

S-acts, coherency and stability

York Semigroup, Spring 2013

Victoria Gould
University of York

Monoids and acts

A **(right) S -act** is a set A together with a map

$$A \times S \rightarrow A, (a, s) \mapsto as$$

such that for all $a \in A, s, t \in S$

$$a1 = a \text{ and } (as)t = a(st).$$

Right ideals (including S) are S -acts.

Let A be an S -act.

For any $s \in S$, we have a unary operation ρ_s on A given by $a \mapsto as$ and a morphism $\phi : S \rightarrow \mathcal{T}_A$ given by $s \mapsto \rho_s$.

Conversely, if $\phi : S \rightarrow \mathcal{T}_B$ is a morphism for a set B , then B is an S -act with $bs = b(s\phi)$.

Consequently, S -acts are **representations of monoids by mappings of sets**.

Elementary observations for S -acts

- An **S -morphism** from A to B is a map $\alpha : A \rightarrow B$ with $(as)\alpha = (a\alpha)s$ for all $a \in A, s \in S$.
- S -acts and S -morphisms form a category - products are products, coproducts are disjoint unions
- We have usual definitions of **free**, **projective**, **injective**, etc. including variations on **flat**.
- Free S -acts are disjoint unions of copies of S .

Elementary observations for S -acts cont.

- A **congruence** ρ on A is an equivalence relation such that

$$a \rho b \Rightarrow as \rho bs$$

for all $a, b \in A$ and $s \in S$.

- ρ is **finitely generated** if ρ is the smallest congruence containing a finite set $H \subseteq A \times A$.
- If ρ is a congruence on A then A/ρ is an S -act; all monogenic S -acts are of the form S/ρ .
- An S -act A is **finitely generated** if

$$A = a_1S \cup \dots \cup a_nS$$

for some $a_i \in A$ and **finitely presented** if

$$A \cong F_n/\rho$$

for some finitely generated free F_n and finitely generated congruence ρ .

First order languages and L_S

A (first order) language L has alphabet:

variables, connectives (e.g. $\neg, \vee, \wedge, \rightarrow$ etc.), quantifiers (\forall, \exists) , $=$,
brackets, commas
and some/all of symbols for constants, functions and relations.

There are rules for forming well formed formulae (wff); a **sentence** is a wff
with no free variables (i.e. all variables are governed by quantifiers).

The language L_S has:

no constant or relational symbols (other than $=$)
for each $s \in S$, a unary function symbol ρ_s .

A point of convenience Let us agree to abbreviate $x\rho_s$ in wffs of L_S by xs .

L_S -structures and S -acts

Examples

$\neg(xs = xt)$ is a wff but not a sentence,

$(\forall x)(\neg(xs = xt))$ is a sentence,

$(\exists \vee xsx$ is not a wff.

An **L -structure** is a set D equipped with enough distinguished elements (constants), functions and relations to ‘interpret’ the abstract symbols of L .

An L_S -structure is simply a set with a unary operation for each $s \in S$.

Clearly an S -act A is an L_S -structure where we interpret ρ_s by the map $x \mapsto xs$.

Model theory

A **theory** is a set of sentences in a first order language.

Model theory provides a range of techniques to study algebraic and relational structures etc. via properties of their associated **languages** and **theories**.

Model theory of R -modules is a well developed subject area.

Model theory of S -acts - much less is known - authors include **Ivanov, Mustafin, Stepanova** .

Stability is an area within model theory, introduced by **Morley 62**. Much of the development of the subject is due to **Shelah**; the definitive reference is **Shelah 90** though (quote from Wiki) *it is notoriously hard even for experts to read*.

Model theory lite: axiomatisability

Definition A class \mathcal{A} of L_S -structures is **axiomatisable** if there is a theory Σ such that for any L_S -structure A , we have $A \in \mathcal{A}$ if and only if every sentence of Σ is true in A , i.e. A is a *model* of Σ .

Example Let Σ_S be the theory

$$\Sigma_S = \{(\forall x)((xs)t = x(st)) : s, t \in S\} \cup \{(\forall x)(x1 = x)\}.$$

Then Σ_S axiomatises the class of S -acts (within all L_S -structures).

Example Let Π_S be the theory

$$\Sigma_S \cup \{(\exists x)(\neg(xs = xt)) : s, t \in S, s \neq t\}.$$

Then Π_S axiomatises the faithful S -acts.

Model theory of S -acts

Mustafin 88 There exists a monoid S and an S -act A such that $\text{Th}(A)$ is not stable. *This contrasts with the situation for modules.*

Our aim today To look at finitary properties for monoids arising from existence and stability of the model companion of Σ_S .

A **finitary property** for a monoid is one held by finite monoids, e.g. S is **weakly right noetherian** if S has the ascending chain condition on right ideals.

Some classes of S -acts (such as the projectives and injectives) are axiomatisable iff S satisfies some finitary conditions.

Existentially closed S -acts

Let A be an S -act. An **equation** over A has the form

$$xs = xt, \quad xs = yt \text{ or } xs = a$$

where x, y are variables, $s, t \in S$ and $a \in A$. **Inequations** look like

$$xs \neq xt, \quad xs \neq yt \text{ or } xs \neq a.$$

A set of equations and inequations is **consistent** if it has a solution in some S -act $B \supseteq A$.

Definition A is **existentially closed** if every finite consistent set of equations and inequations over A has a solution in A .

Let \mathcal{E} denote the class of existentially closed S -acts.

Question When is \mathcal{E} axiomatisable?

Model companions

Definition Let T, T^* be theories in a first order language L . Then T^* is a **model companion** of T if every model of T embeds into a model of T^* and vice versa, and embeddings between models of T^* are elementary embeddings.

Theorem Wheeler 76 Σ_S has a model companion Σ_S^* precisely when \mathcal{E} (the class of existentially closed S -acts) is axiomatisable and in this case, Σ_S^* axiomatises \mathcal{E} .

Question When does Σ_S^* exist? i.e. When is \mathcal{E} axiomatisable?

Right coherent monoids

Definition S is **right coherent** if every finitely generated S -subact of every finitely presented S -act is finitely presented.

Let A be an S -act and let $z \in A$. Put

$$\mathbf{r}(z) = \{(u, v) \in S \times S : zu = zv\}$$

and notice that $\mathbf{r}(z)$ is a right congruence on S .

Theorem Wheeler 76, G 87, 92, Ivanov 92 The f.a.e. for S :

- ① Σ_S^* exists;
- ② S is right coherent;
- ③ every finitely generated S -subact of every S/ρ , where ρ is finitely generated, is finitely presented;
- ④ for every finitely generated right congruence ρ on S and every $a, b \in S$ we have $\mathbf{r}([a])$ is finitely generated, and $[a]S \cap [b]S$ is finitely generated.

Right coherent and right noetherian monoids

Definition S is **right noetherian** if every right congruence is finitely generated.

Fact If S is right noetherian, it is weakly right noetherian.

Theorem Normak 77 If S is right noetherian, it is right coherent.

Example Fountain 92 There exists a weakly right noetherian S which is not right coherent.

Right coherent and right noetherian monoids

Definitions S is

- ① **regular** if $\forall a \in S \exists x \in S, a = axa$;
- ② **inverse** if S is regular and $ef = fe$ for all $e = e^2, f = f^2 \in S$;
- ③ **Clifford** if S is regular and $ae = ea$ for all $a, e = e^2 \in S$.

Right coherent and right noetherian monoids: Examples

Results variously due to Gould, Hartmann, Ruskuc, Yang

- ① **1992** The free commutative monoid $\mathcal{FC}(X)$ on X ; *this follows from Rédei's theorem that if X is finite, then $\mathcal{FC}(X)$ is noetherian, so coherent from Normak; an easy argument then gives the infinite case*
- ② **1992** Clifford monoids;
- ③ **2012** the free monoid X^* ;
- ④ **2005, 2011** weakly right noetherian regular monoids so the **bicyclic monoid** and $BR(G, \theta)$;
- ⑤ **2012** the *double Bruck-Reilly* with identity adjoined;
- ⑥ **2013** primitive inverse monoids, $\mathcal{B}^0(M, I)$ where M is right coherent;
- ⑦ **2012** Free left ample
- ⑧ **2012** Free inverse monoids are NOT right coherent.

Stability: a bit of background

Stability properties for theories - **stable, superstable and totally transcendental** - arose from the question of how many models a theory has of any given cardinality.

Shelah 78 Showed that a non-superstable theory, has 2^λ models of cardinality λ for any $\lambda > \max\{\aleph_0, |T|\}$.

The philosophy then is that, in these cases, there are too many models to attempt to classify (e.g. by means of a sensible structure theorem).

It is reasonable therefore for the algebraist to consider for a given (axiomatisable) class of algebras 'how stable' is the theory associated with it.

A quick view of stability properties

We will be looking at stability properties of Σ_S^* .

We have ascertained that for Σ_S^* to exist, S must be right coherent.

Assume now that S is right coherent.

Is Σ_S^* **stable**? If so, when is Σ_S^* **superstable**?

...and when is Σ_S^* **totally transcendental**?

Types

Let A be an S -act. Then $L_S(A)$ is the language L_S augmented with symbols representing the elements of A .

A is an S -subact of \mathbf{M} where \mathbf{M} is the ‘monster model’ of Σ_S^* . Let $c \in \mathbf{M}$. Then

$$\text{tp}(c/A) = \{\phi(x) \in L_S(A) : \mathbf{M} \models \phi(c)\}$$

is a **type over A** .

The **Stone space** $S(A)$ of A is the collection of all types over A equipped with the topology with basis

$$\langle \phi(x) \rangle = \{p \in S(A) : \phi(x) \in p\}.$$

Stability conditions

Definition For an infinite cardinal κ we say Σ_S^* is:

- **κ -stable** if for all S -acts A with $|A| \leq \kappa$ we have $|S(A)| \leq \kappa$;
- **stable** if Σ_S^* is κ -stable for *some* κ ;
- **superstable** if Σ_S^* is κ -stable for all $\kappa \geq 2^{|T|}$ where $T = \Sigma_S^*$.

Fact Lascar, 76 A complete theory is superstable if and only if every type p has U-rank $U(p) < \infty$.

Definition A complete theory is **totally transcendental** if and only if every type p has Morley rank $M(p) < \infty$.

Fact For any type p over a theory T we have $U(p) \leq M(p) \leq \infty$.

Stability of Σ_S^*

Let \mathcal{RI} and \mathcal{RC} denote the lattices of right ideals and right congruences on S .

Let A be an S -act. An A -triple (I, ρ, f) is a triple such that:

$$I \in \mathcal{RI}, \rho \in \mathcal{RC}, I \text{ is } \rho\text{-saturated}$$

and

$$f : I \rightarrow A \text{ is an } S\text{-morphism with } \text{Ker } f = \rho \cap (I \times I).$$

Let $T(A)$ denote the set of all A -triples.

Theorem Fountain, G 87/08 $S(A)$ is in bijective correspondence with $T(A)$ under $p \mapsto (I_p, \rho_p, f_p)$.

Stability and superstability of Σ_S^*

Theorem Fountain, G 87/08, Ivanov 92

- ① Σ_S^* is stable.
- ② Σ_S^* is superstable if and only if S is weakly right noetherian.

We prove this by using a notion of rank on ρ -saturated right ideals for a right congruence ρ so get a value of U-rank of a type in algebraic terms.

Weakly right noetherian (wrn)

- ① Groups are wrn.
- ② Semilattices are wrn iff they have the ascending chain condition (as posets) and no infinite antichains (folklore).
- ③ Bicyclic monoid $B = \mathbb{N}^0 \times \mathbb{N}^0$ with binary operation

$$(a, b)(c, d) = (a - b + t, d - c + t) \text{ where } t = \max\{b, c\}$$

is inverse and wrn.

- ④ Free inverse monoids on non trivial X are not wrn.
- ⑤ S regular, wrn implies S right coherent.
- ⑥ Brandt semigroups with identity adjoined are right coherent but need not be wrn.

Total transcendence

A theory T is **totally transcendental** if and only every type p has Morley rank $M(p)$. These are the best theories in terms of stability.

A totally transcendental theory is superstable.

Fountain, G 87/08 characterised those (right coherent) S such that for every type p , we have $U(p) = M(p) < \infty$.

Note that if $M(p) < \infty$ for a type over a theory of modules, then $U(p) = M(p)$ - is this true for S -acts?

The finite type topology in \mathcal{RC}

We define a topology on \mathcal{RC} by means of a basis.

Let $\nu \in \mathcal{RC}$ be finitely generated and let $K \subseteq (S \times S) \setminus \nu$ be finite.

Put

$$[\nu, K] = \{\rho \in \mathcal{RC} : \nu \subseteq \rho \subseteq (S \times S) \setminus K\}.$$

The **finite type topology** has sets $[\nu, K]$ as a basis.

The **Cantor-Bendixon** rank of a point in topological space measures how far a point is from being isolated.

The **S-rank** of $\rho \in \mathcal{RC}$ is the Cantor-Bendixon rank of ρ with respect to the finite type topology.

S-rank

We make this explicit by defining subsets \mathcal{C}^α of \mathcal{RC} for each ordinal α , as follows:

- (I) $\mathcal{C}^0 = \mathcal{C}$;
- (II) if α is a limit ordinal, then

$$\mathcal{C}^\alpha = \bigcap \{\mathcal{C}^\beta : \beta < \alpha\};$$

- (III) $\rho \in \mathcal{C}^{\alpha+1}$ if and only if $\rho \in \mathcal{C}^\alpha$ and for all subsets of finite type $[\nu, K]$ with $\rho \in [\nu, K]$, there exists $\theta \in \mathcal{C}^\alpha$ with

$$\theta \in [\nu, K], \theta \neq \rho.$$

The **S-rank** $S(\rho)$ of $\rho \in \mathcal{RC}$ is ∞ if $\rho \in \mathcal{C}^\alpha$ for all α , and otherwise $S(\rho) = \alpha$ where $\rho \in \mathcal{C}^\alpha \setminus \mathcal{C}^{\alpha+1}$. If $S(\rho) < \infty$, then we say that ρ **has S-rank**.

S is **ranked** if every $\rho \in \mathcal{RC}$ has *S*-rank.

Ranked semigroups

Theorem G 05 Σ_S^* is totally transcendental if and only if S is wrn and every $\rho \in \mathcal{RC}$ has S -rank.

- ① If S is right noetherian, then S is ranked.
- ② If S inverse and ranked, then S is wrn.
- ③ Let S be ranked. Then any maximal subgroup and monoid \mathcal{J} -class is ranked.
- ④ A ranked monoid cannot contain a bicyclic \mathcal{J} -class.
- ⑤ The chain C

$$e_0 > e_1 > \dots$$

is right coherent, weakly right noetherian but not ranked, so Σ_C^* is superstable but not totally transcendental.

- ⑥ \mathbb{Z} under $+$ is (right) noetherian, right coherent and ranked so $\Sigma_{\mathbb{Z}}^*$ is t.t., but there is a type p with $M(p) \neq U(p)$.

Questions

- ① For an arbitrary S , does ranked imply wrn?
- ② Connections of right coherency to products of (weakly, strongly) flat *left S-acts*?
- ③ Ranked groups?
- ④ Structure of S -acts where S satisfies suitable finitary properties.