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Clausal Relations

Let p,q ∈ N+ := {1,2, . . .}, D := {0,1, . . . ,n − 1} and (D;≤) chain.

Definition
For given parameters a = (a1, . . . ,ap) ∈ Dp and b = (b1, . . . ,bq) ∈ Dq,
the clausal relation Ra

b of arity p + q is the set of all tuples
(x1, . . . , xp, y1, . . . , yq) ∈ Dp+q satisfying

(x1 ≥ a1) ∨ · · · ∨ (xp ≥ ap) ∨ (y1 ≤ b1) ∨ · · · ∨ (yq ≤ bq).

In this expression ≤ denotes the canonical linear order on D and ≥ its
dual.
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Let D = {0,1,2}, then

R2
1 = {(x1, y1) ∈ D2 | x1 ≥ 2 ∨ y1 ≤ 1}

=

(
0 0 1 1 2 2 2
0 1 0 1 0 1 2

)
= D2 \

{(
0
2

)(
1
2

)}
.

R(2,2)
0 =

{
(x1, x2, y1) ∈ D3 | x1 ≥ 2 ∨ x2 ≥ 2 ∨ y1 ≤ 0

}
=

 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2
0 1 2 2 2 0 1 2 2 2 0 0 0 1 1 1 2 2 2
0 0 0 1 2 0 0 0 1 2 0 1 2 0 1 2 0 1 2


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CRD :=
⋃

(p,q)∈N2
+

{
Ra

b | a ∈ Dp,b ∈ Dq}
the set of all finitary clausal relations on D.

Fact
If (∃i ∈ {1, . . . ,p} : ai = 0) =⇒ Ra

b = Dp+q.

If
(
∃j ∈ {1, . . . ,q} : bj = n − 1

)
=⇒ Ra

b = Dp+q.
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Lemma

CRD ∩ diag(D) =
{
Dp+q | p,q ∈ N+

}
.

CR∗D := CRD \ diag(D)

=
{
Ra

b | a ∈ (D \ {0})p,b ∈ (D \ {n − 1})q;p,q ∈ N+
}
.

Non-trivial clausal relations (Essential predicates)

(0, . . . ,0,n − 1, . . . ,n − 1) /∈ Ra
b ∈ CR∗D but

(a1,0, . . . ,0,n − 1, . . . ,n − 1), . . . , (0, . . . ,0,n − 1, . . . ,n − 1,bq) ∈ Ra
b
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set of all finitary operations on D.

OD :=
⋃

k∈N+
O(k)

D

set of n-ary operations on D

O(n)
D := DDn

n-ary operation on D

(x1, . . . , xn) 7−→ f (x1, . . . , xn)

f : Dn −→ D

For n ∈ N+ called arity,

set of all finitary relations on D.

RD :=
⋃

m∈N+
R(m)

D

set of m-ary relations on D

R(m)
D := P(Dm)

m-ary relations on D

For m ∈ N+ subsets % ⊆ Dm are
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Projections

Let n ∈ N+ and j ∈ {1, . . . ,n}

e(n)
j : An −→ A

(a1, . . . ,an) 7−→ aj

the j-th projection of arity n on A.

JA :=
{

e(n)
j | n ∈ N+,1 ≤ j ≤ n

}
is the set of all projections on A.
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Composition

Let f ∈ O(k)
A ,g1, . . . ,gk ∈ O(m)

A ,

x1, x2, . . . , xm︸ ︷︷ ︸
x

g1 · · · gk

f

f ◦ 〈g1, . . . ,gk 〉

f ◦ 〈g1, . . . ,gk 〉 : Am → A
x := (x1, . . . , xm) 7→ (f [g1, . . . ,gk ])(x)

:= f (g1(x), . . . ,gk (x))

called composition or superposition.

Vargas E. York, October 8, 2014 11 / 39



What is a clone?

Definition

F ⊆ OA is clone (of operations) on A iff
1 JA ⊆ F
2 F is closed w.r.t. composition.

Examples
1 JA Clone of all projections.
2 OA Clone of all operations.
3 Oc

(A,τ) continuous functions of a topological space (A, τ).
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Importance of clones (for universal algebra)
Proposition
For every algebra A = 〈A;F 〉 its set of term operations Term (A) forms
a clone.
Every clone F ⊆ OA is the set of term operations of some algebra,
namely that of A = 〈A;F 〉.

Example
Let A = 〈R,+〉

t1 := (+, x1, x2) tA
1 (a1,a2) = a1 + a2

t2 := (+, x1, (+, x1, x2)) tA
2 (a1,a2) = 2a1 + a2

t3 := (+, (. . . (+, (+, (+, x1, x1), x1), x1) . . .), x1) tA
3 (a1) = k1a1
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Example
Let A = 〈R,+〉

t4 := (+, (. . . (+, (+, (+, (+, x1, x2), x1), x2), x1) . . .), x2)

tA
4 (a1,a2) = k1a1 + k2a2, where k1, k2 ∈ N \ {0} ,a1,a2 ∈ R.

Term (A) =

{ n∑
i=1

kiai | ki ∈ N \ {0} ,ai ∈ R
}

= 〈+〉OR

Let F ⊆ OA. The Clone generated by F is

〈F 〉OA
:=
⋂
{C is clone | F ⊆ C}

and it is the smallest clone containing F .
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Lattice of Clones

LA := {F ⊆ OA | F is a clone }
(LA,⊆) lattice of all clones on A.
a complete and dually (for finite A) lattice.
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Preservation condition

For f ∈ O(k)
D , and % ∈ R(m)

D , we say f preserves %, denoted by f B % if
one of the following equivalent conditions is fulfilled:

f : Dk → D induces a homomorphism between the k -th direct
power 〈D; %〉k and the relational structure 〈D; %〉. f is a
polymorphism of %.
% is a subuniverse of the m-th direct power 〈A; f 〉m. This motivates
the alternative names subpower or invariant relation for %.
For every tuples r1, . . . , rk ∈ %, the composition of f with these
tuples belongs again to the relation %.
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Finitary operations with Finitary relations.

f ∈ O(k)
D preserves % ∈ R(m)

D denoted by fB%

f ◦


a11

...
am1

 , · · · ,
a1k

...
amk


 =

 f (a11 . . . a1k )
. . .

f (am1 . . . amk )



3 3

% %

3

%
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Polymorphisms and Invariant relations

Definition
F ⊆ OD, Q ⊆ RD

PolD Q := {f ∈ OD | ∀% ∈ Q : f B %}
InvD F := {% ∈ RD | ∀f ∈ F : f B %}

The mappings

Pol Q ←[ Q
F 7→ Inv F

define a GALOIS connection Pol− Inv induced by B.
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Example
Let D = {0,1,2}, then

R2
1 = {(x1, y1) ∈ D2 | x1 ≥ 2 ∨ y1 ≤ 1}

=

(
0 0 1 1 2 2 2
0 1 0 1 0 1 2

)
= D2 \

{(
0
2

)(
1
2

)}
.

c(3)
0 , c(2)

2 ,e(2)
1 ∈ PolD R2

1 =
{

f ∈ O(n)
D | f B R2

1

}
because for every tuple

in R2
1 we have

c(3)
0 ◦

(
1 1 2
0 1 0

)
=

(
0
0

)
c(2)

2 ◦
(

1 2
1 1

)
=

(
2
2

)
e(2)

1 ◦
(

0 1
1 1

)
=

(
0
1

)

But f6 6 BR2
1, where f6(0) = 0, f6(1) = 2, f6(2) = 0 (Explain)
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On finite D, clones(of operations) are

Theorem (Bodnarčuk, Kalužnin, Kotov, Romov 69)
For D finite, F is a clone =⇒ F = PolD Q for Q = InvD F.

Every clone can be described by relations.

Idea
To confine the allowed relations to be clausal relations.

CInv F := InvD F ∩ CRD
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Definition
F ⊆ OD is C-clone :⇐⇒ F = PolD Q, where Q is a set of clausal
relations.

Motivation
Reduction of complexity by confining the allowed relations.
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Where do the C-clones live?
OD

JD

F

Clone

〈F〉C

For F ⊆ OD

Inv F ⊇ CRD ∩ Inv F = CInv F

⇒ 〈F 〉OD
= Pol Inv F ⊆ Pol CInv F := 〈F 〉C
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How many C-clones do exist for an arbitrary finite set D?

For D = {0, 1}, there are five different C-clones.

〈c0, c1〉OD

〈c0, c1,∨〉OD
〈c0, c1,∧〉OD

M = Pol ≤

OD
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Lattice of C-clones for D = {0, . . . , n − 1} , n ≥ 3
Contains countably infinite descending chains.

OD

⊥

Pol R(1,...,1)
(1,...,1)

Pol R(1,1)
(1,1)

Pol R(1)
(1)
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Definition
Q ⊆ RD

End Q := Pol Q ∩O(1)
D

Aut Q := Pol Q ∩ Sym (D) .

Definition
A monoidM = 〈M, ◦, idD〉 where M ⊆ DD is C-monoid

:⇐⇒ ∃Q ⊆ CRD : M = End Q

G ⊆ Sym (D) is C-automorphism group :⇐⇒ ∃Q ⊆ CRD : G = Aut Q.
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We shall describe

{Aut Q | Q ⊆ CRD} = {Aut Q∗ | Q∗ ⊆ CR∗D} .

Aut Q∗ =
⋂

Ra
b∈Q∗

Aut Ra
b

(x1 ≥ a1) ∨ · · · ∨ (xp ≥ ap) ∨ (y1 ≤ b1) ∨ · · · ∨ (yq ≤ bq).

Ra
b =

p⋃
i=1

D × . . .× D︸ ︷︷ ︸
i−1

×[ai ,n − 1]× D × . . .× D︸ ︷︷ ︸
p+q−i

∪

q⋃
j=1

D × . . .× D︸ ︷︷ ︸
p+j−1

×[0,bj ]× D × . . .× D︸ ︷︷ ︸
q−j(

Ra
b
)c

= [0,a1)× . . .× [0,ap)× (b1,n − 1]× . . .× (bq,n − 1]
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For f ∈ Sym(D), a ∈ (D \ {0})p ,b ∈ (D \ {n − 1})q, it holds:

f B Ra
b ⇐⇒ f B

(
Ra

b
)c

⇐⇒ f B
p∏

i=1

[0,ai)×
q∏

j=1

(bj ,n − 1]

⇐⇒ f B
{
{[0,ai) | i ∈ {1, . . . ,p}} ∪

{
(bj ,n − 1] | j ∈ {1, . . . ,q}

}}

Aut Ra
b = Aut

(
{[0,ai) | i ∈ {1, . . . ,p}} ∪

{
(bj ,n − 1] | j ∈ {1, . . . ,q}

})
= Aut

(
{[0,ai) | i ∈ {1, . . . ,p}} ∪

{
[0,bj + 1) | j ∈ {1, . . . ,q}

})
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D = {0,1}

B [0,1)
f1 : id ×

f2 : (01)
[0,1)

f1

f2

D = {0,1,2}

B [0,1) [0,2)
f5 : id × ×

f7 : (12) ×
f11 : (01) ×

f15 : (012)
f19 : (021)
f21 : (02)

[0,1) [0,2)

f15, f19, f21

f5

f7 f11
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D = {0,1,2,3}

[0,3) [0,2) [0,1)

{f ∈ Sym (D) | f B [0, 1), f B [0, 2)}

Theorem (Behrisch-Vargas)
The lattice of all C-automorphism groups is dually isomorphic to
(P (D \ {0}) ,⊆) via the following isomorphism

φ : (P (D \ {0}) ,⊆)→ ({Aut Q | Q ⊆ CRD} ,⊇)
U 7→ Aut {[0,u) | u ∈ U}
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We shall describe

{End Q | Q ⊆ CRD} = {End Q∗ | Q∗ ⊆ CR∗D} .

End Q∗ =
⋂

Ra
b∈Q∗

End Ra
b

Proposition
Let b1, . . . ,bq ∈ D \ {n − 1} and a1, . . . ,ap ∈ D \ {0}. Then

End Ra1,...,ap
b1,...,bq ,bq

= End Ra1,...,ap
b1,...,bq

End Ra1,...,ap,ap
b1,...,bq

= End Ra1,...,ap
b1,...,bq

Vargas E. York, October 8, 2014 32 / 39



O(1)
D

⊥ End CRD =
{

c(1)
0 , c(1)

n−1, id
}

f−af+a c(1)
a

f−a (x) :=

{
a− 1 if x = a
x otherwise.

f+a (x) :=

{
a + 1 if x = a
x otherwise.

c(1)
a (x) = a

End Rn−1
n−2

End Rn−1
(n−2,n−3)

End Rn−1
(n−2,n−3,n−4)

0 < a < n − 1
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D = {0,1,2}

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 2 2 2 0 0 0 1 1
2 0 1 2 0 1 2 0 1 2 0 1 2 0 1

f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26
0 1 1 1 1 2 2 2 2 2 2 2 2 2
1 1 2 2 2 0 0 0 1 1 1 2 2 2
2 2 0 1 2 0 1 2 0 1 2 0 1 2
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B R1
0 R2

0 R1
1 R2

1 R2
(1,0) R1

(1,0) R(1,2)
0

R(1,2)
1

R(1,2)
(1,0)

(0, 0, 0) = f0 × × × × × × × × ×
(0, 0, 1) = f1 × × × × × ×
(0, 0, 2) = f2 × × ×
(0, 1, 0) = f3 × × × × × ×
(0, 1, 1) = f4 × × × × × × ×
(0, 1, 2) = f5 × × × × × × × × ×
(0, 2, 0) = f6
(0, 2, 1) = f7 ×
(0, 2, 2) = f8 × × ×
(1, 0, 0) = f9 × × × × × ×
(1, 0, 1) = f10 × × × × × ×
(1, 0, 2) = f11 ×
(1, 1, 0) = f12 × × × × × ×
(1, 1, 1) = f13 × × × × × × × ×
(1, 1, 2) = f14 × × × × × × ×
(1, 2, 0) = f15
(1, 2, 1) = f16 × × × × × ×
(1, 2, 2) = f17 × × × × × ×
(2, 0, 0) = f18
(2, 0, 1) = f19
(2, 0, 2) = f20
(2, 1, 0) = f21
(2, 1, 1) = f22 × × × × × ×
(2, 1, 2) = f23 × × × × × ×
(2, 2, 0) = f24
(2, 2, 1) = f25 × × × × × ×
(2, 2, 2) = f26 × × × × × × × × ×
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f0, f5, f26

f8 f2

f13

f14 f4

R1
0 R2

1

f1, f3, f9, f10, f12

f6, f15, f18, f19, f20, f21, f24

f16, f17, f22, f23, f25

f11f7

R2
(1,0)

R2
0

R(1,2)
0

R1
1,R

1
(1,0),R

(1,2)
1 ,R(1,2)

(1,0)
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Final Clause

Thank ∧ (¬me )∧ for ∧ your ∧ (¬inattention).
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