

Binary Relations, Algebras, Games

R Hirsch, I Hodkinson, M Jackson, S Mikulas and others

March 11, 2015

Binary Relations

Special cases:

- unary functions (partial or total), linear transformations,
- injections,
- surjections,
- permutations.

Constants and Operations

For functions

$0, 1', \cdot, ;, D, R$

For relations, also

$1, +, -, \sim, *$

E.g. Permutations

$$(Perms, 1', \sim, ;) \rightsquigarrow \text{groups}$$

Every group is isomorphic to a set of permutations with identity, converse, composition.

Every set of permutations with identity, closed under converse and composition forms a group.

Classical Representations

Algebra $\mathcal{A} = (A, ops)$. Let X be a class of relations, e.g. total functions. A *representation of type* X is injection $h : A \rightarrow \wp(D \times D) \cap X$ respecting operations

E.g.

$$(x, y) \in h(a; b) \iff \exists z((x, z) \in h(a) \wedge (z, y) \in h(b))$$

$$(x, y) \in h(1') \iff x = y$$

$$R_X(ops) = \{\mathcal{A} : \exists \text{representation of type } X \text{ of } \mathcal{A}\}.$$

Problems

- \exists finite set of axioms $\mathcal{A} \models \Sigma \iff \mathcal{A} \in \mathbf{R}_X(\text{ops})$?
- Is it decidable whether a finite \mathcal{A} is in $\mathbf{R}_X(\text{ops})$?
- If $\mathcal{A} \in \mathbf{R}_X(\text{ops})$ is finite, does it have a representation on a finite base?

Relation Algebra [Tarski 1940s]

$$\mathcal{A} = (A, 0, 1, +, -, 1', \circ, ;)$$

- $(A, 0, 1, +, -)$ is a boolean algebra
- $(A, 1', \circ, ;)$ is an involated monoid
- additive operators
- triangle law $a; b + c = 0 \iff a \circ; c + b = 0$

Examples

Type of rep.	Operators	Axioms	FRP	Decidable
Perms	$\{1', \sim, ;\}$	Group	Yes	Yes
Funcs/Rels	$\{;\}$	Assoc.	Yes	Yes
Funcs/Rels	$\{1', ;\}$	Monoid	Yes	Yes
Relations	$\{0, 1, +, -\}$	BA	Yes	Yes
Injections	$\{D, R, ;\} \subseteq S \subseteq \{D, R, 0, 1', \cdot, ;\}$	∞	No	No
Relations	$\{+, \cdot, 1', ;\} \subseteq S \subseteq RA$ $\{\cdot, \sim, ;\} \subseteq S \subseteq RA$ $\{+, \cdot, ;\} \subseteq S \subseteq RA \setminus \{\sim\}$ $\{\leq, -, ;\} \subseteq S \subseteq RA \setminus \{\sim\}$	∞	No	No
Relations	$\{1', \cdot, ;\}$	∞	No	?
Relations	$\{-, ;\}$?	?	?

Atom Structure

If boolean part is atomic (e.g. if \mathcal{A} is finite)

- which atoms are below identity?
- converse of each atom?
- composition of each pair of atoms?

determines the operators.

For composition, list the *forbidden triples* $(a, b, c) : a; b \cdot c = 0$.

Representation of a Relation Algebra

$$\mathcal{A} = (A, 0, 1, +, -, 1', \sim, ;)$$

$$h : \mathcal{A} \rightarrow \wp(X \times X)$$

such that

$$\begin{aligned} a \neq 0 &\Rightarrow h(a) \neq \emptyset \quad (h \text{ is 1-1}) \\ h(0) &= \emptyset \\ h(a + b) &= h(a) \cup h(b) \\ h(-a) &= h(1) \setminus h(a) \\ h(1') &= \{(x, x) : x \in X\} \\ (x, y) \in h(a \sim) &\iff (y, x) \in h(a) \\ (x, y) \in h(a; b) &\iff \exists z [(x, z) \in h(a) \wedge (z, y) \in h(b)] \end{aligned}$$

In a square representation $h(1) = X \times X$.

Point Algebra (temporal reasoning)

3 atoms $1', L, G$ (so 8 elements)

;	$1'$	L	G
$1'$	$1'$	L	G
L	L	L	1
G	G	1	G

where $1 = 1' + L + G$, $(1')^\sim = 1'$, $L^\sim = G$, $G^\sim = L$.

Representation over \mathbb{Q} .

$$h(L) = \{(q, r) : q < r\}$$

Outline of rest of talk

- How can you tell if a relation algebra is representable?
- Two player games to test representability.
- Obtaining first-order axioms from the games.
- Constructing relation algebras with required properties.

Characterising representability

Can consider various types of representations: classical, relativized, complete, etc. One approach: find first-order theory (or better, an equational theory) Δ such that

$$\mathcal{A} \models \Delta \iff \mathcal{A} \text{ has approp. rep.}$$

This may or may not be possible, and it is almost always fearsomely difficult.

Characterising representability by games

Our approach: devize two player game G such that

$$\exists \text{ has a w.s. in } G(\mathcal{A}) \iff \mathcal{A} \text{ has an approp. rep.}$$

Actually, in many cases we can use these games to obtain first-order theories as above.

Abelarde and Héloïse

Representation — Finite Algebra Case

$(x, y) \in h(1) \Rightarrow \exists! \text{ atom } \alpha(x, y) \in h(\alpha)$.

If h is a square, we can define a labelled graph (X, λ) by

$$\begin{aligned}\lambda &: X \times X \rightarrow \text{At}(\mathcal{A}) \\ \lambda(x, y) &= \bigwedge \{a \in \mathcal{A} : (x, y) \in h(a)\}\end{aligned}$$

Conversely, if $\lambda : X \times X \rightarrow \text{At}(\mathcal{A})$ satisfies

$$\begin{aligned}\lambda(x, y) \leq 1' &\iff x = y \\ \lambda(x, y)^\sim &= \lambda(y, x) \\ \lambda(x, z); \lambda(z, y) &\geq \lambda(x, y)\end{aligned}$$

and for all atoms $\alpha, \beta \in \text{At}(\mathcal{A})$,

$$\lambda(x, y) \leq \alpha; \beta \Rightarrow \exists z [\lambda(x, z) = \alpha \wedge \lambda(z, y) = \beta]$$

then λ defines a square representation h , by

$$h(a) = \{(x, y) : a \geq \lambda(x, y)\}$$

Atomic \mathcal{A} -network: $N = (X, \lambda)$

$$\lambda : X \times X \rightarrow At(\mathcal{A})$$

satisfies

$$\begin{aligned}\lambda(x, y) \leq 1' &\iff x = y \\ \lambda(x, y)^\sim &= \lambda(y, x) \\ \lambda(x, z); \lambda(z, y) &\geq \lambda(x, y)\end{aligned}$$

But maybe there are nodes x, y and atoms a, b such that

$$\lambda(x, y) \leq a; b \text{ yet } \nexists z \text{ [} \lambda(x, z) = a \wedge \lambda(z, y) = b \text{]}$$

Then (x, y, a, b) is a *defect* of the atomic network.

Write N instead of X or λ .

Games on atomic \mathcal{A} -networks

Two players: \forall and \exists . The game $G_n(\mathcal{A})$ has n rounds (where $n \leq \omega$). A play of the game will be

$$N_0 \subseteq N_1 \subseteq \dots \subseteq N_{t-1} \subseteq N_t \subseteq \dots \quad (t < n)$$

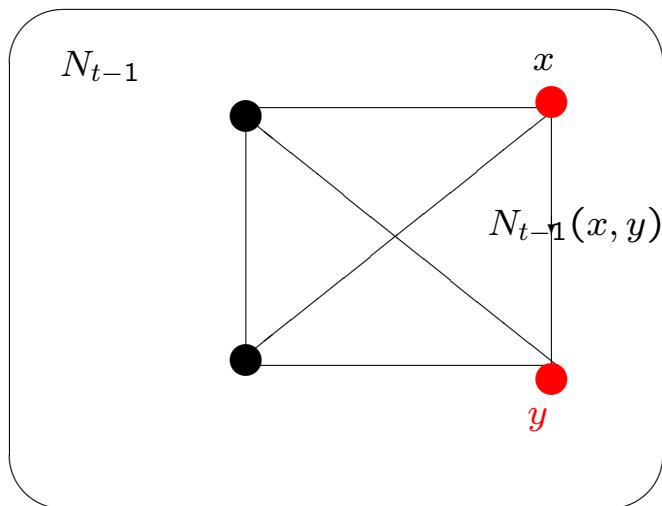
Round 0:

- \forall picks $a_0 \in \text{At } \mathcal{A}$.
- \exists plays an atomic network N_0 with a_0 occurring as a label in it.

Round t ($1 \leq t < n$): Suppose that the current atomic network at the start of the round is N_{t-1} . Play goes as follows:

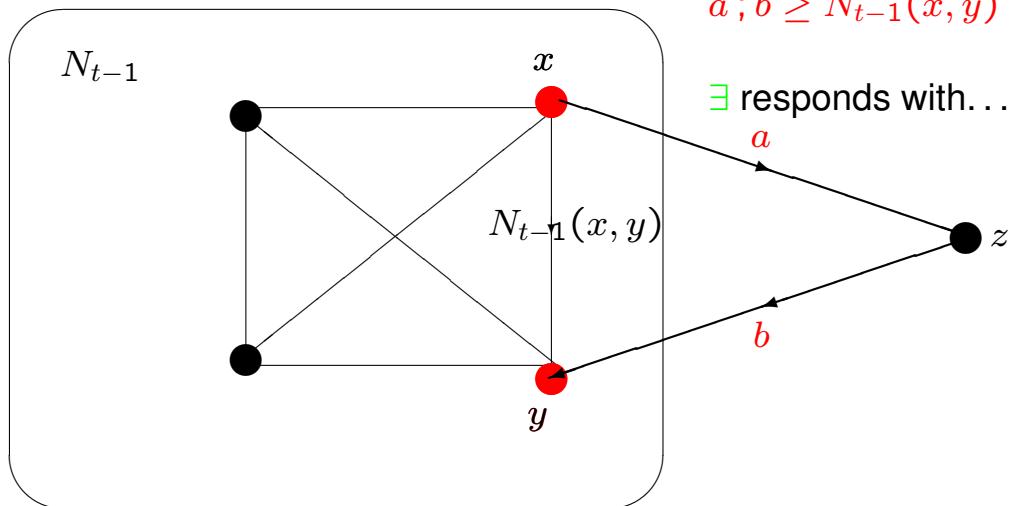
Round t of $G_n(\mathcal{A})$

\forall picks $x, y \in N_{t-1}$
and $a, b \in \text{At}(\mathcal{A})$ with
 $a ; b \geq N_{t-1}(x, y)$



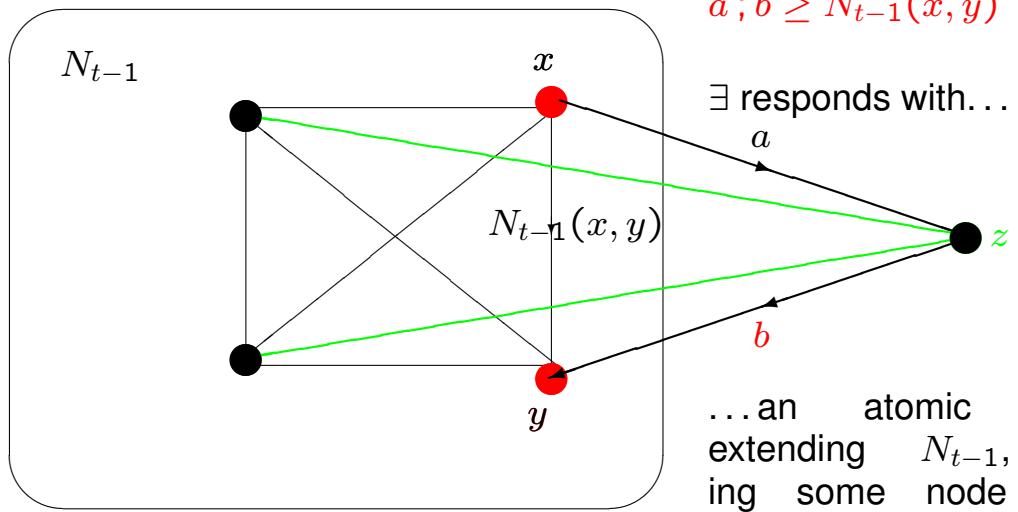
Round t of $G_n(\mathcal{A})$

\forall picks $x, y \in N_{t-1}$
and $a, b \in \text{At}(\mathcal{A})$ with
 $a ; b \geq N_{t-1}(x, y)$



Round t of $G_n(\mathcal{A})$

\forall picks $x, y \in N_{t-1}$
 and $a, b \in \text{At}(\mathcal{A})$
 $a, b \geq N_{t-1}(x, y)$ with



\exists responds with...

...an atomic network N_t ,
 extending N_{t-1} , & containing
 some node z such that
 $N_t(x, z) = a, N_t(z, y) = b$

Who wins?

In any round, if \exists cannot play, or if she plays a labelled graph that fails to be an atomic network, then \forall wins.

If \exists plays a legitimate atomic network in each round then she wins.

Characterising representability for finite RAs, by games

Theorem 1 *Let \mathcal{A} be a finite relation algebra.*

1. $\mathcal{A} \in \mathbf{RRA}$ iff \exists has a winning strategy in $G_\omega(\mathcal{A})$.
2. \exists has a winning strategy in $G_\omega(\mathcal{A})$ iff she has one in $G_n(\mathcal{A})$ for all finite n .
3. One can construct first-order sentences σ_n for $n < \omega$ (independently of \mathcal{A}) such that $\mathcal{A} \models \sigma_n$ iff \exists has a winning strategy in $G_n(\mathcal{A})$.

Conclude that for a finite relation algebra \mathcal{A} ,

$$\mathcal{A} \in \mathbf{RRA} \iff \mathcal{A} \models \{\sigma_n : n < \omega\}.$$

The axioms σ_n (sketch)

Given an atomic network N , and $k < \omega$, we write an axiom $\tau_k(N)$ saying that \exists can win $G_k(\mathcal{A})$ starting from N . We go by induction on k . All

quantifiers are implicitly relativised to atoms.

$$\begin{aligned}
 \tau_0(N) = & \bigwedge_{x \in N} \left(N(x, x) \leq 1' \right. \\
 & \left. \wedge \bigwedge_{y \in N \setminus \{x\}} N(x, y) \not\leq 1' \right) \\
 & \wedge \bigwedge_{x, y \in N} N(x, y) = N(y, x)^\sim \\
 & \wedge \bigwedge_{x, y, z \in N} N(x, y) \leq N(x, z) ; N(z, y).
 \end{aligned}$$

$$\begin{aligned}
 \tau_{k+1}(N) = & \bigwedge_{x, y \in N} \forall a, b \left(N(x, y) \leq a ; b \rightarrow \exists N' \supseteq N \right. \\
 & \left. \left(\tau_k(N') \wedge \bigvee_{z \in N'} (N'(x, z) = a \right. \right. \\
 & \left. \left. \wedge N'(z, y) = b) \right) \right).
 \end{aligned}$$

$$\sigma_k = \forall a_0 \exists N (\tau_{k-1}(N) \wedge \bigvee_{x, y \in N} N(x, y) = a_0).$$

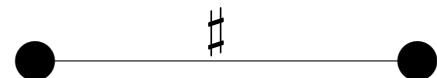
McKenzie's algebra

4 atoms: $1'$, $<$, $>$, $\#$.

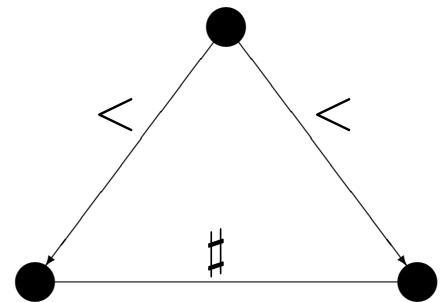
$1'^\sim = 1'$, $<^\sim = >$, $>^\sim = <$, $\#^\sim = \#$.

$;$	$<$	$>$	$\#$
$<$	$<$	1	$(< + \#)$
$>$	1	$>$	$(> + \#)$
$\#$	$(< + \#)$	$(> + \#)$	$- \#$

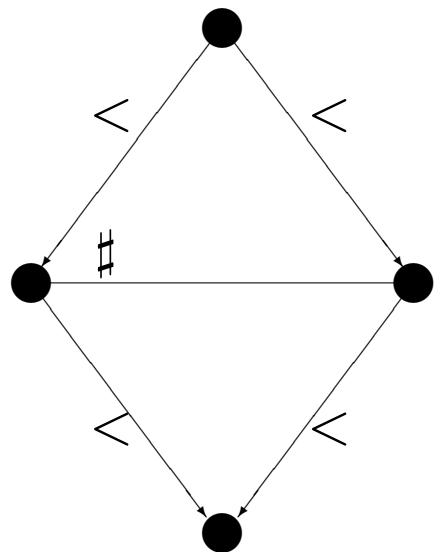
McKenzie's algebra



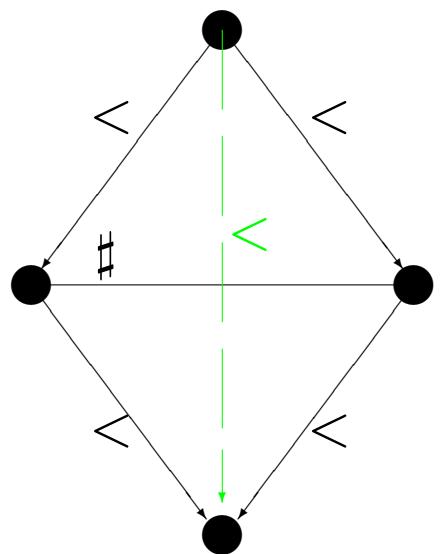
McKenzie's algebra



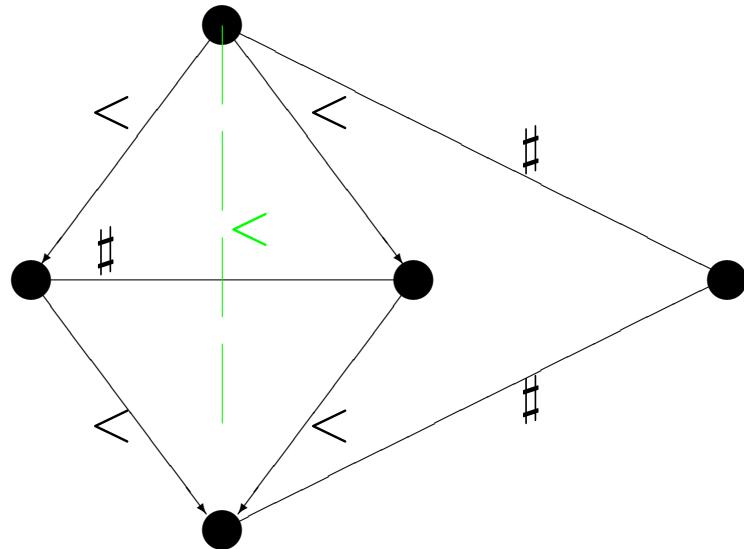
McKenzie's algebra



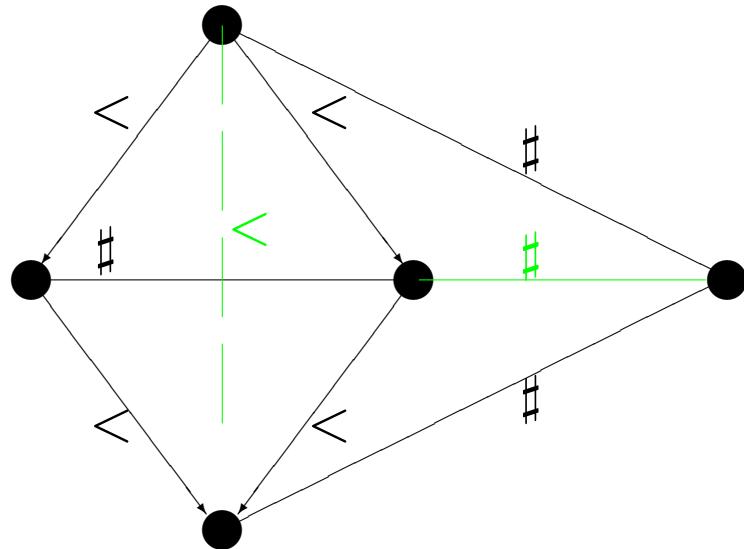
McKenzie's algebra



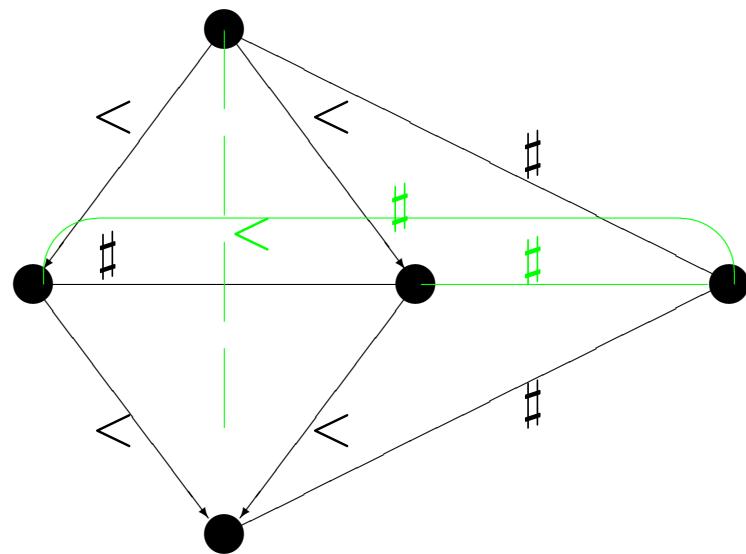
McKenzie's algebra



McKenzie's algebra



McKenzie's algebra



\forall wins.

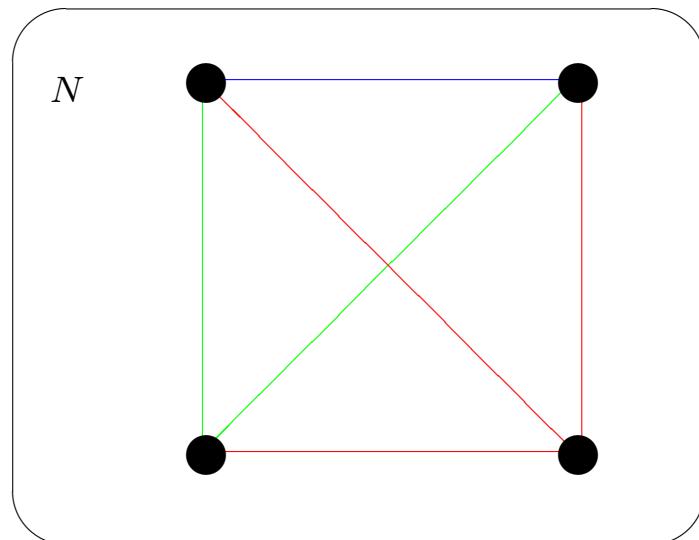
Maddux algebra

4 atoms: $1'$, r , b , g .

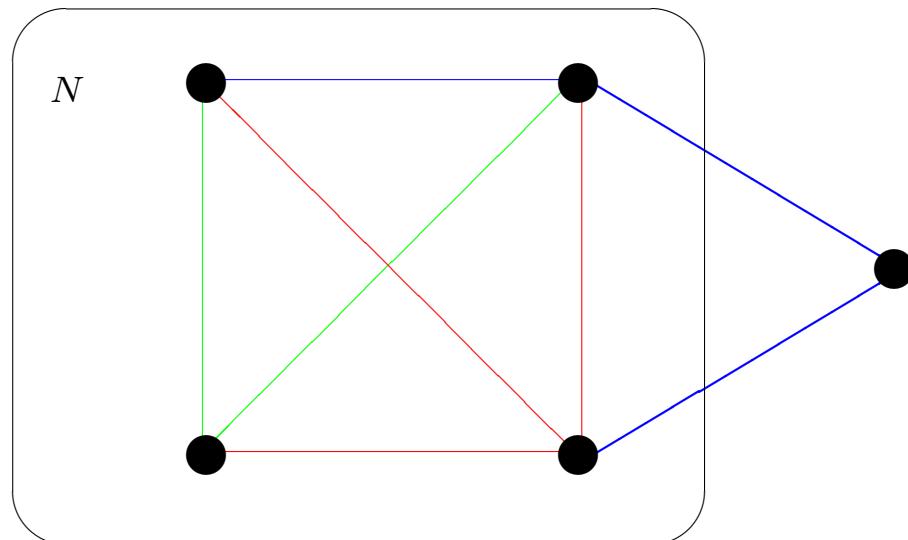
$x^\sim = x$ for all atoms x ('symmetric algebra')

All triples are consistent except Peircean transforms of:
 $(1', a, a')$ for $a \neq a'$, and (r, b, g) .

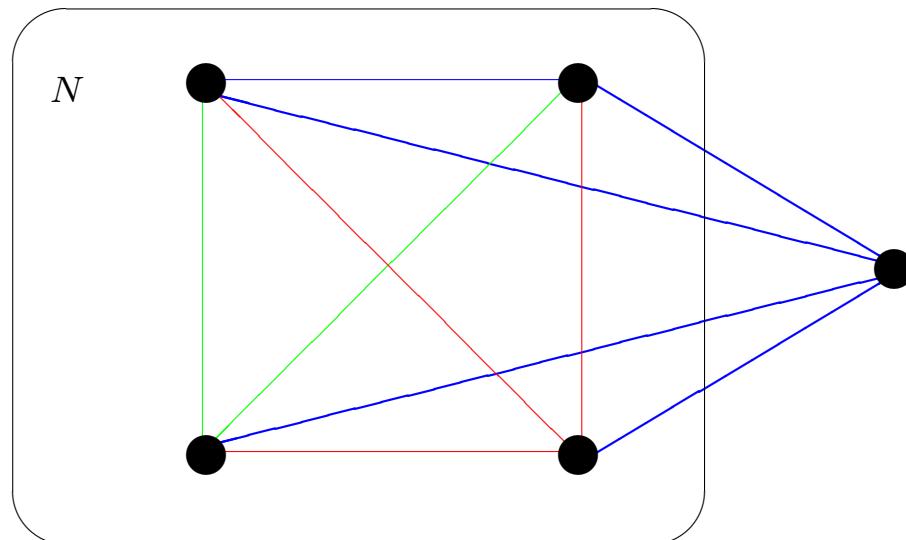
Maddux algebra (\forall 's first kind of move)



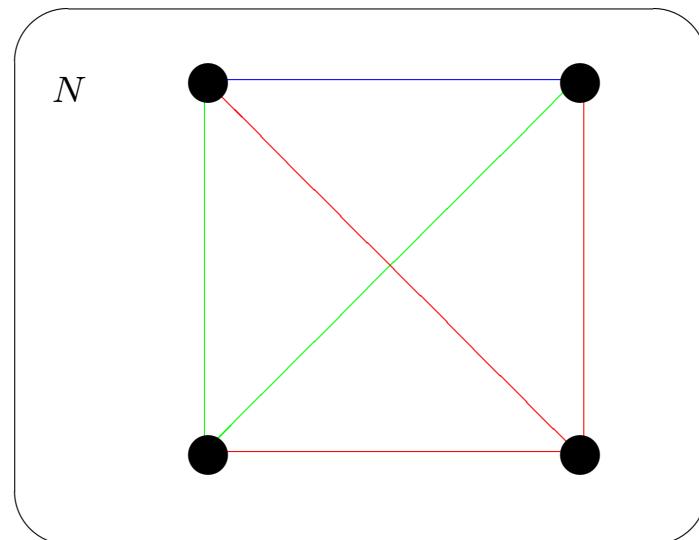
Maddux algebra (\forall 's first kind of move)



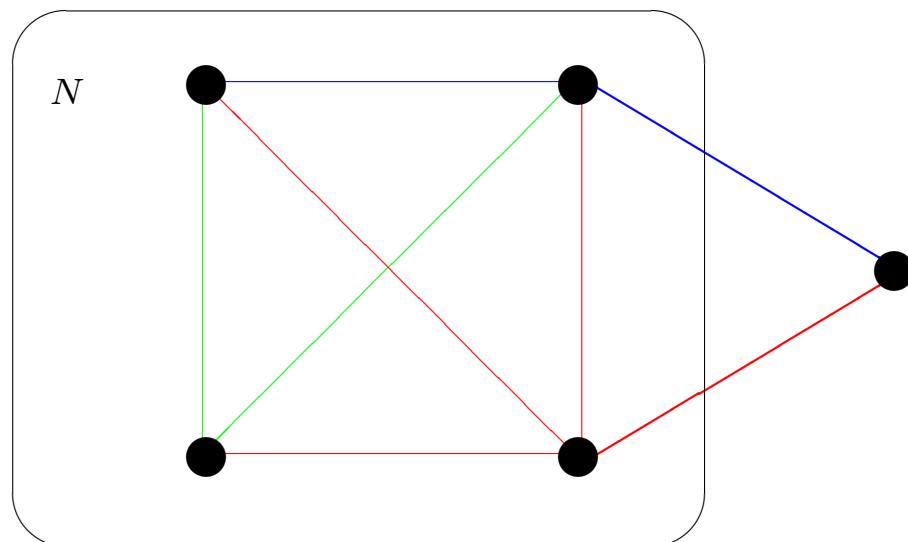
Maddux algebra (\forall 's first kind of move)



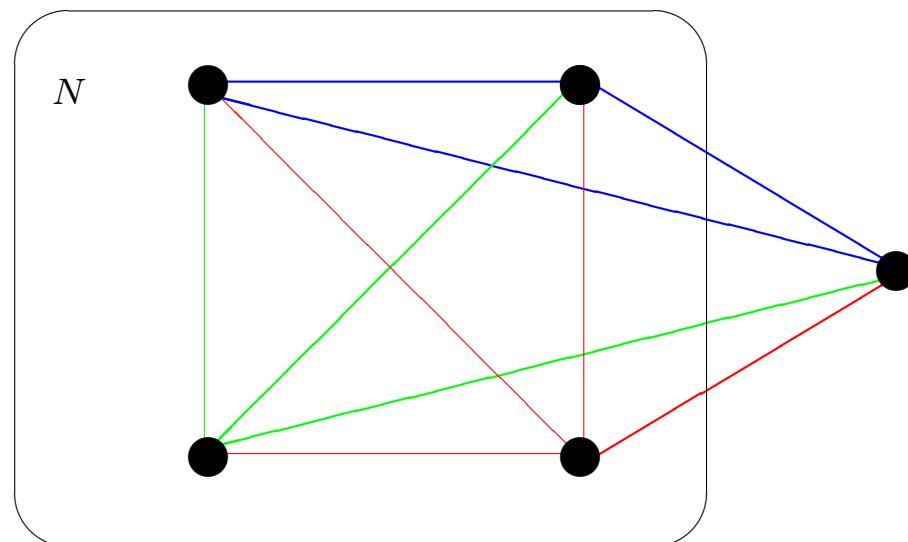
Maddux algebra (\forall 's second kind of move)



Maddux algebra (\forall 's second kind of move)



Maddux algebra (\forall 's second kind of move)



Hence

1. McKenzie's algebra $\mathcal{K} \notin \mathbf{RRA}$.

So $\mathbf{RRA} \subset \mathbf{RA}$, as Lyndon (1950) showed.

In fact, \mathcal{K} is one of the smallest non-representable relation algebras.
All relation algebras with ≤ 3 atoms are representable.

2. The Maddux algebra $\mathcal{M} \in \mathbf{RRA}$.

Exercise: show that if (X, λ) is any representation of \mathcal{M} , then X is infinite.

This is perhaps surprising, given that \mathcal{M} is symmetric.

Infinite Case

For infinite relation algebras there may not be atoms.

For atomic \mathcal{A} with countably many atoms:

$$\exists \text{ has winning strategy in } G_\omega(\mathcal{A}) \iff \mathcal{A} \in \mathbf{CRA}.$$

Could define a slightly different game and get axiomatisation of **RRA**.

Alternatively,

$$\mathcal{A} \in \mathbf{RRA} \iff \mathcal{A}^+ \in \mathbf{CRA}$$

so to determine if \mathcal{A} is representable, play the atomic game over the *canonical extension* \mathcal{A}^+ .

Constructing Relation Algebras

We want to construct algebras \mathcal{A} and we want to control who will win $G_n(\mathcal{A})$.

Ehrenfeucht–Fraïssé Game

Let A, B be structures in a binary signature (e.g. graphs). We can easily test whether positive existential properties of A hold in B or not — much easier than checking if an **RA** is representable.

$$\text{EF}_r(A, B)$$

Game with r rounds ($r \leq \omega$).

Rules of $\text{EF}_r(A, B)$

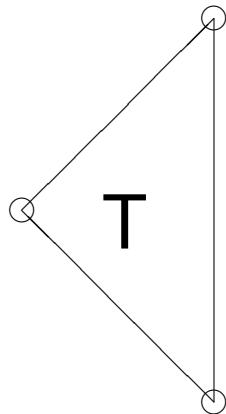
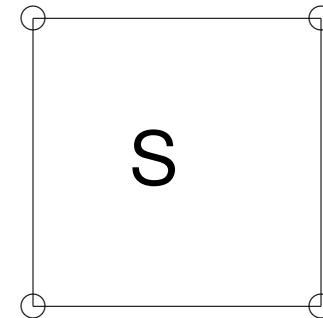
- \forall has pebbles $\alpha_0, \alpha_1, \dots$
- \exists has corresponding pebbles β_0, β_1, \dots
- Initially \forall places α_0 at some $a \in A$, \exists must respond by picking $b \in B$ and placing β_0 at b .
- In each subsequent round \forall can place a new pebble α_i on some $a_i \in A$, \exists must choose $b_i \in B$ and place β_i at b_i .

- \forall wins if $\alpha_i, \alpha_j, \beta_i, \beta_j$ are at a_i, a_j, b_i, b_j resp., $(a_i, a_j) \in r^A$ but $(b_i, b_j) \notin r^B$ (some binary predicate r).
- After r rounds, if \forall hasn't won so far then \exists is the winner.
- Can assume \forall never puts two pebbles on same spot.

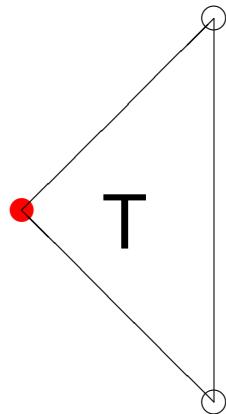
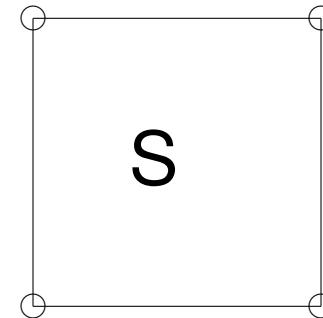
Rules of $\text{EF}_r^p(A, B)$

- Similar, but each player has only p pebbles.
- After p rounds, \forall must pick up a pebble in play and can re-use it (\exists does the same).

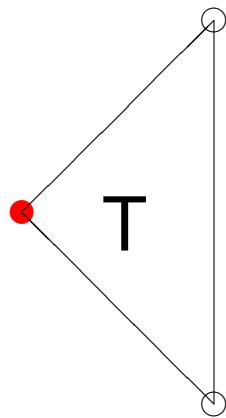
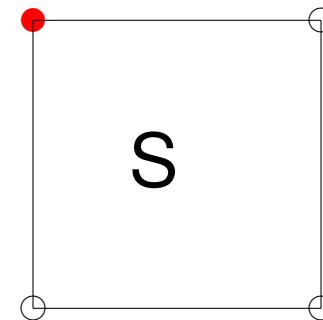
Example game



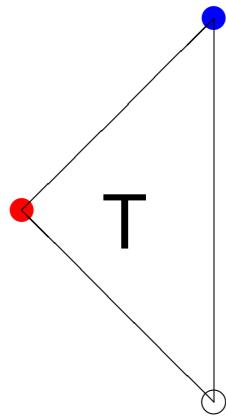
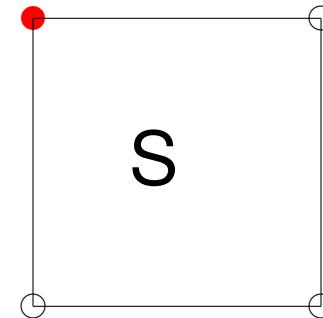
Example game



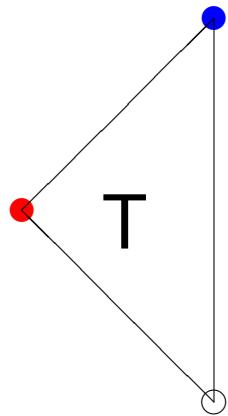
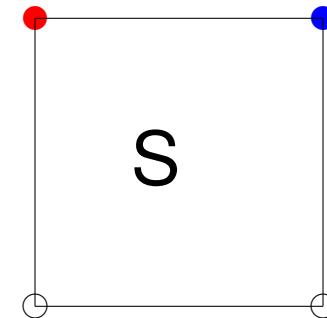
Example game



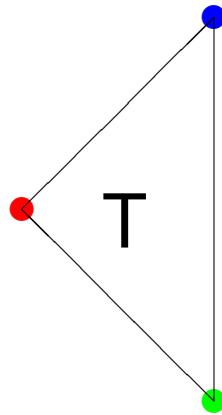
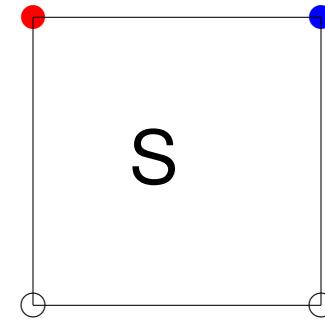
Example game



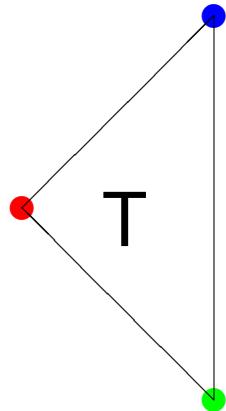
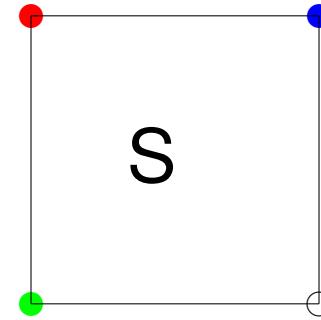
Example game



Example game



Example game



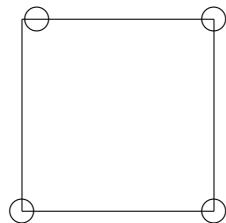
\forall wins.

But \forall needs 3 turns with 3 different pebbles to win.

- \forall has winning strategy in $\text{EF}_3^3(T, S)$.
- \exists has winning strategy in $\text{EF}_r^2(T, S)$.

$\mathbf{EF}_\omega(A, B)$

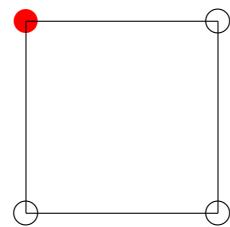
A



B

$\mathbf{EF}_\omega(A, B)$

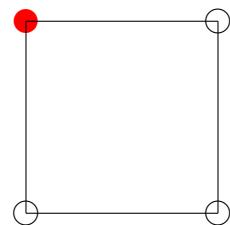
A



B

$\mathbf{EF}_\omega(A, B)$

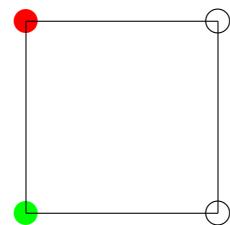
A



B

$\mathbf{EF}_\omega(A, B)$

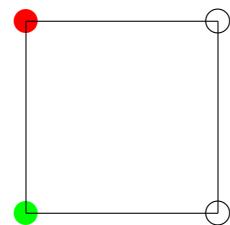
A



B

$\mathbf{EF}_\omega(A, B)$

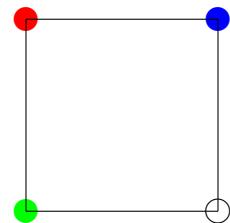
A



B

$\mathbf{EF}_\omega(A, B)$

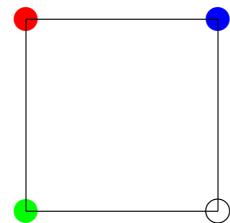
A



B

$\mathbf{EF}_\omega(A, B)$

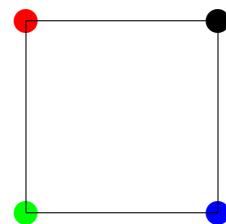
A



B

$\text{EF}_\omega(A, B)$

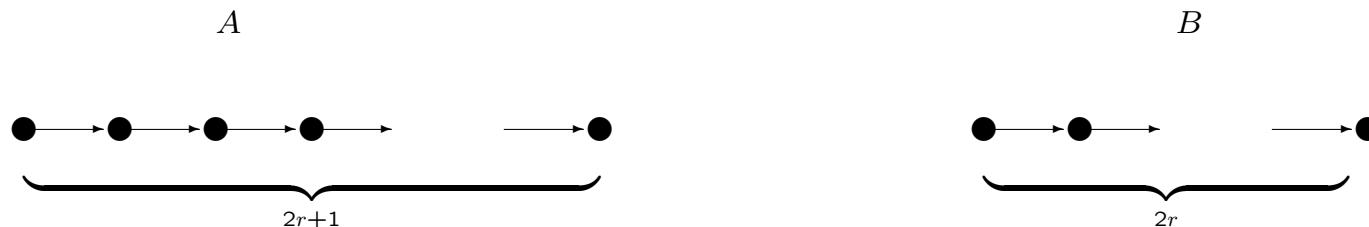
A



B

\exists wins.

Third Example Game



- Successor relation.
- \forall has winning strategy in $\text{EF}_{r+1}^2(A, B)$.
- \exists has winning strategy in $\text{EF}_r^2(A, B)$.

- With three pebbles on (transitive) linear orders can do binary search
 - \forall can win on linear orders of different lengths, $< 2^r$.

Fourth example game

$$A = K_\omega, \quad B = \bigcup_{n < \omega} K_n^\bullet$$

- \forall wins $\mathbf{EF}_\omega(A, B)$, but
- \exists wins $\mathbf{EF}_\omega^p(A, B)$ for any $p < \omega$ (\exists 's places all her pebbles in K_p).

Extra rule

Initial round changed. \forall picks distinct $a_0, a_1 \in A$ and places α_0, α_1 at these points. \exists responds by picking $b_0, b_1 \in B$ and placing β_0, β_1 there. This counts as two rounds (combined).

At any point, \forall may remove pebbles as before, but he must always leave at least two distinct points of A covered.

Converting to RA

Idea: given binary structures A, B make **RA** $\mathcal{A}_{A,B}$ such that

$$\exists \text{ has w.s. in } \mathbf{EF}_r^p(A, B) \iff \exists \text{ has w.s. in } G_{1+r}^{2+p}(\mathcal{A}_{A,B})$$

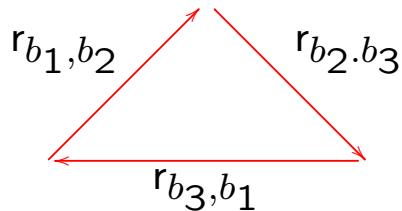
Atoms

- $1', g_a$ ($a \in A$), $r_{bb'}$ ($b, b' \in B$), y, b, w .
- All atoms self-converse, except $r_{bb'}^\curvearrowleft = r_{b'b}$.

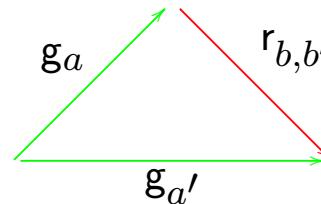
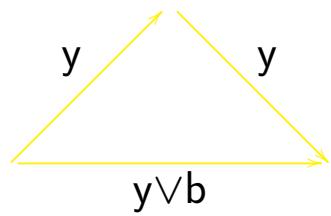
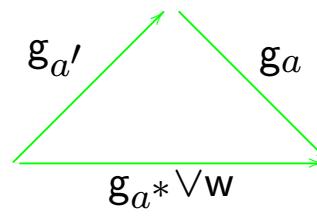
Forbidden triangles

Forbid $(1', x, y)$ unless $x = y$.

indices match \Leftarrow



$\Rightarrow \{(a, b), (a', b')\}$
is well-def.
partial hom.

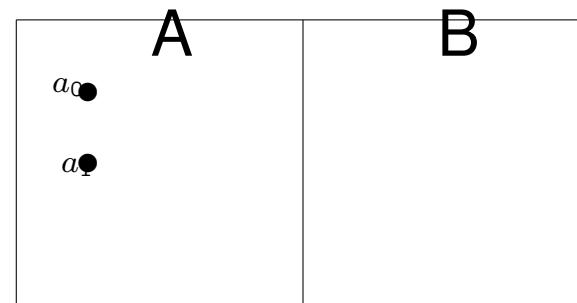


At this point we have

\forall has w.s. in $\text{EF}_r^p(A, B) \Rightarrow \forall$ has w.s. in $G_{1+r}^{2+p}(\mathcal{A}_{A,B})$

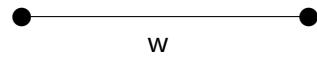
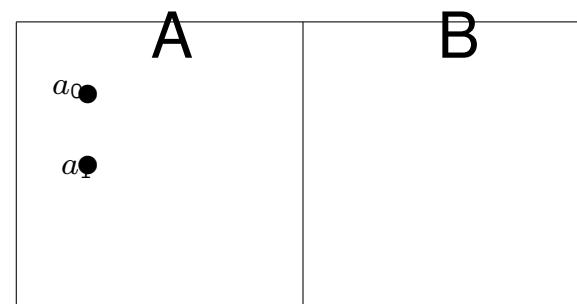
Correspondence between games.

$\exists \text{ wins } G_{1+r}^{2+p}(\mathcal{A}_{A,B}) \Rightarrow \exists \text{ wins } \text{EF}_r^p(A, B)$



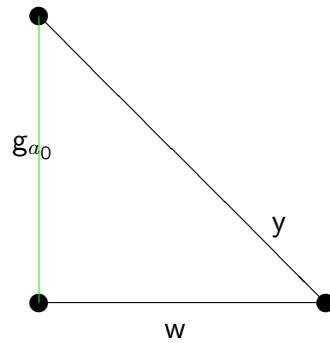
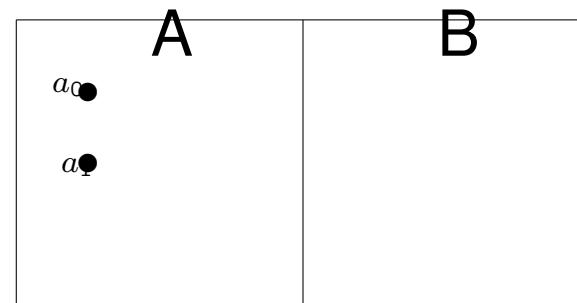
Correspondence between games.

$\exists \text{ wins } G_{1+r}^{2+p}(\mathcal{A}_{A,B}) \Rightarrow \exists \text{ wins } \text{EF}_r^p(A, B)$



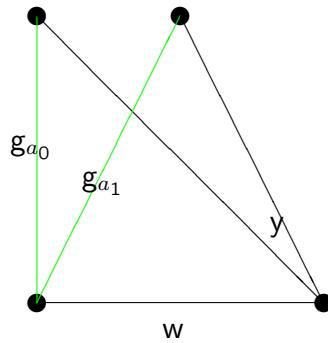
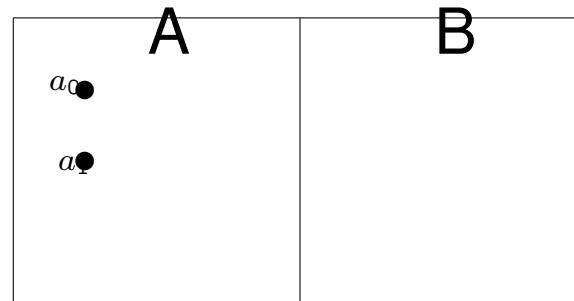
Correspondence between games.

$\exists \text{ wins } G_{1+r}^{2+p}(\mathcal{A}_{A,B}) \Rightarrow \exists \text{ wins } \text{EF}_r^p(A, B)$



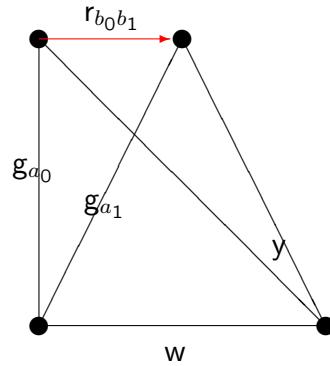
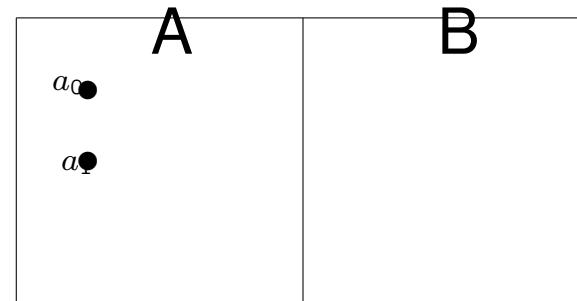
Correspondence between games.

$$\exists \text{ wins } G_{1+r}^{2+p}(A_{A,B}) \Rightarrow \exists \text{ wins } \text{EF}_r^p(A, B)$$



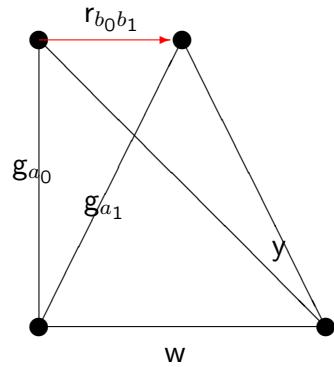
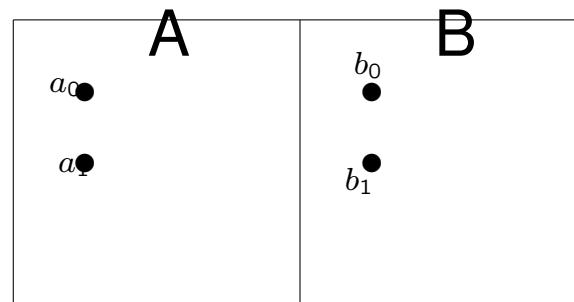
Correspondence between games.

$$\exists \text{ wins } G_{1+r}^{2+p}(A_{A,B}) \Rightarrow \exists \text{ wins } \text{EF}_r^p(A, B)$$



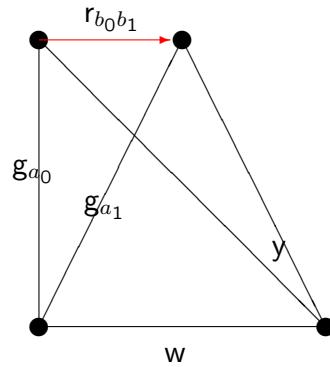
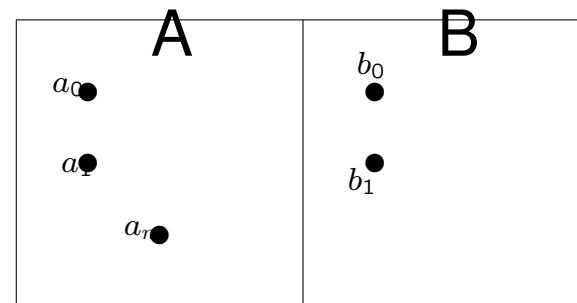
Correspondence between games.

$$\exists \text{ wins } G_{1+r}^{2+p}(A_{A,B}) \Rightarrow \exists \text{ wins } \text{EF}_r^p(A, B)$$



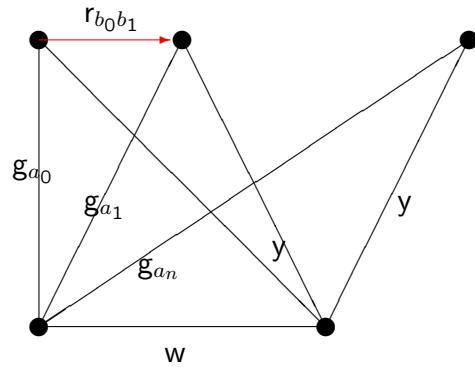
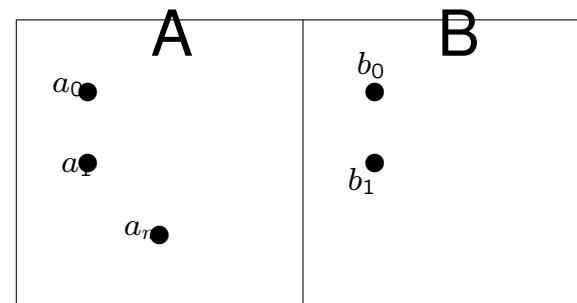
Correspondence between games.

$$\exists \text{ wins } G_{1+r}^{2+p}(A_{A,B}) \Rightarrow \exists \text{ wins } \text{EF}_r^p(A, B)$$



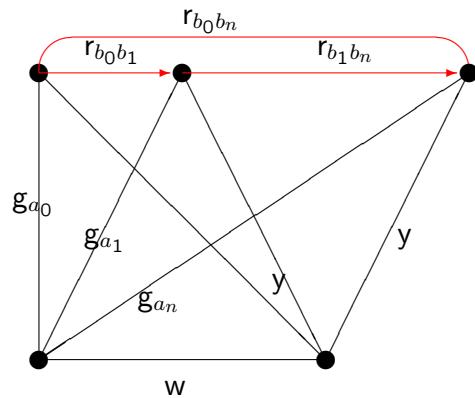
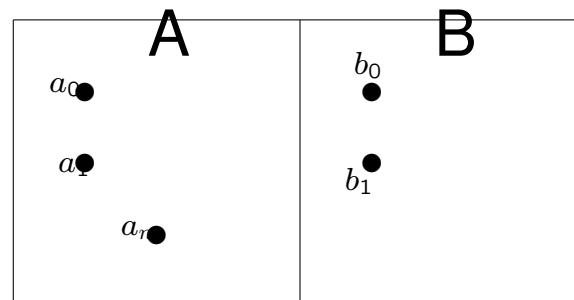
Correspondence between games.

$$\exists \text{ wins } G_{1+r}^{2+p}(A_{A,B}) \Rightarrow \exists \text{ wins } \text{EF}_r^p(A, B)$$



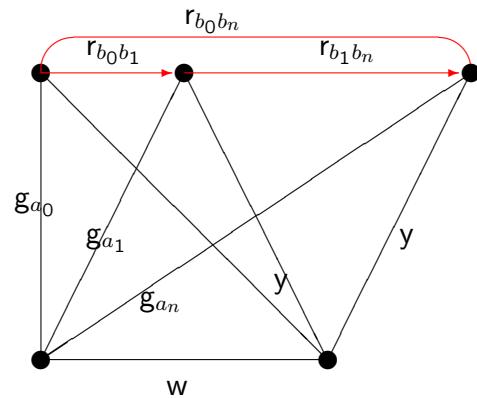
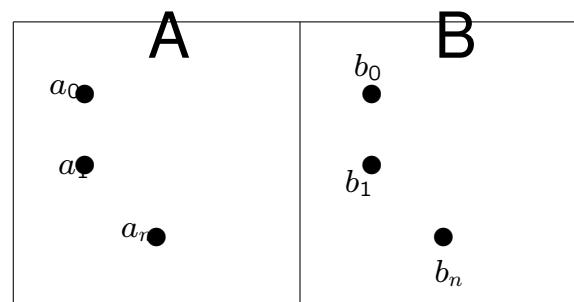
Correspondence between games.

$\exists \text{ wins } G_{1+r}^{2+p}(\mathcal{A}_{A,B}) \Rightarrow \exists \text{ wins } \text{EF}_r^p(A, B)$



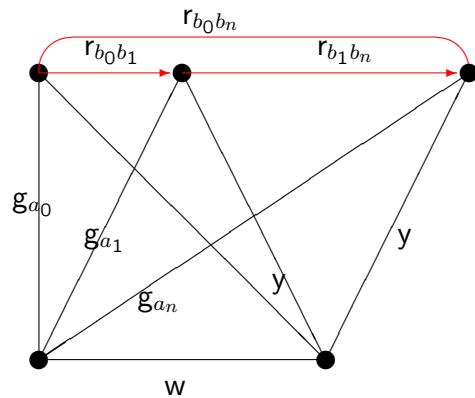
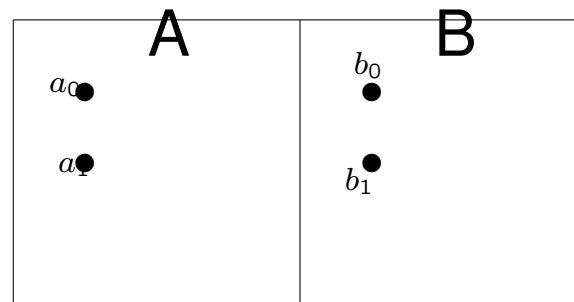
Correspondence between games.

$\exists \text{ wins } G_{1+r}^{2+p}(\mathcal{A}_{A,B}) \Rightarrow \exists \text{ wins } \text{EF}_r^p(A, B)$



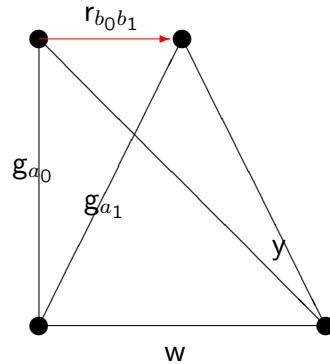
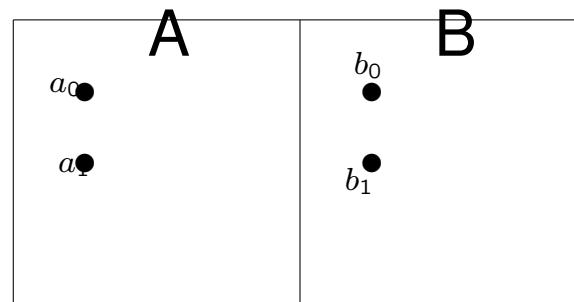
Correspondence between games.

$\exists \text{ wins } G_{1+r}^{2+p}(\mathcal{A}_{A,B}) \Rightarrow \exists \text{ wins } \text{EF}_r^p(A, B)$



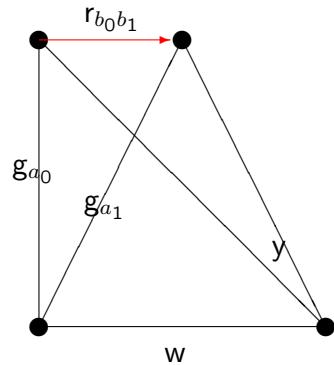
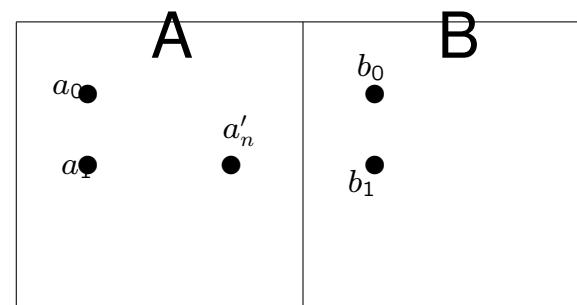
Correspondence between games.

$$\exists \text{ wins } G_{1+r}^{2+p}(A_{A,B}) \Rightarrow \exists \text{ wins } \text{EF}_r^p(A, B)$$



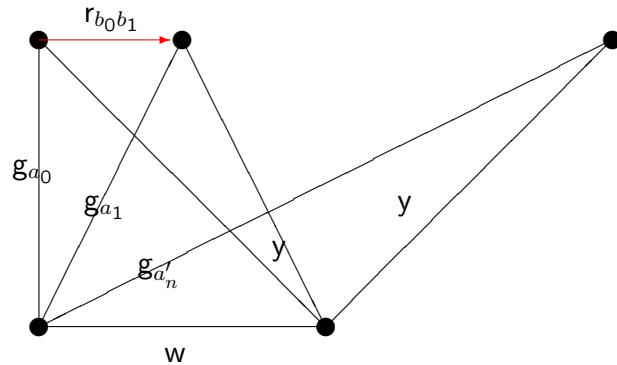
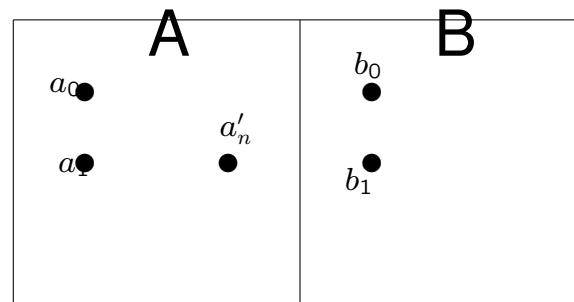
Correspondence between games.

$$\exists \text{ wins } G_{1+r}^{2+p}(A_{A,B}) \Rightarrow \exists \text{ wins } \text{EF}_r^p(A, B)$$



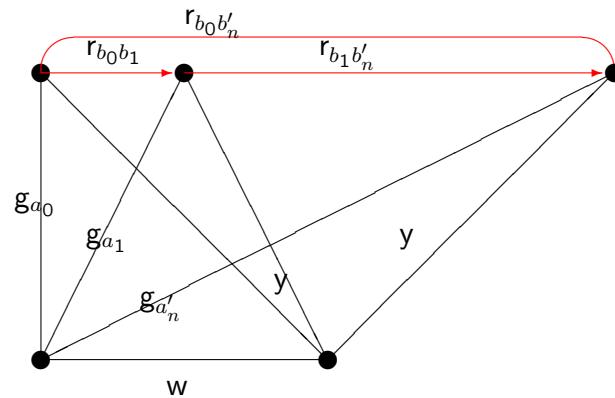
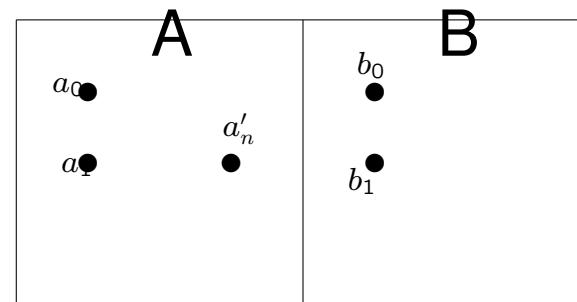
Correspondence between games.

$\exists \text{ wins } G_{1+r}^{2+p}(\mathcal{A}_{A,B}) \Rightarrow \exists \text{ wins } \text{EF}_r^p(A, B)$



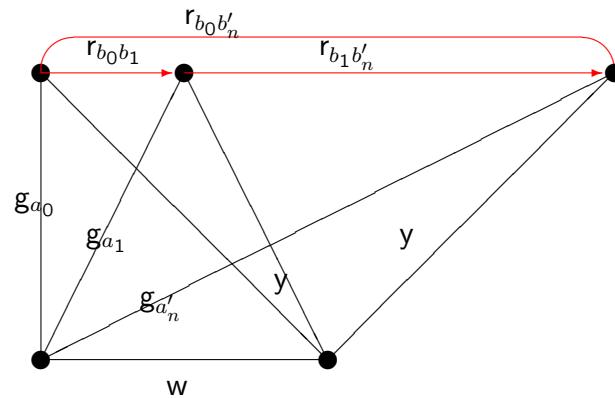
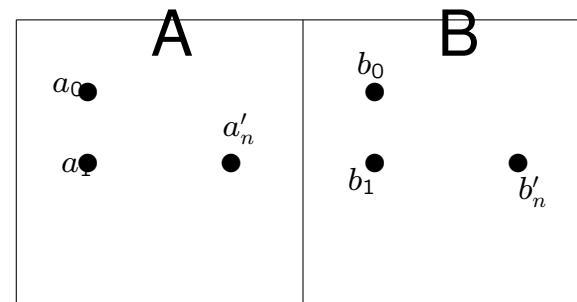
Correspondence between games.

$$\exists \text{ wins } G_{1+r}^{2+p}(\mathcal{A}_{A,B}) \Rightarrow \exists \text{ wins } \text{EF}_r^p(A, B)$$



Correspondence between games.

$$\exists \text{ wins } G_{1+r}^{2+p}(\mathcal{A}_{A,B}) \Rightarrow \exists \text{ wins } \text{EF}_r^p(A, B)$$



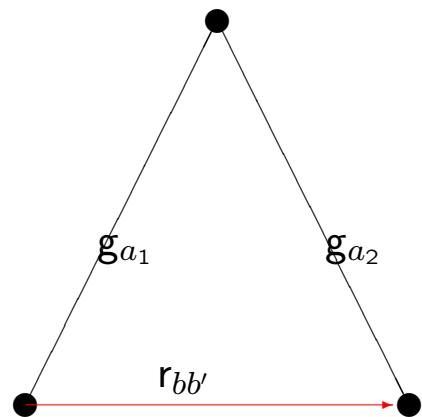
How \exists can win $G_{1+r}^{2+p}(\mathcal{A}_{A,B})$

\exists 's strategy will be to play white if possible, else black if possible, else red.
But this isn't working.

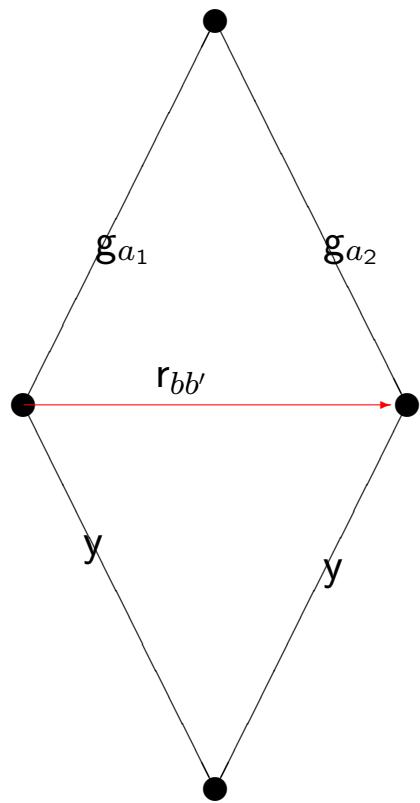
\forall finds loophole



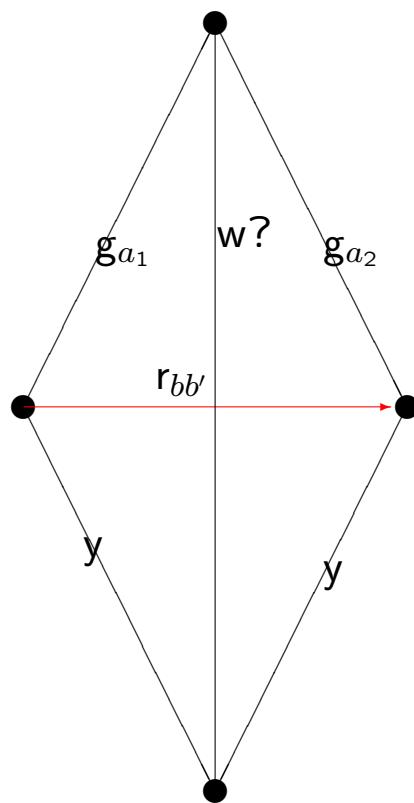
\forall finds loophole



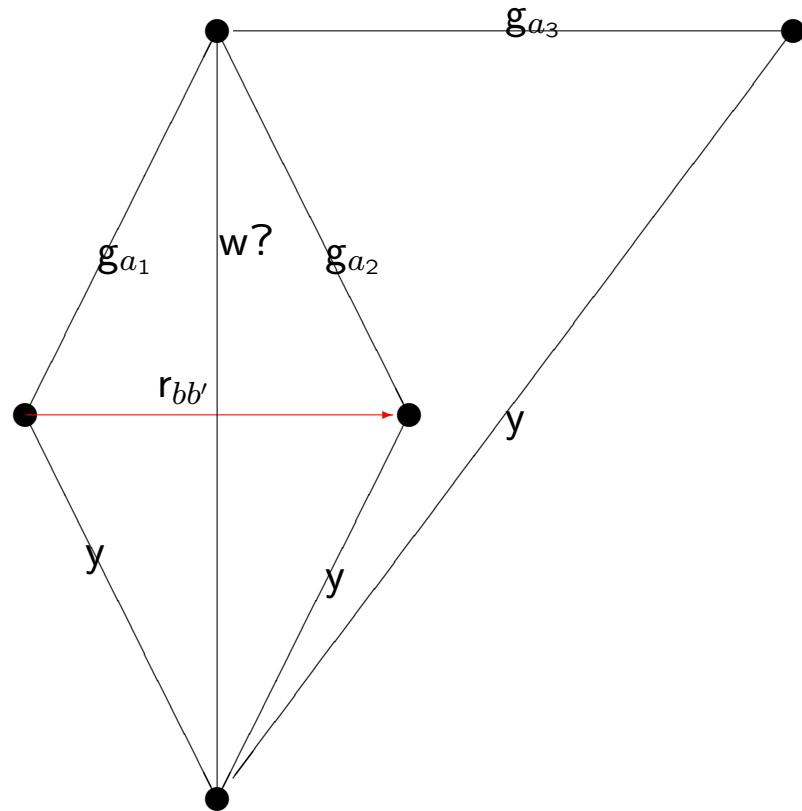
\forall finds loophole



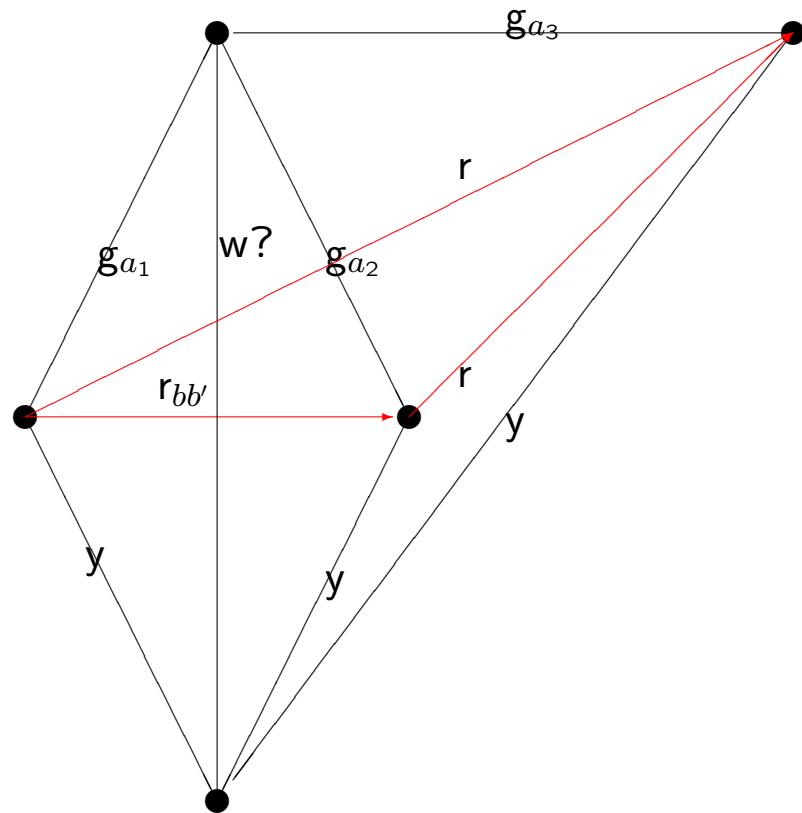
\forall finds loophole



\forall finds loophole



>All finds loophole



How to fix this

The idea was that \exists could freely choose red atoms.

Don't want \forall to choose red edge and then force a 'red clique' including that edge.

Final atoms to add:-

$$w_S : S \subseteq A, |S| \leq 2$$

all self-converse.

Forbid

$$(w_S, g_a, y)$$

unless $a \in S$.

The atom structure in full

Atoms

$1', g_a, w, w_S, y, b, r_{bb'} : a \in A, S \subseteq A, |S| \leq 2, b, b' \in B$

All self-converse except $r_{bb'}^\sim = r_{b'b}$.

Forbidden triples

PTs of

$(1', x, y)$	$x \neq y$
$(g_a, g_{a'}, \gamma)$	$a, a' \in A, \gamma$ is white or green
$(y, y, y), (y, y, b)$	
$(r_{b_0 b_1}, r_{b'_1 b'_2}, r_{b''_0 b''_2})$	unless $b_0 = b''_0, b_1 = b'_1, b'_2 = b''_2$
$(g_a, g_{a'}, r_{bb'})$	if $(a, a') \in r^A$ but $(b, b') \notin r^B$
(w_S, g_a, y)	unless $a \in S$

We now have

$$\begin{array}{c} \exists \text{ has winning strategy in } \text{EF}_r^p(A, B) \\ \Updownarrow \\ \exists \text{ has winning strategy in } G_{1+r}^{2+p}(\mathcal{A}_{A,B}) \end{array}$$

RRA is not finitely axiomatisable

- Let $\mathcal{A}_n = \mathcal{A}_{K_{n+1}, K_n}$.
- \forall has winning strategy in $EF_{n+1}(K_{n+1}, K_n)$ so \forall has winning strategy in $G_{n+2}(\mathcal{A}_n)$ and $\mathcal{A}_n \notin \mathbf{RRA}$.
- But \exists has winning strategy in $EF_n(K_{n+1}, K_n)$ so \exists has winning strategy in $G_{n+1}(\mathcal{A}_n)$. So $\mathcal{A}_n \models \sigma_{n+1}$.
- Let $\mathcal{A} = \prod_U \mathcal{A}_n$ be a non-principal ultraproduct. Then $\mathcal{A} \models \sigma_n$, all n . Hence $\mathcal{A} \in \mathbf{RRA}$.
- No finite axiomatisation of **RRA** exists.

CRA is not elementary

Let $A = K_\omega$, $B = \bigcup_{n < \omega} K_n$.

\forall has winning strategy in $EF_\omega(A, B)$
 $\Rightarrow \forall$ has winning strategy in $G_\omega(\mathcal{A}_{A,B})$
 $\Rightarrow \mathcal{A}_{A,B} \notin \mathbf{CRA}$

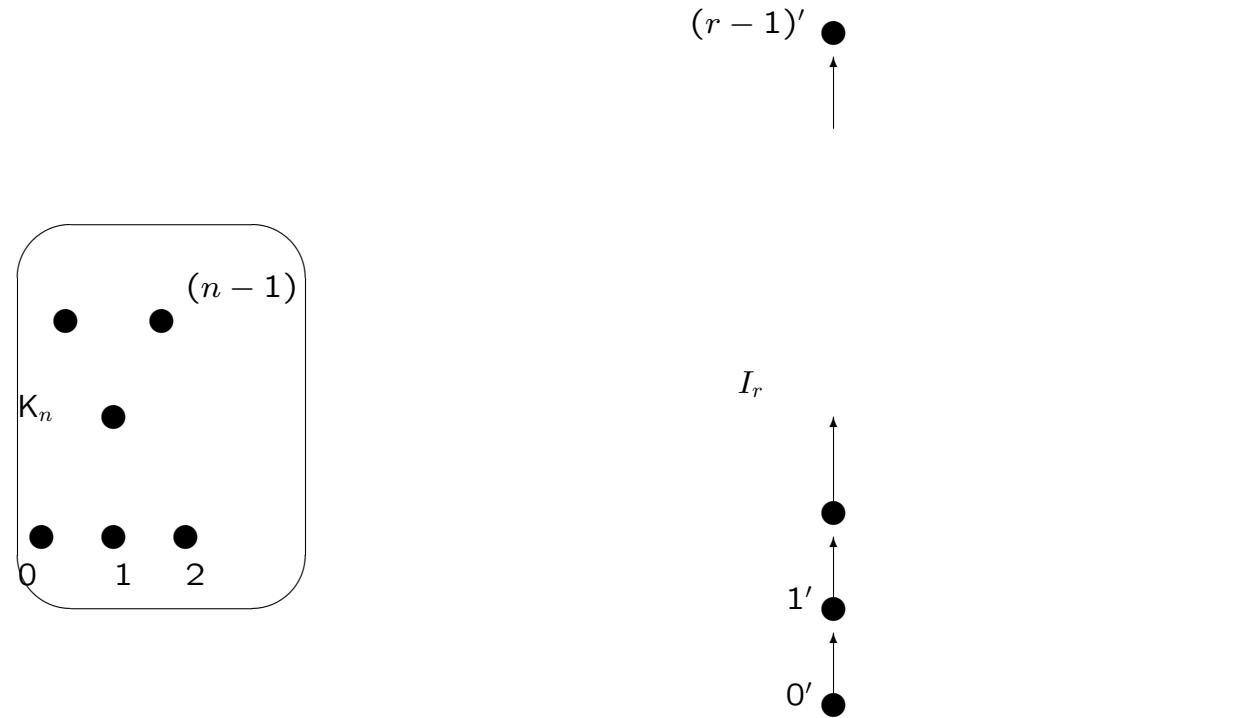
But

\exists has winning strategy in $EF_n(A, B)$
 $\Rightarrow \exists$ has winning strategy in $G_n(\mathcal{A}_{A,B})$
 $\Rightarrow \mathcal{A}_{A,B} \models \sigma_n$

Hence

$$\mathbf{CRA} \not\ni \mathcal{A}_{A,B} \equiv \sqcap_U \mathcal{A}_{A,B} \succeq \mathcal{B} \in \mathbf{CRA}$$

\mathbf{RA}_{n+1} not finitely axiomatisable over \mathbf{RA}_n



K_n is complete irreflexive graph over $\{0, 1, \dots, n-1\}$.

I_r is successor relation over $\{0', 1', \dots, (r-1)'\}$.

A_r^n has nodes $n \cup r'$ and has edges

$$\begin{aligned} \{(i, j) : i \neq j < n\} \quad &\cup \quad \{(i', (i+1)': i < r\} \\ &\cup \quad \{(i, j'), (j', i) : i < n, j < r\} \end{aligned}$$

Some corollaries

Rainbow construction produces relation algebras that we can use to prove:-

- Non-finite axiomatisability of **RRA** [Monk, 1964]
- Non-finite axiomatisability of the representation class of any sub-signature of **RA** including composition, converse and intersection [Hodkinson Mikulas, 2000]
- No set of equations using a finite number of variables can define **RRA** [Jónsson, 1991]

- Class of completely representable relation algebras not closed under elementary equivalence.
- Can be extended to cover similar results for cylindric algebras.

Open Problems

- Is this decidable: does a given finite relation algebra have a representation on a finite base??
-

No k -variable first order axiomatisation of **RRA**?

Find two finite graphs A, B with $A \not\cong B$ but can't distinguish A, B using a k colour game.

Say A cannot embed in B . Then $\mathcal{A}_{A,B} \notin \mathbf{RRA}$ but $\mathcal{A}_{B,B} \in \mathbf{RRA}$ and no k -variable formula distinguishes $\mathcal{A}_{A,B}$ from $\mathcal{A}_{B,B}$.

Some references

A De Morgan. On the syllogism, no. iv, and on the logic of relations. *Transactions of the Cambridge Philosophical Society*, 10:331–358, 1860.

A Tarski. On the calculus of relations. *Journal of Symbolic Logic*, 6:73–89, 1941.

A Tarski. Contributions to the theory of models, III. *Koninkl. Nederl. Akad. Wetensch Proc.*, 58:56–64, 1955. = *Indag. Math.* 17.

J D Monk. On representable relation algebras. *Michigan Mathematics Journal*, 11:207–210, 1964.

A Tarski and S R Givant. *A Formalization of Set Theory Without Variables*. Number 41 in Colloquium Publications in Mathematics. American Mathematical Society, Providence, Rhode Island, 1987.

R Hirsch, I Hodkinson. *Axiomatising various classes of relation and cylindric algebras*. Logic Journal of the IGPL 5 (1997) 209–229.

R Hirsch, I Hodkinson. *Complete representations in algebraic logic*. Journal of Symbolic Logic 62 (1997) 816–847.

R Hirsch, I Hodkinson. *Representability is not decidable for finite relation algebras*. Trans. Amer. Math. Soc. 353 (2001) 1403-1425.

I Hodkinson, S Mikulás, Y Venema. *Axiomatising complex algebras by games*. Algebra Universalis 46 (2001) 455-478.

R Hirsch, M Jackson. *Some Undecidable Problems on Representability as Binary Relations*. Journal of Symbolic Logic. Volume 77(4), pp 1211-1244, 2012