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Binary Relations

Special cases:

e unary functions (partial or total), linear transformations,

e injections,

e surjections,

e permutations.



Constants and Operations

For functions
071/7°7;7D7R
For relations, also

1,_|_7_,v’*



E.g. Permutations

(Perms, 1’7, ;) ~» groups

Every group is isomorphic to a set of permutations with identity, converse,

composition.
Every set of permutations with identity, closed under converse and compo-

sition forms a group.



Classical Representations

Algebra A = (A, ops). Let X be a class of relations, e.g. total functions.
A representation of type X is injection h : A — (D x D) N X respecting
operations

E.Q.

(z,y) € h(a;b) <= Fz((x,z) € h(a) A (z,y) € h(b))
(z,y) € h(l) <—= =y

R x (ops) = {A : Jrepresentation of type X of A}.



Problems

e Jfinite setof axioms A |= 3> <— A € Rx(ops)?

e Is it decidable whether a finite A is in R x (ops)?

o If A € Rx(ops) is finite, does it have a representation on a finite
base?



Relation Algebra [Tarski 1940s]

A:(A70717+7_71,7v7;)

e (A,0,1,4,—) is aboolean algebra

o (A,1/,—,:) is an involuted monoid

e additive operators

e trianglelaw a;b - c=0 <= a7;¢c - b=0



Examples

Type of rep. Operators Axioms FRP Decidable
Perms 1", =1 Group Yes Yes
Funcs/Rels {; } Assoc. Yes Yes
Funcs/Rels {1/,;} Monoid Yes Yes
Relations {0,1,4, -} BA Yes Yes
Injections {D,R,;}CSC{D,R,0,1',-,;} | © No No
Relations {+,,1/,;} CS CRA 00 No No
{+,,,} €S CRA\{}

{<,—:}CS CRA\{}
Relations  {1/,-,;} 00 No ?
Relations {—,;} ? ? ?




Atom Structure

If boolean part is atomic (e.g. if A is finite)

e which atoms are below identity?

e converse of each atom?

e composition of each pair of atoms?

determines the operators.
For composition, list the forbidden triples (a,b,c) : a;b - ¢ = 0.



Representation of a Relation Algebra

A:(A70717+7_71,7v7;)

h:A— p(X x X)

such that
a0 = h(a)#0 (his1-1)
h(0) = 0
h(a+b) = h(a)Uh(b)
h(—a) = h(1)\ h(a)
(1) = {(z,z):z€ X}

(z,y) € h(a™) <= (y,z) € h(a)
(z,y) € h(a;b) <= 3Fz[(x,z) € h(a) A (z,y) € h(b)]
In a square representation h(1) = X x X.
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Point Algebra (temporal reasoning)

3 atoms 1/, L, G (so 8 elements)

- 11 L G
1711 L G
L|L L 1
GG 1 G

wherel=14+L+G, (1)~ =1 L— =G, G~ = L.

Representation over Q.

h(L) ={(q,7) 1 q<r}
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Outline of rest of talk

How can you tell if a relation algebra is representable?

Two player games to test representabillity.

Obtaining first-order axioms from the games.

Constructing relation algebras with required properties.
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Characterising representability

Can consider various types of representations: classical, relativized, com-
plete, etc. One approach: find first-order theory (or better, an equational
theory) A such that

A=A <= A has approp. rep.

This may or may not be possible, and it is almost always fearsomely diffi-
cult.
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Characterising representability by games

Our approach: devize two player game G such that

Fhasaw.s. in G(A) <= A has an approp. rep.

Actually, in many cases we can use these games to obtain first-order the-
ories as above.
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Abelarde and Héloise
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Representation — Finite Algebra Case

(z,y) € h(1) = Jl'atom a(z,y) € h(a).
If his a square, we can define a labelled graph (X, \) by

A X xX — At(A)

Mz,y) = NlacA:(z,y) € h(a)}
Conversely, if A : X x X — At(A) satisfies

Mz,y) <1 = z=y
Az, y)~ Ay, )
Az, 2), Mz,y) = AMz,y)
and for all atoms o, 8 € At(A),

AMa,y) <a;B=3z[MNx,z) =aA)z,y) = 3]
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then )\ defines a square representation h, by

h(a) = {(z,y) :a > Xz,y)}



Atomic A-network: N = (X, \)

A X x X — At(A)
satisfies
Mz,y) <1 «—= z=y
Az, y) ™ Ay, z)
Az, 2); Mz,y) =2 Az,y)
But maybe there are nodes xz, y and atoms a, b such that

Mzx,y) <a;byet Az [A(x,z) = a A )X(z,y) = b]

Then (x, vy, a, b) is a defect of the atomic network.

Write N instead of X or ).
17



Games on atomic A-networks

Two players: V and . The game G, (A) has n rounds (where n < w). A
play of the game will be

NoCNiC...C N, 1CNyCll. (E< )

Round 0:

e V picks ag € At A.

e - plays an atomic network Ng with ag occurring as a label in it.

Roundt (1 <t < n): Suppose that the current atomic network at the start
of the round is N;_q. Play goes as follows:
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Niqn ({L‘, y)

‘@

Round ¢ of G, (A)

vV picks z,y €
and a,b e At(A)
a;b> Ni—1(z,y)

Ni1
with
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Round ¢ of G, (A)

vV picks z,y € N1
and a,b € At(A) with
a;b> Ni-1(z,y)

responds with. . .
a
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Round ¢t of G, (A)

vV picks z,y € N1
and a,be At(A) with
a;b> Nt—l('r?y)

J responds with. ..
a

b

...an atomic network
extending Ny, & contain-
ing some node =z such that
Nt(x,Z) = a, Nt(Z,y) =b
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Who wins?

In any round, if 4 cannot play, or if she plays a labelled graph that fails to
be an atomic network, then V wins.

If 3 plays a legitimate atomic network in each round then she wins.
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Characterising representability for finite RAs, by games

Theorem 1 Let A be a finite relation algebra.
1. A € RRA iff 3 has a winning strategy in G, (A).

2. 1 has a winning strategy in G, (A) iff she has one in Gn(A) for all
finite n.

3. One can construct first-order sentences o, for n < w (independently
of A) such that A | = oy, iff 3 has a winning strategy in G (A).

Conclude that for a finite relation algebra A,
A€ RRA <—= A ={on:n <w}.
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The axioms o, (sketch)

Given an atomic network N, and k£ < w, we write an axiom 7, (IN) saying
that 3 can win G (A) starting from N. We go by induction on k. All
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quantifiers are implicitly relativised to atoms.

70(V)

T4+1 (V)

Ok

A (N(az,x} <71

xeN
A Ayen\{z} N(z,y) £ 1’)

A

T

A

T

N\ N(z,y) = N(y,z)~
YyeN

A N(z,y) < N(z,z); N(z,v).
Y, zeN

A Va,b(N(w,y) <a;b—

x,yeN

Vag

(RN A\ (N'(2,2) = a

(Tk—1(N) A Vg yen N(z,y) = ap).



4 atoms: 17, <, >, #.

McKenzie’s algebra

| < > i
<| < 1 (< +t)
> 1 > (> +t)
g (<+) &+ —4
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McKenzie’s algebra
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McKenzie’s algebra
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McKenzie’s algebra
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McKenzie’s algebra
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McKenzie’s algebra
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McKenzie’s algebra
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Y wins.

McKenzie’s algebra
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Maddux algebra

4 atoms: 1, r, b,
x~ = x for all atoms x (‘symmetric algebra’)

All triples are consistent except Peircean transforms of:
(1’,a,d’) fora # o', and (r,b, g).
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Maddux algebra (V’s first kind of move)

~
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Maddux algebra (V’s first kind of move)

/.
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Maddux algebra (V’s first kind of move)

N/
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Maddux algebra (V’s second kind of move)

~
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Maddux algebra (V’s second kind of move)

/.
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Maddux algebra (V’s second kind of move)
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Hence

1. McKenzie’s algebra K ¢ RRA.
So RRA C RA, as Lyndon (1950) showed.

In fact, KC is one of the smallest non-representable relation algebras.
All relation algebras with < 3 atoms are representable.

2. The Maddux algebra M € RRA.

Exercise: show that if (X, \) is any representation of M, then X is
infinite.

This is perhaps surprising, given that M is symmetric.
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Infinite Case

For infinite relation algebras there may not be atoms.
For atomic .4 with countably many atoms:

3 has winning strategyin G, (A) <— A € CRA.

Could define a slightly different game and get axiomatisation of RRA.
Alternatively,

A€RRA < AT € CRA
so to determine if A is representable, play the atomic game over the canon-

ical extension At.
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Constructing Relation Algebras

We want to construct algebras .A and we want to control who will win
Gn(A).
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Ehrenfeucht-Fraissé Game

Let A, B be structures in a binary signature (e.g. graphs). We can easily
test whether positive existential properties of A hold in B or not — much
easier than checking if an RA is representable.

EF,(A, B)

Game with r rounds (r < w).

43



Rules of EF,.(A, B)

e V has pebbles ag, a1, ...

e 1 has corresponding pebbles 5p, 51, - - ..

e Initially V places ag at some a € A, 9 must respond by picking b € B
and placing 5g at b.

e In each subsequent round V¥ can place a new pebble o«; on some a; €
A, d must choose b, € B and place 3; at b,.
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e Y wins if Qg, Oj, B, 6] are at a;, a;, b;, bj resp., (ai, CLJ) S ’I“A but (bia b]) g
rB (some binary predicate r).

e After r rounds, if V hasn’t won so far then 3 is the winner.

e Can assume YV never puts two pebbles on same spot.



Rules of EFY (A, B)

e Similar, but each player has only p pebbles.

e After p rounds, V must pick up a pebble in play and can re-use it (3
does the same).
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Example game
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Example game
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Example game

48



Example game
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Example game
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Example game
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Y wins.

Example game
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But ¥V needs 3 turns with 3 different pebbles to win.
e V has winning strategy in EF3(T, S).

e 3 has winning strategy in EF2(T, S).
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0

EF. (A, B)
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EF. (A, B)
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EF. (A, B)

o6



EF. (A, B)

S57



EF. (A, B)
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EF. (A, B)
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EF. (A, B)
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3 wins.

EF. (A, B)
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Third Example Game

e Successor relation.
e V has winning strategy in EFZ, ; (4, B).

e 3 has winning strategy in EF2(A, B).
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e With three pebbles on (transitive) linear orders can do binary search
— V can win on linear orders of different lengths, < 2".



Fourth example game

e Vwins EF, (A, B), but

e Jwins EF{,(A, B) for any p < w (I's places all her pebbles in Ky).
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Extra rule

Initial round changed. V picks distinct ag, a1 € A and places ag, a1 at
these points. 3 responds by picking by, b1 € B and placing 3g, 81 there.
This counts as two rounds (combined).

At any point, ¥V may remove pebbles as before, but he must always leave
at least two distinct points of A covered.
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Converting to RA

Idea: given binary structures A, B make RA A4 g such that

3 hasw.s. in EF2(A, B) <= F hasw.s. in Gfif(AA,B)
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Atoms

e 1/ gy (a€ A), ryy (b, € B), y,b,w.

e All atoms self-converse, except rp;; = ry,.
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Forbidden triangles

Forbid (1/, z,y) unless x = v.

{(a,b), (a/,0")}

indices match <« = is well-def.
rbl,b/ &bs 8a w partial hom.
rb3,b1 ga/
y y ga/ ga
yVb g,x VW

At this point we have

V has w.s. in EFZ(A, B) = V has w.s. in G%if(AA,B)
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Correspondence

between

games.

3 wins Gfif(AA,B) = Jwins EFL(A, B)

Qe

a®

0
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Correspondence

between

games.

3 wins Gfif(AA,B) = Jwins EFL(A, B)

Qe

a®

0
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Correspondence

between

games.

3 wins Gfif(AA,B) = Jwins EFL(A, B)

8ag

Qe

a®

0
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Correspondence

between

games.

3 wins Gfif(AA,B) = Jwins EFL(A, B)

Qe

a®

0
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Correspondence
3 wins Gfif(AA,B) = Jwins EFL(A, B)

between

games.

ooy

Qe

a®

0
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Correspondence between games.
3 wins Gfif(AA,B) = Jwins EFL(A, B)

ooy

Qe {

a® b10




Correspondence between games.
3 wins Gfif(AA,B) = Jwins EFL(A, B)

ooy

aog o
a® b10

e




Correspondence
3 wins Gfif(AA,B) = Jwins EFL(A, B)

between

games.

Qe

a®

e

0
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Correspondence between games.
3 wins Gfif(AA,B) = Jwins EFL(A, B)

Fbobn,

aog o
a®@ b10

e




Correspondence between games.
3 wins Gfif(AA,B) = Jwins EFL(A, B)

Fbobn,

¢ {

a®@ b10

e




Correspondence between games.
3 wins Gfif(AA,B) = Jwins EFL(A, B)

Fbobn,

¢ {

a®@ b10




Correspondence between games.
3 wins Gfif(AA,B) = Jwins EFL(A, B)

Fboby

¢ {

a® b10




Correspondence between games.
3 wins Gfif(AA,B) = Jwins EFL(A, B)

Fboby

¢ {

S

a® o




Correspondence between games.
3 wins Gfif(AA,B) = Jwins EFL(A, B)
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Correspondence between games.
3 wins Gfif(AA,B) = Jwins EFL(A, B)

A

r /
blbn
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Correspondence between games.
3 wins Gfif(AA,B) = Jwins EFL(A, B)

A

r /
blbn
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How 3 can win G%if(AA,B)

3's strategy will be to play white if possible, else black if possible, else red.
But this isn’t working.
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Fob'

vV finds loophole
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ai

vV finds loophole

az

Fob
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vV finds loophole
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vV finds loophole
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vV finds loophole
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vV finds loophole
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How to fix this

The idea was that 3 could freely choose red atoms.

Don’t want V to choose red edge and then force a ‘red clique’ including that
edge.
Final atoms to add:-

wg:SCA, [S][<L2

all self-converse.
Forbid

(WS,ga,Y)
unless a € S.
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PTs of

The

atom structure in full

Atoms

1, ga,w,wg,y,b,rpy : ac€ A SCAIS| <2 bbeB

All self-converse except rpy;, = ry,.

(1, z,y)

(gaa ga/> /7)

(v, ¥,¥), (y,y,b)
(rbobla "o bl rbgb’z’)
(nga ga/> rbb’)

(WS7 gCL7 y)

Forbidden triples

TFEY

a,a’ € A, ~is white or green

unless by = b{, by = b}, b5 =1}
if (a,a’) € r4 but (b,b) & rP
unlessa € S
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We now have

3 has winning strategy in EFL(A, B)

)

. L2
3 has winning strategy in Glif(AA,B)
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RRA is not finitely axiomatisable

V has winning strategy in EF,, 1 (K,,4-1, Kn) 80 V has winning strategy

But 3 has winning strategy in EF,(K,,4-1, Kn) so0 3 has winning strat-

Let A = Ny Ay, be a non-principal ultraproduct. Then A = oy, all n.
Hence A € RRA.

No finite axiomatisation of RRA exists.
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CRA is not elementary

vV has winning strategy in EF,, (A, B)
=V has winning strategy in G, (A4 B)
= AA,B ¢ CRA

But
3 has winning strategy in EF,, (A, B)
= 3 has winning strategy in Grn(A4 B)
= AapBFon
Hence

CRA %AA’B = I_IU-AA,B ~ B e CRA
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RA,, 1 1 not finitely axiomatisable over RA;,

(r—1) ®
4 (n—1)
[ [
I,
Ke @ l
o o o
o 12 ) vl
e
Kn is complete irreflexive graph over {0,1,...,n — 1}.
I, is successor relation over {0',1/,...,(r — 1)'}.
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A? has nodes n U r’ and has edges

{(i,5) :i£Zj<n} U {G@,G+1)):i<r}
J {(@,5),G ) i<n, j<r}



Some corollaries

Rainbow construction produces relation algebras that we can use to prove:-

e Non-finite axiomatisability of RRA [Monk, 1964]

e Non-finite axiomatisability of the representation class of any sub-signature
of RA including compostion, converse and intersection [Hodkinson
Mikulas, 2000]

e No set of equations using a finite number of variables can define RRA
[JOnsson, 1991]
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e Class of completely representable relation algebras not closed under
elementary equivalence.

e Can be extended to cover similar results for cylindric algebras.



Open Problems

e [s this decidable: does a given finite relation algebra have a represen-
tation on a finite base??
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No k-variable first order axiomatisation of RRA?

Find two finite graphs A, B with A 2 B but can’t distinguish A, B using a
k colour game.

Say A cannot embed in B. Then A4 g ¢ RRA but Agp g € RRA and
no k-variable formula distinguishes A 4 g from Ap g.
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