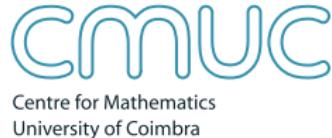


The profinite Schützenberger group defined by a symbolic dynamical system

Alfredo Costa, University of Coimbra
York Semigroup Seminar, June 10, 2020



10 DE JUNHO

DIA DE PORTUGAL, DE CAMÕES E DAS
COMUNIDADES PORTUGUESAS NO MUNDO

MINHA
PÁTRIA É
A LÍNGUA
PORTUGUESA

FERNANDO PESSOA

AN INTRODUCTION TO

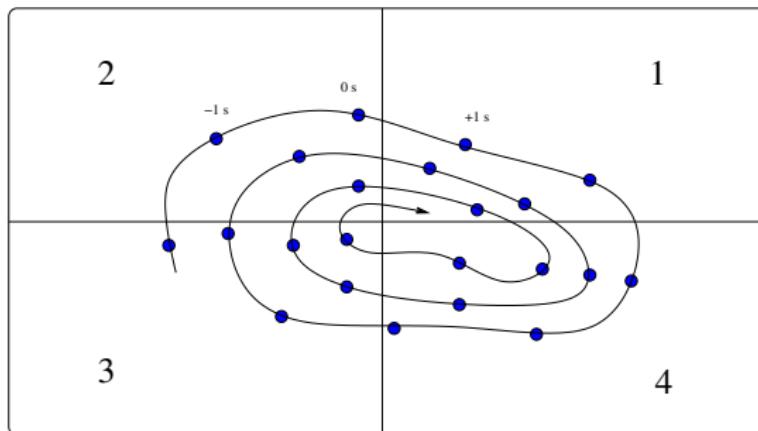
Symbolic Dynamics and Coding

DOUGLAS LIND

and

BRIAN MARCUS

Discretization



... 32.211444333211443321443 ...

This bi-infinite sequence is an element of $\{1, 2, 3, 4\}^{\mathbb{Z}}$, i.e., a mapping from \mathbb{Z} to $\{1, 2, 3, 4\}$.

... * * * 32.211444333211443321443 * ...

Subshifts

A **symbolic dynamical system** of $A^{\mathbb{Z}}$, a.k.a. **subshift** or just **shift** is a nonempty subset \mathcal{X} of $A^{\mathbb{Z}}$ such that

- \mathcal{X} is topologically closed
- $\sigma(\mathcal{X}) = \mathcal{X}$

$$\sigma((x_i)_{i \in \mathbb{Z}}) = (x_{i+1})_{i \in \mathbb{Z}}, \quad x_i \in A$$

The language of a subshift

$$F(\mathcal{X}) = \{u \in A^+ : u = x_i x_{i+1} \dots x_{i+n} \text{ for some } x \in \mathcal{X}, i \in \mathbb{Z}, n \geq 0\}$$

The elements of $F(\mathcal{X})$ are the **blocks** of \mathcal{X} .

Let \mathcal{X} be the least subshift containing

$$x = \dots \textcolor{red}{32.21}1444333\textcolor{blue}{2114433}21443 \dots$$

$$F(\mathcal{X}) = \{\dots, \textcolor{red}{3221}, 32, 22, 1, 2, 3, \textcolor{blue}{2114433}, 4, 21, 11, \dots\}$$

$F(\mathcal{X}) \subseteq F(\mathcal{Y})$ if and only if $\mathcal{X} \subseteq \mathcal{Y}$.

Morphisms between subshifts

$$\begin{array}{ccc} \mathcal{X} & \xrightarrow{\psi} & \mathcal{Y} \\ \sigma \downarrow & & \downarrow \sigma \\ \mathcal{X} & \xrightarrow{\psi} & \mathcal{Y} \end{array}$$

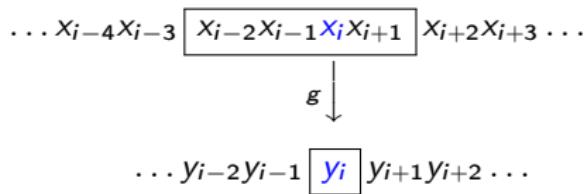
Isomorphic subshifts are said to be **conjugate**.

An isomorphism is called a **conjugacy**.

Sliding block codes

Let $x \in A^{\mathbb{Z}}$. Given a map $g : A^m \rightarrow B$, we can code x through g :

- we choose integers $k, l \geq 0$ such that $m = k + l + 1$;
- we make $y_i = g(x_{[i-k, i+l]})$.



Theorem (Curtis-Hedlund-Lyndon, 1969)

The morphisms between subshifts are precisely the sliding block codes.

Irreducible shifts

Definition

A subshift \mathcal{X} of $A^{\mathbb{Z}}$ is **irreducible** if

$$\mathcal{X} = \overline{\{\sigma^n(x) \mid n \geq 1\}}$$

for some $x \in \mathcal{X}$.

\mathcal{X} is irreducible if and only if $F = F(\mathcal{X})$ is recurrent.

Recurrent languages

A language F is **recurrent** when:

- F is factorial
- $u, v \in F \Rightarrow (uwv \in F \text{ for some } w \in A^+)$

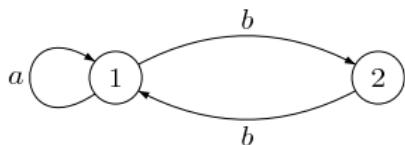
(Irreducible) Sofic subshifts

Periodic

Minimal subshifts

Sofic shifts

A shift \mathcal{X} is sofic if $F(\mathcal{X})$ is a rational language, that is, sofic shifts correspond to factorial prolongable languages which are recognized by some finite labeled (oriented) graph.



$\dots aaabbbbab.baaabbbaaa \dots \in \mathcal{X}$

but

$\dots aaabbbbab.baa**abbbaaa** \dots \notin \mathcal{X}$

Minimal subshifts

Definition

A subshift \mathcal{X} is **minimal** if

$$\mathcal{Y} \subseteq \mathcal{X} \Rightarrow \mathcal{Y} = \mathcal{X}$$

for every subshift \mathcal{Y} . That is, if

$$\mathcal{X} = \overline{\{\sigma^n(x) \mid n \in \mathbb{Z}\}}$$

for every $x \in \mathcal{X}$.

\mathcal{X} is minimal if and only if $F = F(\mathcal{X})$ is uniformly recurrent.

Uniformly recurrent languages

An infinite language F is **uniformly recurrent** when:

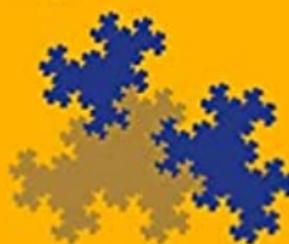
- F is factorial
- $u \in F \Rightarrow u$ is a factor of every word of length $N(u)$ in F

N. Pytheas Fogg

Substitutions in Dynamics, Arithmetics and Combinatorics

1794

Editors: V. Berthé
S. Ferenczi
C. Mauduit
A. Siegel



Springer

The Fibonacci set and other examples

$$\varphi: A^* \rightarrow A^* \quad \varphi(a) = ab \quad \varphi(b) = a$$

$$\varphi^{n+2}(a) = \varphi^{n+1}(a)\varphi^n(a)$$

$$\varphi^6(a) = abaababaabaababaababa$$

$$F(\varphi) = \{a, b, aa, ab, ba, aab, aba, baa, bab, \dots\}$$

- $n+1$ words of length n (uniformly recurrent sets with this property are called **Sturmian**)
- φ is an example of a **primitive** substitution

$$M(\varphi) = \begin{bmatrix} |\varphi(a)|_a & |\varphi(b)|_a \\ |\varphi(a)|_b & |\varphi(b)|_b \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

- If $\psi: B^* \rightarrow B^*$ is primitive, then

$$F(\psi) = \{\text{factors of } \psi^n(b) \mid n \geq 1\} \quad (b \in B)$$

does not depend of the choice of b , is uniformly recurrent, and so it defines a unique minimal subshift $\mathcal{X}(\psi)$

Free profinite monoids

Profinite monoid: inverse limit of finite monoids

Free profinite monoid:

$$\widehat{A^*} = \varprojlim \{A^*/\theta \mid A^*/\theta \text{ is finite}\}$$

- The elements of $\widehat{A^*}$ are called **pseudowords**
- The ideal structure of the free monoid A^* is very “poor”.
- The ideal structure of the free **profinite** monoid $\widehat{A^*}$ is very “**rich**” when $|A| \geq 2$.

A connection introduced by Almeida ≈ 15 years ago

Consider the topological closure $\overline{F(\mathcal{X})}$ in $\widehat{A^*}$.

The set $\overline{F(\mathcal{X})}$ itself is factorial!

This is related with the multiplication on $\widehat{A^*}$ being an open mapping.

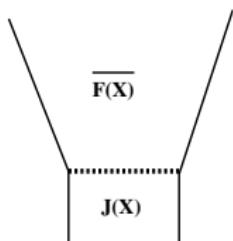
If \mathcal{X} is irreducible, then $\overline{F(\mathcal{X})}$ contains a

\mathcal{J} -minimum \mathcal{J} -class $J(\mathcal{X})$

containing a

maximal (profinite!) subgroup $G(\mathcal{X})$

called the Schützenberger group of \mathcal{X} .



$$\mathcal{X} \subseteq \mathcal{Y} \Leftrightarrow F(\mathcal{X}) \subseteq F(\mathcal{Y}) \Leftrightarrow \overline{F(\mathcal{X})} \subseteq \overline{F(\mathcal{Y})} \Leftrightarrow J(\mathcal{Y}) \leq_{\mathcal{J}} J(\mathcal{X})$$

Corollary

If $|A| \geq 2$, then $\widehat{A^}$ has an uncountable chain of regular \mathcal{J} -classes.*

Proof.

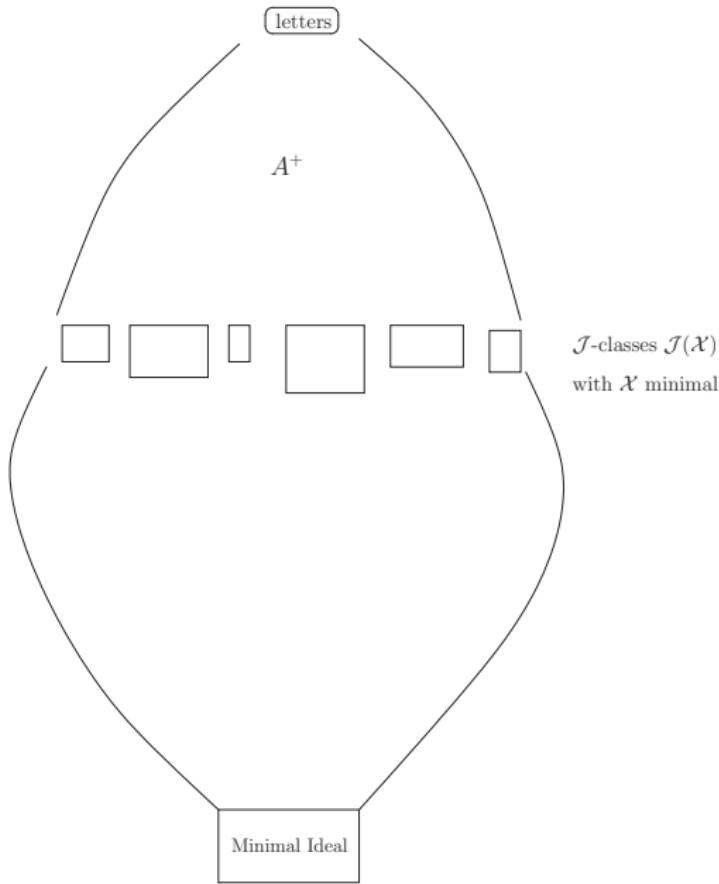
There is an uncountable chain of irreducible subshifts of $A^{\mathbb{Z}}$. □

Corollary

If $|A| \geq 2$, then $\widehat{A^}$ has an uncountable anti-chain of regular \mathcal{J} -classes.*

Proof.

There is an uncountable anti-chain of minimal subshifts of $A^{\mathbb{Z}}$. □



$G(\mathcal{X})$

Theorem (C, 2006)

$G(\mathcal{X})$ is a conjugacy invariant.

Theorem (C & Steinberg, 2011)

If \mathcal{X} is an irreducible sofic subshift over an alphabet with at least two letters, then $G(\mathcal{X})$ is a free profinite group of rank \aleph_0 .

Theorem (C & Steinberg, 2020)

$G(\mathcal{X})$ is an invariant of flow equivalence.

Flow equivalence

Suspension flow:

$$(\mathcal{X} \times \mathbb{R})/\sim$$

with

$$(x, r) \sim (\sigma(x), r - 1)$$

$$\forall x \in \mathcal{X}, r \in \mathbb{R}.$$

“Definition”

\mathcal{X} and \mathcal{Y} are **flow equivalent** whenever there is a well behaved homeomorphism between their suspension flows.

Flow equivalence

Let α be a letter of the alphabet A . Let $B = A \uplus \{\diamond\}$. Define a semigroup homomorphism $\mathcal{E}_\alpha: A^+ \rightarrow B^+$ by

$$\begin{cases} \mathcal{E}_\alpha(a) = a & \text{if } a \in A \setminus \{\alpha\} \\ \mathcal{E}_\alpha(\alpha) = \alpha\diamond \end{cases}$$

Symbol expansion

The **symbol expansion** of \mathcal{X} , relatively to a letter α of the alphabet of \mathcal{X} is the least shift \mathcal{X}_α such that $F(\mathcal{X}_\alpha)$ contains $\mathcal{E}_\alpha(F(\mathcal{X}))$.

An equivalent definition by Parry & Sullivan (1975)

Flow equivalence is the equivalence relation between shifts generated by conjugacy and symbol expansions.

First example (Almeida, 2007) of a non-free maximal subgroup of $\widehat{A^*}$:

$$G(\mathcal{X}(\varphi)) : \quad \varphi(a) = ab, \quad \varphi(b) = a^3b.$$

Theorem (Rhodes & Steinberg, 2008)

The closed subgroups of the free profinite monoids are precisely the projective profinite groups.

$$\begin{array}{ccc} & G & \\ f' \swarrow & \diagup & \downarrow f \\ H & \xrightarrow{g} & K. \end{array}$$

Theorem (Lubotzky & Kovács, 2001)

If G is a projective profinite group which is finitely generated, then

$$G = \langle X \mid r(x) = x \ (x \in X) \rangle$$

with r an idempotent continuous endomorphism of $\widehat{FG(X)}$, for some finite X

Primitive (proper) substitutions

$\varphi: A^* \rightarrow A^*$ is **proper** when there are $a, b \in A$ such that $\varphi(A) \subseteq aA^* \cap A^*b$

e.g. $\varphi(a) = ab, \varphi(b) = a^3b$

Theorem (Hunter, 1983)

If M is a finitely generated profinite monoid, then $\text{End}(M)$ is profinite.

φ^ω : idempotent power of φ in $\text{End}(\widehat{A^*})$

Theorem (Almeida & C, 2013)

If φ is a proper non-periodic primitive substitution, then

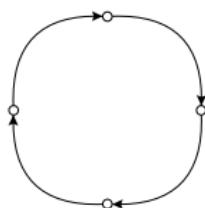
$$G(\mathcal{X}(\varphi)) = \varphi^\omega(\widehat{A^*}) = \langle A \mid \varphi^\omega(a) = a \ (a \in A) \rangle_{\text{Group presentation}}$$

- If φ is invertible on $\widehat{FG(A)}$ (e.g. $\psi(a) = ab$ & $\psi(a) = a^2b$), then $\psi^\omega(a) = a$ in $\widehat{FG(A)}$ and so $G(\mathcal{X}(\varphi))$ is a free profinite group of rank $|A|$.
- $\varphi(a) = ab, \varphi(b) = a^3b$ is not invertible on groups. We can use the presentation to show that $G(\mathcal{X}(\varphi))$ is not a free profinite group.
- For arbitrary primitive substitutions, one can reduce to the proper case, e.g. via a suitable conjugacy (Durand & Host & Skau, 1999)

Towards a “geometrical” interpretation

The topological graph $\Sigma(\mathcal{X})$ of a subshift \mathcal{X} :

- vertices: the elements of \mathcal{X}
- edges: $(x, \sigma(x))$ (the unique edge from x to $\sigma(x)$)



Rauzy graphs

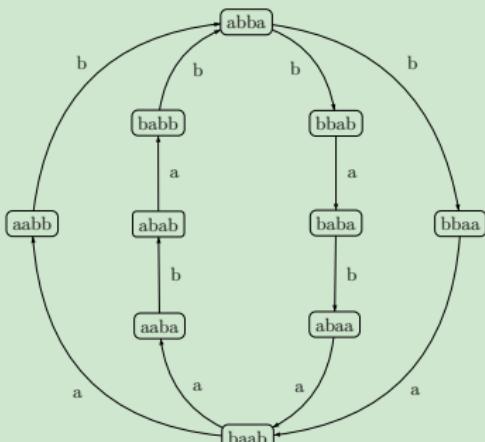
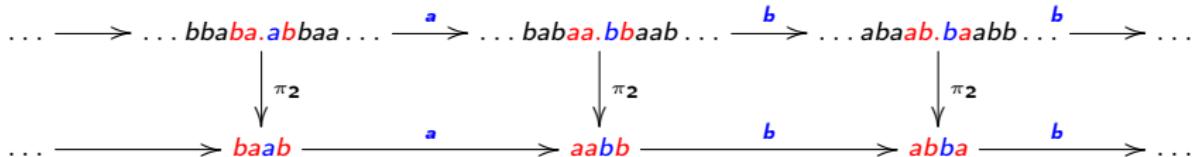
- $\mathcal{X} = \mathcal{X}(\tau)$ the P.T.M. subshift

$$\tau(a) = ab, \quad \tau(b) = ba$$

- Canonical projection

$$\Sigma(\mathcal{X}) \rightarrow \Sigma_4(\mathcal{X})$$

Rauzy graph $\Sigma_4(\mathcal{X})$



Inverse limits

At the level of graphs

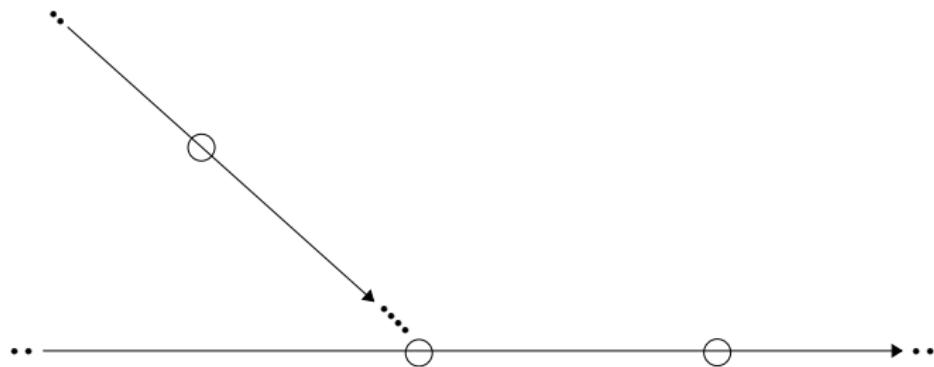
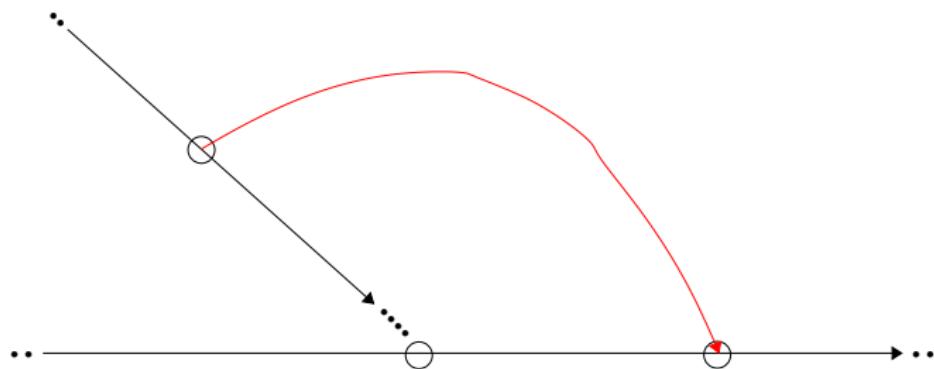
$$\Sigma(\mathcal{X}) = \varprojlim \Sigma_{2n}(\mathcal{X})$$

At the level of free categories

$$\Sigma(\mathcal{X})^* = \varprojlim \Sigma_{2n}(\mathcal{X})^*$$

At the level of free profinite categories

$$\widehat{\Sigma(\mathcal{X})^*} = \varprojlim \widehat{\Sigma_{2n}(\mathcal{X})^*}$$

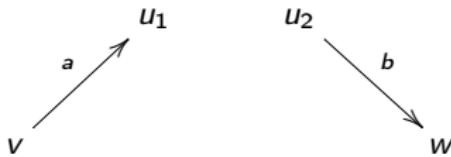
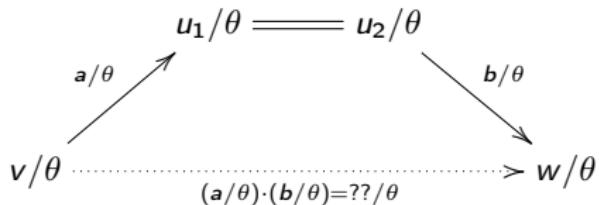


A technical difficulty

Given a (small) category C with a **finite** number of vertices, its profinite completion is the category:

$$\widehat{C} = \varprojlim \{C/\theta \mid C/\theta \text{ is a finite category}\}$$

A congruence in a (small) category may identify two arrows with the same source and the same target, but not distinct vertices.



Dealing with the difficulty

- Take $\Gamma = \varprojlim \Gamma_i$, with the Γ_i finite
- Let $\widehat{\Gamma}^*$ be the closed subcategory of $\varprojlim \widehat{\Gamma}_i^*$ generated by Γ .

Then, $\widehat{\Gamma}^*$ is the free profinite category generated by Γ .

- By definition, the inclusion $\widehat{\Gamma}^* \subseteq \varprojlim \widehat{\Gamma}_i^*$ holds. Is it always an equality?

Theorem (Almeida & C, 2009)

$$\widehat{\Sigma(\mathcal{X})^*} = \varprojlim \widehat{\Sigma_{2n}(\mathcal{X})^*}$$

- The inclusion $\overline{\Sigma(\mathcal{X})^*} \subseteq \widehat{\Sigma(\mathcal{X})^*}$ may be strict:
 - if \mathcal{X} is the even subshift, then

$$\overline{\Sigma(\mathcal{X})^*} \subsetneq \overline{(\Sigma(\mathcal{X})^*)^*} \subsetneq \overline{(\overline{\Sigma(\mathcal{X})^*})^*} = \widehat{\Sigma(\mathcal{X})^*}$$

First “geometrical” interpretation of $G(\mathcal{X})$

Theorem (Almeida & C, 2009)

Suppose that \mathcal{X} is minimal.

- ❶ $\widehat{\Sigma(\mathcal{X})^*} = \overline{\Sigma(\mathcal{X})^*}$
- ❷ After removing from $\widehat{\Sigma(\mathcal{X})^*}$ the edges of $\Sigma(\mathcal{X})^*$, we obtain a connected profinite groupoid, denoted $\widehat{\Sigma(\mathcal{X})^*}_\infty$
- ❸ Let $\mu: \Sigma(\mathcal{X}) \rightarrow A$ send $(x, \sigma(x))$ to x_0 . Its unique extension to a continuous functor

$$\widehat{\mu}: \widehat{\Sigma(\mathcal{X})^*} \rightarrow \widehat{A^*}$$

is faithful and its restriction to any local group G_x of $\widehat{\Sigma(\mathcal{X})^*}$ maps G_x isomorphically onto a maximal subgroup of $J(\mathcal{X})$

Corollary

$G(\mathcal{X})$ is a conjugacy invariant.

Proof.

$$\mathcal{X} \simeq \mathcal{Y} \Rightarrow \Sigma(\mathcal{X}) \simeq \Sigma(\mathcal{Y}) \Rightarrow \widehat{\Sigma(\mathcal{X})^*} \simeq \widehat{\Sigma(\mathcal{Y})^*} \Rightarrow \widehat{\Sigma(\mathcal{X})^*}_\infty \simeq \widehat{\Sigma(\mathcal{Y})^*}_\infty \quad \square$$

Second “geometrical” interpretation of $G(\mathcal{X})$

For \mathcal{X} irreducible, we consider the fundamental groupoid $\Pi_{2n}(\mathcal{X})$ of $\Sigma_{2n}(\mathcal{X})$

$$\begin{array}{ccc} \widehat{\Sigma_{2m}(\mathcal{X})} & \xrightarrow{\hat{h}_m} & \widehat{\Pi_{2m}(\mathcal{X})} \\ \downarrow \hat{p}_{m,n} & & \downarrow \hat{q}_{m,n} \\ \widehat{\Sigma_{2n}(\mathcal{X})} & \xrightarrow{\hat{h}_n} & \widehat{\Pi_{2n}(\mathcal{X})} \end{array}$$

Therefore, we have a continuous onto groupoid homomorphism

$$\hat{h}: \widehat{\Sigma(\mathcal{X})^*} \rightarrow \varprojlim \widehat{\Pi_{2n}(\mathcal{X})}$$

Theorem (Almeida & C, 2016)

If \mathcal{X} is minimal, then $\hat{h}: \widehat{\Sigma(\mathcal{X})^*} \rightarrow \varprojlim \widehat{\Pi_{2n}(\mathcal{X})}$ is a continuous isomorphism.

Therefore, $G(\mathcal{X})$ is isomorphic to an inverse limit of the profinite completions of the fundamental groups of $\Sigma_{2n}(\mathcal{X})$.

Application of the (first) geometrical interpretation

- A **return word** to $u \in F(X)$ is a word $w \in A^*u$ such that $uw \in F(X)$ and u is not an internal factor of uw .
- Every loop of $\widehat{\Sigma(\mathcal{X})^*}$ at vertex x projects onto a loop of $\widehat{\Sigma_{2n}(\mathcal{X})^*}$ labeled by an element of the closed submonoid generated by the conjugate

$$(x_{[-n, -1]})^{-1} \cdot R_n \cdot x_{[-n, -1]}$$

of the set R_n of return words of $x_{[-n, n-1]}$.

- If R_n is always a basis of $FG(A)$, then $G(\mathcal{X})$ is a free profinite group of rank $|A|$.

Theorem (Return theorem — Berthé & De Felice & Dolce & Leroy & Perrin & Reutenauer & Rindone, 2015)

If \mathcal{X} is **dendric**, then R_n is a basis of $FG(A)$

Dendric: generalize Sturmian subshifts.

Corollary (Almeida & C, 2016)

If \mathcal{X} is **dendric**, then $G(\mathcal{X})$ is a free profinite group of rank $|A|$

Next slides: first relevant “external” application of $G(F) = G(\mathcal{X})$
($F = F(\mathcal{X})$ will always be uniformly recurrent)

(Joint work with:
Jorge Almeida, Revekka Kyriakoglou & Dominique Perrin)

Maximal bifix codes

A bifix code X of A^* is **maximal** if

$$X \subseteq Y \text{ and } Y \text{ is bifix} \implies X = Y$$

A bifix code X is **F -maximal** if $X \subseteq F$ and

$$X \subseteq Y \subseteq F \text{ and } Y \text{ is bifix} \implies X = Y$$

Theorem (Berstel & De Felice & Perrin & Reutenauer & Rindone; 2012)

Z is maximal bifix $\Rightarrow X = Z \cap F$ is a finite F -maximal bifix code...

Theorem (The five authors of the 2012 paper + Dolce & Leroy; 2015)

*... and $X = Z \cap F$ is a basis of a subgroup of index $d(Z)$ of the free group $FG(A)$, if moreover F is **dendric**.*

$d(Z)$: rank of the minimum ideal of the transition monoid $M(Z^*)$ of the minimal automaton of Z^*

F -groups

The **group of Z** , denoted $G(Z)$:

Schützenberger group of the **minimum \mathcal{J} -class** of $M(Z^*)$.

The **F -group of X** , denoted $G_F(X)$:

Schützenberger group of the **F -minimum \mathcal{J} -class of $M(Z^*)$** — the \mathcal{J} -class containing the image in $M(X^*)$ of $J(F)$.

Theorem (Berstel & De Felice & Perrin & Reutenauer & Rindone; 2012)

If Z is a group code and F is Sturmian, then

$$G(Z) \simeq G_F(X)$$

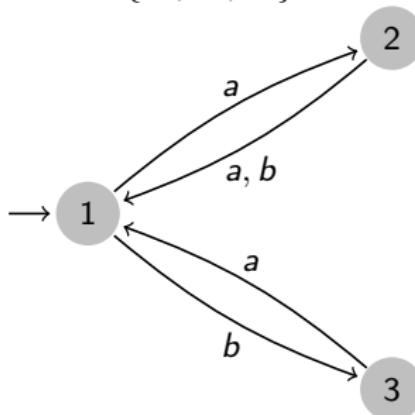
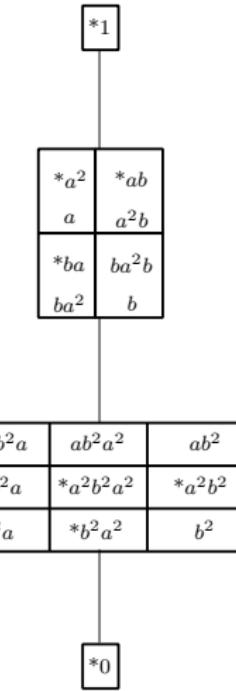
and $d(Z) = d_F(X)$.

$d_F(Z)$: rank of $J_F(X)$

- $Z = \{aa, ab, ba, bb\}$
is a **group code** of degree 2:
 $M(Z^*) = G(Z) = \mathbb{Z}/2\mathbb{Z}$
- F = “Fibonacci set”

$M(X^*)$:

Minimum automaton of X^* , where
 $X = Z \cap F = \{aa, ab, ba\}$



$$G(Z) \simeq G_F(X) \simeq \mathbb{Z}/2\mathbb{Z}$$

F -charged codes

Definition: X is:

- F -charged if

$$\hat{\eta}_{X^*}(G(F)) = G(X)$$

$$\begin{array}{ccccc} A^* & \xhookrightarrow{\quad} & \widehat{A^*} & \xleftarrow{\quad} & G(F) \\ \searrow \hat{\eta}_{X^*} & & \downarrow \hat{\eta}_{X^*} & & \downarrow |\hat{\eta}_{X^*}| \\ & & M(X^*) & \xleftarrow{\quad} & G(X) \end{array}$$

Theorem (Almeida & C & Kyriakoglou & Perrin; 2020)

Under mild conditions

$$Z \text{ is } F\text{-charged} \Rightarrow G(Z) \simeq G_F(X) \text{ & } d(Z) = d_F(X)$$

Corollary

$G(Z) \cong G_F(Z \cap F)$ if F is **connected** and Z is group code

Connected F : generalizes dendric F

Proof:

If F is a connected set, then $\pi|: G(F) \rightarrow \widehat{FG(A)}$ is onto (Almeida & C; 2017).

$$\begin{array}{ccc} \widehat{A^*} & \xleftarrow{\quad} & G(F) \\ \pi \searrow & & \downarrow \pi| \\ & \widehat{FG(A)} & \\ \downarrow \hat{\eta}_{Z^*} & \nearrow & \\ M(Z^*) = G(Z) & & \end{array}$$

Hence Z is F -charged. QED

Notice that this theorem uses no “profinite jargon”!

Three references

① A. Costa

Symbolic dynamics and semigroup theory

CIM Bulletin 40 (2018)

(A short survey with six pages)

② J. Almeida, A. Costa, R. Kyriakoglou & D. Perrin

On the group of a rational maximal bifix code

Forum Mathematicum 32 (2020)

(For applications to the theory of codes)

③ A. Costa & B. Steinberg

The Karoubi envelope of the mirage of a subshift

arXiv:2005.07490

(Most recent research paper)