e^2 \in \operatorname{styl}_n)$;
- $a\widetilde{\mathcal{R}} b$ if and only if $(ea = a \Leftrightarrow eb = b \quad \forall e = e^2 \in \operatorname{styl}_n)$; i.e. *a* and *b* have the same idempotents as right/left identities
- $a \mathcal{L}^* b$ if and only if $(ax = ay \Leftrightarrow bx = by \quad \forall x, y \in styl_n);$
- $a \mathcal{R}^* b$ if and only if $(xa = ya \Leftrightarrow xb = yb \quad \forall x, y \in \operatorname{styl}_n);$

i.e. a and b have similar cancellative properties

•
$$\widetilde{\mathcal{D}} = \widetilde{\mathcal{L}} \lor \widetilde{\mathcal{R}}$$
 and $\mathcal{D}^* = \mathcal{L}^* \lor \mathcal{R}^*$.

Remark: we have the inclusions $\mathcal{L}^* \subseteq \widetilde{\mathcal{L}} \subseteq \widetilde{\mathcal{D}}$, $\mathcal{R}^* \subseteq \widetilde{\mathcal{R}} \subseteq \widetilde{\mathcal{D}}$ and $\mathcal{L}^*, \mathcal{R}^* \subseteq \mathcal{D}^* \subseteq \widetilde{\mathcal{D}}$. Our goal: Express $\widetilde{\mathcal{L}}$ and \mathcal{L}^* in terms of characteristics that are easy to

grasp combinatorially.

Motivation	Combinatorics of the stylic monoid	Tracking insertion	\sim -relations	Gaps	Cancellativity properties
00	•000		00	00000	0000
N-table	eaux				

- A semi-standard Young tableau on A_n is a staircase shaped diagram where each box is filled with a letter from A_n such that entries in rows are weakly increasing (from left to right) and entries in column are strictly increasing (from bottom to top).
- An *N*-tableau on A_n is a semi-standard Young tableau in which each row is strictly increasing and contained in the row below it.

Example:
$$T_1 = \begin{bmatrix} 6 \\ 3 & 5 & 5 \\ 1 & 2 & 3 & 3 & 4 \end{bmatrix}$$
 and $T_2 = \begin{bmatrix} 5 \\ 2 & 5 & 6 \\ 1 & 2 & 3 & 5 & 6 \end{bmatrix}$ are both semi-standard Young tableaux, but only T_2 is an *N*-tableau.

Fact

The stylic monoid styl_n is the monoid of *N*-tableaux on \mathcal{A}_n under the operation of insertion via Schensted-like algorithms.

In order to insert the word w into T, for each letter a of w reading from left to right, do as follows:

- Insert a into the bottom row,
- if the element inserted is not the largest element of that row, the smallest element larger than it is then said to be *bumped*,
- insert the bumped element into the row above,
- repeat steps 2. and 3. until we no longer have a bumped element.

In order to insert the word w into T, for each letter a of w reading from left to right, do as follows:

- Insert a into the bottom row,
- if the element inserted is not the largest element of that row, the smallest element larger than it is then said to be *bumped*,
- insert the bumped element into the row above,
- repeat steps 2. and 3. until we no longer have a bumped element.

Motivation 00	Combinatorics 00●0	of the stylic monoid	Tracking insertion	\sim -relations 00	Gaps 00000	Cancellativity properties 0000
The	bijection	between	words and	N-table	aux	

The *N*-tableau associated to w and denoted by N(w) is obtained by (right-)insertion of the letters of w into an empty tableau.

Conversely, given an *N*-tableau T on A_n , the row word of T is the word RW(T) obtained by concatenating the consecutive reading of the rows of T starting from the topmost one.

Notation: we write $T \leftarrow u$ to denote the insertion of a word $u \in \mathcal{A}_n^*$ into a tableau T on \mathcal{A}_n , and hgt(w) for the height of N(w), that is, the number of rows of N(w).

Key fact

For all *N*-tableaux *T* on \mathcal{A}_n and all words $w \in \mathcal{A}_n^*$, we have that N(RW(T)) = T and $w \equiv RW(N(w))$. Hence, in styl_n the multiplication of *N*-tableaux T_1T_2 is defined as $T_1 \leftarrow RW(T_2)$ which means that for $u \in \mathcal{A}_n^*$, $N(wu) = N(w) \leftarrow u$.

Note: Idempotents in $styl_n$ correspond to *N*-tableaux with height equal to their support, that is to tableaux in which each row has all the elements of the one below except from its minimum element.

In order to insert the word w into T, for each letter a of w reading from right to left, do as follows:

- One check if a is present in the first column and if yes, do nothing and stop there, otherwise, insert it into the first column while keeping it ordered,
- Insert a in all the rows below where it is missing,
- in rows where we have inserted a, look at the smallest value larger than a in this row
- If the same highlighted value is present in consecutive rows, delete it from the higher rows.

In order to insert the word w into T, for each letter a of w reading from right to left, do as follows:

- Check if a is present in the first column and if yes, do nothing and stop there, otherwise, insert it into the first column while keeping it ordered,
- Insert a in all the rows below where it is missing,
- in rows where we have inserted a, look at the smallest value larger than a in this row
- If the same highlighted value is present in consecutive rows, delete it from the higher rows.

Motivation	Combinatorics of the stylic monoid	Tracking insertion	\sim -relations	Gaps	Cancellativity properties
00	0000	●00	00	00000	0000
The $ au$:	and β maps				

Notation: For $x \in A_n$ and $B \subseteq A_n$, denote by x_B^{\uparrow} the smallest letter of B strictly greater than x, or ε when no such letter exists. Similarly, x_B^{\downarrow} denotes the largest letter of B strictly smaller than x when such a letter exists and ε otherwise. We also write R_i^w for the *j*-th row of N(w).

Definition

Let $a \in A_n$ and $1 \le r \le hgt(w) + 1$. The insertion tracking maps τ^w and β^w from $(A_n^* \cup \{\varepsilon\}) \times \{1, \ldots, hgt(w) + 1\}$ to $A_n^* \cup \{\varepsilon\}$ are defined recursively as follows:

•
$$\tau^{w}(a,1) = \beta^{w}(a,1) = a$$
,

•
$$\tau^w(\varepsilon, r) = \beta^w(\varepsilon, r) = \varepsilon$$

•
$$\tau^w(a,r) = \tau^w(a,r-1)^{\uparrow}_{R^w_{r-1}}$$
 and $\beta^w(a,r) = \beta^w(a^{\downarrow}_{R^w_{r-1}},r-1)$,

where R_s^w denotes the *s*-th row of N(w).

Example

For
$$w = 2653879 \in \mathcal{A}_9^*$$
, we have $\tau(3,3) = 6$, $\tau(6,3) = 8$,
 $\tau(9,2) = \tau(9,3) = \varepsilon$, while $\beta(6,3) = 3$, $\beta(9,3) = 7$ and
 $\beta(3,3) = \beta(5,3) = \varepsilon$.

Motivation 00	Combinatorics of the stylic monoid 0000	Tracking insertion O●O	\sim -relations 00	Gaps 00000	Cancellativity properties
Some p	roperties and re	lationships (of β and	au	

Lemma

Let $a \in A_n$, and $1 < r \le hgt(w)$. Then:

- $\tau^{w}(a, r) \in \operatorname{supp}(w) \cup \{\varepsilon\}$ with $\tau^{w}(a, r) \neq \varepsilon$ if and only if $\tau^{w}(a, j) \neq \varepsilon$ and $\tau^{w}(a, j) < \max(R_{j}^{w})$ for all $1 \leq j < r$;
- β^w(a, r) ∈ supp(w) ∪ {ε} with β^w(a, r) ≠ ε if and only if a > min(R^w_{r-1}), that is, if and only if a[↓]_{R^w_{r-1}} ≠ ε;
- Solution the first r − 1 rows of the two tableaux N(w) ← β^w(a, r) and N(w) are equal. Consequently, τ^w(β^w(a, r), s) ∈ R^w_s for all 1 ≤ s ≤ r − 1;
- if τ^w (β^w(a, r), r) ≠ ε, then τ^w (β^w(a, r), r) ≥ a with equality if and only if a ∈ R^w_{r-1};
- if β^w(τ^w(a, r), r) ≠ ε, then β^w(τ^w(a, r), r) ≤ a with equality if and only if τ^w(a, j) ∈ R^w_j, for 1 ≤ j ≤ r − 1;
- if $\beta^w(a, r) \neq \varepsilon$ then $\beta^w(a, r-1) \neq \varepsilon$ and $\beta^w(a, r) < \beta^w(a, r-1)$;
- if $\tau^{w}(a, r) \neq \varepsilon$, then $\tau^{w}(b, r) \neq \varepsilon$ for all b < a and $\tau^{w}(b, r) \leq \tau^{w}(a, r)$, with equality if and only if there exists s < r with $\tau^{w}(a, s) \notin R_{s}^{w}$ and $\tau^{w}(b, s)_{R_{s}}^{\uparrow} = \tau^{w}(a, s)_{R_{s}}^{\uparrow}$.

Motivation	Combinatorics of the stylic monoid	Tracking insertion	\sim -relations	Gaps	Cancellativity properties
OO	0000	00●	00	00000	0000
Fix of a	word				

The fix of w in styl_n is the set $\operatorname{Fix}(w) \subseteq \mathcal{A}_n$ defined by

$$\operatorname{Fix}(w) = \left\{\beta(\max(R_r^w), r) \mid 1 \le r \le \operatorname{hgt}(w)\right\}.$$

Notice in particular that |Fix(w)| = hgt(w).

Lemma

Let $a \in A_n$. Then the following are equivalent:

•
$$a \in Fix(w);$$

3
$$N(wa) = N(w)$$
 (or similarly wa $\equiv w$);

• there exists $1 \le r \le hgt(w)$ such that $\tau^w(a, r) = max(R_r^w)$ and $\tau^w(a, j) \in R_j^w$ for all $1 \le j \le r - 1$.

Moreover, if $a \in Fix(w)$ then Fix(wa) = Fix(w) and otherwise

$$\operatorname{Fix}(wa) = \begin{cases} \operatorname{Fix}(w) \cup \{a\} & \text{if } a < \min(\operatorname{Fix}(w)), \\ \left(\operatorname{Fix}(w) \setminus \{a_{\operatorname{Fix}(w)}^{\downarrow}\}\right) \cup \{a\} & \text{if } a > \min(\operatorname{Fix}(w)). \end{cases}$$

Recall: $U\widetilde{\mathcal{R}} V$ if and only if $(EU = U \Leftrightarrow EV = V \quad \forall E = E^2)$ with $U, V, E \in \operatorname{styl}_n$, and dually for $\widetilde{\mathcal{L}}$.

Proposition

Let $u, v \in \mathcal{A}_n^*$. Then:

- $[u] \widetilde{\mathcal{R}} [v]$ if and only if N(u) and N(v) have the same first column.
- $[u] \widetilde{\mathcal{L}} [v]$ if and only if $\operatorname{Fix}(u) = \operatorname{Fix}(v)$.

Proof.

In the left insertion, a → N(u) = N(u) if and only if a belongs to the first column of N(u). Thus for an idempotent E, we have that RW(E) → N(u) = N(u) if and only if all the letters of RW(E) belong to the first column of N(u).
Similarly, for the right insertion, N(u) ← RW(E) = N(u) if and only if

all letters of RW(E) are in Fix(u).

Motivation 00	Combinatorics of the stylic monoid 0000	Tracking insertion	∼-relations O●	Gaps 00000	Cancellativity properties
The $\widehat{\mathcal{I}}$	-relation				
Rec	all: $\widetilde{\mathcal{D}} = \widetilde{\mathcal{R}} \lor \widetilde{\mathcal{L}}$				

Proposition

For $u, v \in \mathcal{A}_n^*$ we have $[u] \widetilde{\mathcal{D}}[v]$ if and only if hgt(u) = hgt(v).

Proof.

Since $\widetilde{\mathcal{R}}$ and $\widetilde{\mathcal{L}}$ preserve height, it is clear that hgt(u) = hgt(v) is a necessary condition.

On the other hand, suppose that hgt(u) = k, then we can show that $[u] \widetilde{D} E$ where E = N(k(k-1)...1). To do so, we construct a sequence from $T_1 = T'_1 = 1 \rightarrow N(u)$ by letting T_i have the same rows of T'_{i-1} except in row *i* where *i* is added to its first column, and T'_i is build from T_i by adding *i* to all the rows below row *i*. With this we then have:

$$N(u)\,\widetilde{\mathcal{L}}\,\,T_1\,\widetilde{\mathcal{R}}\,\,T_2\,\widetilde{\mathcal{L}}\,\,T_2'\cdots\widetilde{\mathcal{R}}\,\,T_i\,\widetilde{\mathcal{L}}\,\,T_i'\cdots\widetilde{\mathcal{R}}\,\,T_k,$$

and since by construction we have that the first column of T_k consists of all values from 1 to k, it follows that $T_k \widetilde{\mathcal{R}} E$. Therefore $N(u) \widetilde{\mathcal{D}} E$.

Motivation	Combinatorics of the stylic monoid	Tracking insertion	\sim -relations	Gaps	Cancellativity properties
00	0000		00	•0000	0000
Gaps of	f a word				

- For $1 \le i \le hgt(w)$, $a \in A_n$ is a gap in R_i^w if $a \notin R_i^w$ and $a > \min(R_i^w)$. The set of all gaps in R_i^w is denoted by G_i^w .
- The gap sequence of a in w is the strictly decreasing sequence
 γ^w_[a] = {a − i + 1 | 1 ≤ i ≤ hgt(w) and a ∈ G^w_i} and the set of
 non-empty gap sequences in w is denoted by Γ(w).

Example: For
$$w = 2653879$$
, we have $G_1^w = \{4\}$, $G_2^w = \{7,9\}$ and $G_3^w = \{7,8,9\}$, so that $\Gamma(w) = \left\{\gamma_{[4]}^w, \gamma_{[7]}^w, \gamma_{[8]}^w, \gamma_{[9]}^w\right\}$ where $\gamma_{[4]}^w = \{4\}$, $\gamma_{[7]}^w = \{6,5\}$, $\gamma_{[8]}^w = \{6\}$ and $\gamma_{[9]}^w = \{8,7\}$.

Lemma

For all $\gamma_{[a]}^w, \gamma_{[b]}^w \in \Gamma(w)$ we have $\min(\gamma_{[a]}^w) \neq \min(\gamma_{[b]}^w)$ and furthermore, $\min(\gamma_{[a]}^w) < \min(\gamma_{[b]}^w)$ if and only if a < b.

Notation: For $x = \min(\gamma_{[a]}^w)$, we write $\gamma_x^w = \gamma_{[a]}^w$, and then for $u, v \in \mathcal{A}_n^*$ we say that $\Gamma(u) = \Gamma(v)$ if and only if $\{\gamma_x^u \in \Gamma(u)\} = \{\gamma_x^v \in \Gamma(v)\}$.

Using the gap sequences of w, we can give an explicit formula for the map β^w as follows:

Lemma

Let $a \in A_n$, $1 \le r \le hgt(w) + 1$ and $\Gamma'_{[a]}(w) = \left\{ \gamma^w_{[b]} \in \Gamma(w) \mid b < a \right\}$. We now define the set $S^w_{a,r} \subseteq \mathcal{P}(\Gamma'_{[a]}(w))$ as follows:

$$\mathcal{S}_{\mathsf{a},\mathsf{r}}^{\mathsf{w}} = \left\{ \left\{ \gamma_{[b_1]}^{\mathsf{w}}, \dots, \gamma_{[b_\ell]}^{\mathsf{w}} \right\} \subseteq \mathsf{\Gamma}_{[\mathsf{a}]}'(\mathsf{w}) \mid b_\ell < \dots < b_1 < \mathsf{a} \text{ and} \\ \mathsf{a} - \mathsf{r} + 1 - (i-1) \in \gamma_{[b_i]}^{\mathsf{w}} \text{ for each } 1 \leq i \leq \ell \right\}.$$

Then $S_{a,r}^w$ either has a unique maximal element under inclusion, which we denote by $S_{a,r}^w$, or $S_{a,r}^w = \emptyset$, in which case we let $S_{a,r}^w = \emptyset$. Moreover, if $\beta^w(a, r) \neq \varepsilon$, we then have that $\beta^w(a, r) = a - r + 1 - |S_{a,r}^w|$.

Motivation	Combinatorics of the stylic monoid	Tracking insertion	\sim -relations	Gaps	Cancellativity properties
00	0000		00	00●00	0000
The im	portance of gap	sequences			

Recall: $U \mathcal{L}^* V$ if and only if $(UC = UD \Leftrightarrow VC = VD \quad \forall C, D \in \operatorname{styl}_n)$.

Gap sequences seem to be the appropriate characteristic to consider when trying to describe \mathcal{L}^* because of its consequences:

Lemma

Let $u, v \in \mathcal{A}_n^*$. Suppose that hgt(u) = hgt(v) and $\Gamma(u) = \Gamma(v)$. Then:

•
$$\operatorname{Fix}(u) = \operatorname{Fix}(v)$$
, so that $[u] \widetilde{\mathcal{L}}[v]$;

- $\Gamma(uz) = \Gamma(vz)$ for all $z \in \mathcal{A}_n^*$;
- for all $\gamma_x^u \in \Gamma(u)$ and $p \in \gamma_x^u$, we have that the moorings and anchor of p in γ_x^u and γ_x^v are equal.

1	Motivation OO	Combinatorics of the stylic monoid 0000	Tracking insertion 000	\sim -relations 00	Gaps 000●0	Cancellativity properties 0000
	Mooring	gs				

Let $\gamma_{[a]}^w \in \Gamma(w)$ and $1 \leq r \leq hgt(w)$. For $p \in \gamma_{[a]}^w$, we define:

- the first mooring of p in $\gamma^{w}_{[a]}$, as $\mu_{1}(\gamma^{w}_{[a]}, p) = \beta^{w}(a, a p + 1)$;
- the second mooring of p in $\gamma_{[a]}^w$, as $\mu_2(\gamma_{[a]}^w, p) = \beta^w(a, a p + 2)$; and
- the anchor of p in $\gamma_{[a]}^{w}$, as $\chi(\gamma_{[a]}^{w}, p) = \beta^{w}(a, a p)$ if $p \neq a$, and ε otherwise.

Some useful facts about the moorings are the following:

- when p = max(γ^w_[a]), the first mooring corresponds to the value we need to insert so that a appears one row higher than before, the second mooring is the value required to bump a on the row above after that, while the anchor is the value bumping a to the highest row it currently sits in;
- $\mu_2(\gamma_{[a]}^w, p) < \mu_1(\gamma_{[a]}^w, p) < \chi(\gamma_{[a]}^w, p)$ for all $p \in \gamma_{[a]}^w$;
- for b ∈ A_n, the gap sequence γ^{wb}_[a] of a in wb is uniquely determined by the initial value of γ^w_[a] and the value of b relatively to its moorings and anchor (elongating or shortening the gap sequence by one, or keeping it the same).

Motivation 00	Combinatorics of the stylic monoid 0000	Tracking insertion	\sim -relations 00	Gaps 0000●	Cancellativity properties 0000
Double	bumping				

Let $t, y \in A_n$. We say that the (right-)insertion of ty into w does a *double bumping* if there exists $1 \le r \le hgt(w)$ such that:

• $\tau^w(t,r) = \tau^w(y,r)$ and

•
$$\tau^w(t,j) \in R^w_i$$
 for all $1 \le j < r$.

Example: For w = 2653879, taking t = 5 and y = 6, we have that ty does a double bumping in w for r = 3, since $\tau^w(5,3) = 8 = \tau^w(6,3)$ as well as $\tau(5,1) = 5 \in R_1^w$ and $\tau(5,2) = 6 \in R_2^w$.

Lemma

Let $t, y \in A_n$. Then the insertion of ty into w does a double bumping if and only if there exists $\gamma_{[a]}^w \in \Gamma(w)$ such that $\mu_2(\gamma_{[a]}^w, p) = t$ and $\mu_1(\gamma_{[a]}^w, p) \le y < \chi(\gamma_{[a]}^w, p)$ where $p = \max(\gamma_{[a]}^w)$. Moreover, we then have that $wty \equiv wy$, that is:

 $N(w) \leftarrow ty = N(w) \leftarrow y.$

Motivation 00	Combinatorics of the stylic monoid	Tracking insertion	\sim -relations 00	Gaps 00000	Cancellativity properties •000
Descrip	otion of \mathcal{L}^*				

Recall: $U \mathcal{L}^* V$ if and only if $(UC = UD \Leftrightarrow VC = VD \quad \forall C, D \in \operatorname{styl}_n)$.

Theorem

Let $u, v \in \mathcal{A}_n^*$ be such that hgt(u) = hgt(v). Then $[u] \mathcal{L}^*[v]$ if and only if $\Gamma(u) = \Gamma(v)$.

What do we actually need to do to prove the theorem:

 \Rightarrow :

For two words $u, v \in \mathcal{A}_n^*$ with $\Gamma(u) \neq \Gamma(v)$, we need to find $w_1, w_2 \in \mathcal{A}_n^*$ such that $N(uw_1) = N(uw_2)$ but $N(vw_1) \neq N(vw_2)$.

⇐:

For two words $u, v \in \mathcal{A}_n^*$ with $\Gamma(u) = \Gamma(v)$, and $w_1, w_2 \in \mathcal{A}_n^*$ such that $N(uw_1) = N(uw_2)$, we need to show that this forces $N(vw_1) = N(vw_2)$. This is like looking at all the diamond shape paths in the right ideal graph of u and v.

Motivation	Combinatorics of the stylic monoid	Tracking insertion	\sim -relations	Gaps	Cancellativity properties
00	0000	000	00	00000	○●○○
Sketch	of \mathcal{L}^* proof: the	necessary	conditio	n	

Lemma

Let
$$u, v \in \mathcal{A}_n^*$$
 with $hgt(u) = hgt(v)$ and $Fix(u) = Fix(v)$. If $\Gamma(u) \neq \Gamma(v)$ then $[u]$ and $[v]$ are not \mathcal{L}^* -related.

The main idea is now that we want to create w_1 and w_2 such that $w_1 = w'ty$ and $w_2 = w'y$ with ty doing a double bumping on uw' but not on vw'.

Steps are as follows:

- look at the first gap sequence that differs (when ordered by increasing minimum value), say γ_x^u = {p₁ < · · · < p_r} and γ_x^v and wlog assume that γ_x^u is the longest of the two;
- 2 take $w' = \varepsilon$ and i = 1;

3 set
$$t = \mu_2(\gamma_x^u, p_i)$$
, $y = \mu_1(\gamma_x^u, p_i)$;

- if ty does a double bumping on uw' but not on vw' we are done;
- otherwise, set w' to w'y, increment *i* and go back to step 3.

Example: For u = RW(N(u)) = 9493459 and v = 2653879, the first non-common sequence are $\gamma_6^u = \{7, 6\}$ and $\gamma_6^v = \{6\}$. Then $w_1 = 57$ and $w_2 = 7$ separate [u] and [v].

Motivation 00	Combinatorics of the stylic monoid 0000	Tracking insertion	\sim -relations 00	Gaps 00000	Cancellativity properties
Sketch	of \mathcal{L}^* proof: the	sufficient	conditior	n	

Lemma

Let
$$u, v \in \mathcal{A}_n^*$$
 with $hgt(u) = hgt(v)$ and $Fix(u) = Fix(v)$. If $\Gamma(u) = \Gamma(v)$ then $[u]$ and $[v]$ are \mathcal{L}^* -related.

Take $w_1, w_2 \in \mathcal{A}_n^*$ such that $N(uw_1) = N(uw_2)$. Then we have that

$$\Gamma(vw_1) = \Gamma(uw_1) = \Gamma(uw_2) = \Gamma(vw_2).$$

We now need to prove the following:

- show that the gap sequences in vw₁ and vw₂ are associated with the same values;
- show that in fact vw₁ and vw₂ have exactly the same gaps, which mean that the only difference between them must be related to consecutive elements on the lower end of each row;
- show that the minimum of each row of $N(vw_1)$ and $N(vw_2)$ are actually the same.

Motivation 00	Combinatorics of the stylic monoid 0000	Tracking insertion	\sim -relations 00	Gaps 00000	Cancellativity properties
What a	about \mathcal{R}^* ?				

The Schützenberger involution on styl_n is the anti-automorphism θ defined by $\bar{a} = a\theta = n - a + 1$ for all $a \in A_n$.

So if $w = x_1 \dots x_n \in \mathcal{A}_n^*$, we have that $\overline{w} = (x_n \theta) \cdots (x_1 \theta)$.

Proposition

Let $u, v \in \mathcal{A}_n^*$. Then $[u] \mathcal{R}^*[v]$ if and only if $\Gamma(\bar{u}) = \Gamma(\bar{v})$.

But we don't get a nice combinatorical description. So the question is: what do the following tableaux have in common?

6				
3	4	6		
2	3	4	5	6

6

3 6

2 | 3

