Something about semigroups in computer science

Laure Daviaud
University of East Anglia

You've got a problem...

- . Is your conjecture true? Is there a counter-example?
- . Schedule your holidays
- · University IT systems (with no bug)

etc ...

Formal verification

How to get a program to check that another program is correct...?

Using formal methods, mathematical abstractions...

If you have got one thing to remember...

→ Undecidable (unsurprinsingly)

Though still worth trying to get some partial guarantee...

Formal verification

Automata

$$\Sigma = \{a, b\}$$

Accepts the language of words of Σ^* with an even number of a's

This is a semigroup!!

To take away:

Rational languages - everything is decidable, but simple model

Probabilistic Automata

$$\Sigma = \{a, b\}$$

Maps a word of Σ^{\ast} with the probability of it not being faulty

This is also a semigroup!!

Max-plus Automata

$$\Sigma = \{a, b\}$$

What is computed on aaabbaabbbaaaaabaa?

Maps a word of Σ^* with its maximal number of consecutive a's

This is also a semigroup!!

The natural questions...

Consider:

A model computing a function from Σ^* to \mathbb{R} (say)

Questions:

Are two models computing the same functions? Are they approximatively computing the same function? Is one always smaller than the other one? etc...

Decidability varies a lot, depending on the question and on the model.

One question on one model

The Model

Max-Plus Automata

Extension of Boolean automaton with non-negative integers on transitions, combined using operations max and sum.

$$\Sigma^* \to \mathbb{N} \cup \{-\infty\}$$

The Question

Big-O Problem

Given two max-plus automata computing functions f and g, is f big-O of g?

There exists C such that for all $w \in \Sigma^*$, $f(w) \leq Cg(w) + C$

Theorem (D., Purser): It is decidable (PSPACE-complete).

Our running example

 \mathcal{B} : $w \mapsto \max$ of number of b's and number of consecutive a's in w

And matrices...

with $(I)_{a_1} = (I)_{a_2} = (I)_{a_4} = (F)_{a_2} = (F)_{a_3} = (F)_{a_4} = 0$

Witnesses

 \mathcal{A} \mathcal{B}

$$b:1 \ a:1$$

$$0 \ p \ 0$$

$$a: 0 \ b: 0 \qquad a: 1 \qquad a: 0 \ b: 0$$

$$0 \qquad q_1 \qquad b: 0 \qquad q_2 \qquad b: 0 \qquad q_3 \qquad 0$$

$$b: 1 \ 0: a$$

$$0 \qquad q_4 \qquad 0$$

Key sequence: $(a^n b)^n a^n$

$$\left(n^{2}, \begin{pmatrix} 0 & n & n & - \\ - & - & n & - \\ - & - & 0 & - \\ - & - & - & n \end{pmatrix}\right)$$

Witnesses

$$\begin{pmatrix} n^2, \begin{pmatrix} 0 & n & n & -\\ - & - & n & -\\ - & - & 0 & -\\ - & - & - & n \end{pmatrix} \end{pmatrix}$$

Becomes:

$$\left(\infty, \begin{pmatrix} 0 & 1 & 1 & -\\ - & - & 1 & -\\ - & - & 0 & -\\ - & - & - & 1 \end{pmatrix}\right)$$

- -: no run at all
- 0: all runs have weight 0
- 1: some runs with positive weights but not the largest growth rate
- ∞: runs with largest growth rate

Game plan

Aim: Decide some property P on an abstract model M

- → Find the right finite algebraic structure S to represent M
- → Find the right operations on S to capture P (no more, no less)
- \longrightarrow Identify witnesses, present in S if and only if M satisfies P

Running example

$$a=(p,1,p,egin{pmatrix} 0 & - & - & - \ - & 1 & - & - \ - & 0 & - \ - & - & 0 \end{pmatrix}) \ ext{and} \ b=(p,1,p,egin{pmatrix} 0 & 0 & - & - \ - & - & 0 & - \ - & - & 0 & - \ - & - & - & 1 \end{pmatrix})$$

$$ab = (p, 1, p, \begin{pmatrix} 0 & 0 & - & - \\ - & - & 1 & - \\ - & - & 0 & - \\ - & - & - & 1 \end{pmatrix}) \quad bb = (p, 1, p, \begin{pmatrix} 0 & 0 & 0 & - \\ - & - & 0 & - \\ - & - & 0 & - \\ - & - & - & 1 \end{pmatrix})$$

Running example

 \longrightarrow Sharp

$$a^{\#} = (p, \infty, p, \begin{pmatrix} 0 & - & - & - \\ - & \infty & - & - \\ - & - & 0 & - \\ - & - & - & 0 \end{pmatrix}) \quad a^{\#}b = (p, \infty, p, \begin{pmatrix} 0 & 0 & - & - \\ - & - & \infty & - \\ - & - & 0 & - \\ - & - & - & 1 \end{pmatrix})$$

$$a^{\#}ba^{\#}b = (p, \infty, p, \begin{pmatrix} 0 & 0 & \infty & - \\ - & - & \infty & - \\ - & - & 0 & - \\ - & - & 0 & - \\ - & - & - & 1 \end{pmatrix})$$

$$(a^{\#}ba^{\#}b)^{\#} = (p, \infty, p, \begin{pmatrix} 0 & 0 & \infty & - \\ - & - & \infty & - \\ - & - & 0 & - \\ - & - & - & \infty \end{pmatrix})$$

Running example

$$\longrightarrow$$
 Flat

$$(a^{\#}ba^{\#}b)^{\flat} = (p, \infty, p, \begin{pmatrix} 0 & 0 & 1 & - \\ - & - & 1 & - \\ - & - & 0 & - \\ - & - & - & 1 \end{pmatrix})$$

Game plan

Aim: Decide whether \mathcal{A} big-O of \mathcal{B}

- \longrightarrow Find the right finite algebraic structure S to represent M
- \longrightarrow Find the right operations on S to capture P (no more, no less)

$$(p, \overline{x_a}, q, \overline{M(a)})$$
 closed under product, sharp and flat

 \longrightarrow Identify witnesses, present in S if and only if M satisfies P

with:

- p initial, q final
- $x = \infty$
- . $IMF \neq \infty$

The factorisation forest theorem of Simon

In any finite semigroup...

Just a fancy picture

The End (or just the beginning)

Theorem [D., Purser]

The big-O problem is PSPACE-complete for max-plus automata.

Proposition [D., Purser, Tcheng]

Construction of witnesses with increasing complexity.