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Abstract. We consider the question of membership of A ∨ G,
where A and G are, respectively, the pseudovarieties of finite
aperiodic semigroups, and finite groups, respectively. We find a
straightforward criterion for a semigroup S lying in a class of finite
semigroups that are weakly abundant, to be in A ∨G.

1. Introduction

We consider the celebrated question of membership for a finite semi-
group in the pseudovariety A∨G. For orthodox semigroups there is an
elegant criterion provided by McAlister in [17], namely, a finite ortho-
dox semigroup lies in A∨G if and only if H is a congruence on S. This
paved the way for McAlister to characterise in [18] regular semigroups
in A∨G. Steinberg [22] has shown that the work of Tilson and Rhodes
[19] allows McAlister’s results to be extended beyond the regular case.
In a different direction, the first two authors have shown [8] that a
finite bountiful semigroup lies in A ∨ G if and only if H ⊆ µ, where
µ is the analogue for a bountiful semigroup of the greatest idempotent
separating congruence on a regular semigroup. Bountiful semigroups
are approached via the generalisations L∗ and R∗ of Green’s relations
L and R, details of which are given in Section 2. A semigroup S is
bountiful if every L∗-class and every R∗-class contains an idempotent,
E(S) is a band and the idempotent connected condition (IC) holds. For
such semigroups, the greatest congruence contained in H∗ = L∗ ∩ R∗

is denoted by µ.
If S is regular and bountiful, then S is orthodox and H∗ = H, so

that the above result from [8] simply says that H is a congruence, as
in McAlister’s original result.
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The aim of the current article is to extend the result of Fountain and
Gomes. We will consider classes of semigroups arrived at via consider-

ations of the relations L̃ and R̃ on a semigroup S (defined in the next
section), which are distant analogues of L and R and which contain the
relations L∗ and R∗, respectively. A semigroup is weakly abundant if
every L̃-class and every R̃-class contains an idempotent. We consider
two classes of weakly abundant semigroups. For one class we can show
that if a semigroup S lies in the class and is also in A∨G, then H ⊆ µ,

where here µ is the largest congruence contained in H̃ = L̃ ∩ R̃. For
semigroups in the other class we can show the converse. A finite boun-

tiful semigroup lies in both classes, and for such a semigroup L∗ = L̃
and R∗ = R̃.

Our approach is inspired by that of [8], but there are two issues.
First, we are working with semigroups with weaker properties, and
second, the argument of [8] calls upon many techniques already estab-
lished for the relations L∗ and R∗. We have the task of developing

their analogues here for L̃ and R̃, many of which are of independent
interest.

The structure of the paper is as follows. In Section 2 we define the

relations L∗, L̃,R∗ and R̃, and quote a number of results concerning
fundamental semigroups where, in this context, a semigroup is funda-

mental if and only if the largest congruence µ contained in H̃ is trivial.
We also discuss conditions we call (C) and (WIC) and demonstrate
their independence in Section 3.

Section 4 gives the proof of one of our results: that if S is finite

weakly abundant such that L̃ and R̃ are respectively right and left
congruences and the regular elements of S form a subsemigroup, then
if S ∈ A ∨ G we must have H ⊆ µ. It is notable that to prove this
result we must make use of that of McAlister in the regular case.

In Section 5 we first define weakly bountiful semigroups; these are
weakly abundant semigroups with band of idempotents, and satisfying
condition (WIC). Such semigroups are a generalisation of bountiful
semigroups, which themselves include the class of orthodox semigroups.
We make a careful analysis of the congruence δ on a weakly bountiful
semigroup, where δ is the analogue of the least inverse congruence on
an orthodox semigroup. If S is weakly bountiful, then S/δ lies in the
appropriate class of semigroups analogous to inverse semigroups, the
class of weakly adequate semigroups with condition (A). In Section 6
we analyse the least monoid unipotent congruence, σ, on a weakly
bountiful semigroup.
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Section 7 considers the existence of finite proper covers for weakly
adequate semigroups with (A). Our covers must be carefully stitched
together from covers that are known to exist for semigroups having
only analogous one-sided properties.

Finally in Section 8 we present our main result, Theorem 8.13, which
states that a finite weakly bountiful semigroup for which H ⊆ µ must
lie in A∨G. For such a semigroup S, we construct a cover T from V and
S/µ, where V is a cover of the weakly adequate semigroup with (A),
S/δ, proven to exist in Section 7. The semigroup T has the property
that σ∩µ is trivial, and it is this that allows up to prove Theorem 8.13.

2. Preliminaries

For the convenience of the reader we gather together in this section
some basic definitions and elementary observations concerning abun-
dant and weakly abundant semigroups. Further details may be found
in [4], [6] and [16]. For basic semigroup notation and terminology we
follow [14].

Let S be a semigroup with subset of idempotents U . The relation

L̃U is defined by the rule that for any a, b ∈ S, a L̃U b if and only if for
all e ∈ U ,

ae = a if and only if be = b.

Recall that the relation L∗ is defined on S by the rule that aL∗ b if and
only if for any x, y ∈ S1,

ax = ay if and only if bx = by.

It is easy to see that

L ⊆ L∗ ⊆ L̃U ,

with equality if S is regular and U = E(S). Another useful observation

is that if a ∈ S and e ∈ U , then a L̃U e if and only if ae = a and for

any f ∈ U , af = f implies that ef = e. The relations R̃U and R∗ are
defined dually; we continue the analogy with the notation for Green’s

relations by denoting L̃U ∩ R̃U by H̃U and L∗ ∩ R∗ by H∗. Clearly

L̃U ,L
∗, R̃U and R∗ are equivalences, hence so also are H̃U and H∗.

It is easy to see that (as is the case for L and R) L∗ and R∗ are,

respectively, right and left congruences. On the other hand, L̃U and

R̃U need not be; if they are, then we say that Condition (C) holds (with
respect to U).

The semigroup S is weakly U-abundant if every L̃U -class and every

R̃U -class contains an idempotent of U . If a is an element of such an S,
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then we commonly denote idempotents of U in the L̃U -class and R̃U -
class of a by a∗ and a+ respectively. Beware, however, that there may
not be a unique choice for a∗ or a+. The following lemma is immediate.

Lemma 2.1. [4, Lemma 2.1] Let S be a weakly U-abundant semigroup.
Then for any a, b ∈ S,

(ab)∗≤L b
∗ and (ab)+≤R a

+.

When U = E(S) we drop the subscript U from our notation and

terminology; for example we write L̃E(S) as L̃ and refer to a weakly
E(S)-abundant semigroup as weakly abundant.

A semigroup S is abundant if every L∗-class and every R∗-class con-
tains an idempotent. It is well known, and easy to see, that in such a

semigroup L∗ = L̃ andR∗ = R̃. Consequently, an abundant semigroup
is weakly abundant with (C).

Morphic images of regular and inverse semigroups are regular and
inverse respectively. The same is not true even for abundant semigroups
with semilattice of idempotents [7]. With this in mind we make the
following definition. Let S be a semigroup, U a subset of E(S) and
ϕ : S → T be a morphism. Then ϕ is U -admissible if for any a, b ∈ S,

a L̃U b implies that aϕ L̃Uϕ bϕ

and

a R̃U b implies that aϕ R̃Uϕ bϕ.

If, in addition, the reverse implications hold we say that ϕ is strongly
U -admissible.

We denote by µU the largest congruence contained in H̃U , and say

that S is U -fundamental if µU is trivial. If S is abundant, then H∗ = H̃
and so µ is the largest congruence contained in H∗; if moreover S is
regular, then H̃ = H∗ = H and µ is the largest congruence contained in
H and so it is the maximum idempotent separating congruence on S.
Thus our notation is consistent with the standard notation for regular
semigroups. When more than one semigroup is involved, we may write
µS for the relation µ on S.

We now quote three results from [4], essential for the sequel.

Lemma 2.2. [4, Lemma 2.3] Let S be a semigroup with U ⊆ E(S), and
let ϕ : S → T be an onto morphism. Then ϕ is strongly U-admissible if

and only if the kernel of ϕ is contained in H̃U . In this case, S is weakly
U-abundant if and only if T is weakly Uϕ-abundant, and S satisfies (C)
with respect to U if and only if T satisfies (C) with respect to Uϕ.
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Proposition 2.3. [4, Lemma 2,4] Let S be a semigroup and let U ⊆
E(S). The natural morphism µ\U associated with µU is strongly U-
admissible and restricts to an injection on U . Denoting the image of
U under µ\U by U , we have that S/µU is U -fundamental.

If S is weakly U-abundant, then S/µU is weakly U-abundant; if S
satisfies (C), then so does S/µU .

We say that a subsemigroup T of S is U -full if U ⊆ T .

Lemma 2.4. [4, Lemma 2.7] Let T be a U-full subsemigroup of S.
Then for any a, b ∈ T ,

a L̃U b in T if and only if a L̃U b in S

and
a R̃U b in T if and only if a R̃U b in S.

Consequently, if S is weakly U-abundant, then so is T ; if S satisfies
(C) with respect to U , then so does T .

If S is U-fundamental weakly U-abundant with (C), then so is T .

It remains in this section to discuss the weak idempotent connected
condition. A fuller version of some of the ideas we present here is
contained in [20] and in [4]. Essentially, all of the idempotent connected
and ample (formerly, type A) conditions extant give some control over
the position of idempotents in products, usually facilitating results for
abundant or weakly abundant semigroups reminiscent of those in the
regular case.

For a band B and element e of B we denote by 〈e〉 the principal
order ideal generated by e; so that

〈e〉 = {x ∈ B : x ≤ e} = {x ∈ B : ex = xe = x}.

Let S be a weakly B-abundant semigroup where B is a band. We say
that S satisfies the weak idempotent connected condition (WIC) (with
respect to B) if for any a ∈ S and some a∗, a+, if x ∈ 〈a+〉 then there
exists y ∈ B with xa = ay; and dually, if z ∈ 〈a∗〉 then there exists
t ∈ B with ta = az.

Some observations concerning this definition are in order. First, it
is easy to see that a regular semigroup satisfies (WIC) with respect to
E(S). Second, we can replace ‘some’ in (WIC) by ‘any’. For suppose
that S has (WIC), a ∈ S, a+ is the chosen idempotent of B in the

R̃B-class of a, and a† is another element of B in the same R̃B-class.
If x ∈ 〈a†〉, we certainly have that xa+ = a+xa+ ∈ 〈a+〉 and so by
(WIC),

xa = (xa+)a = ay
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for some y ∈ B. Similarly, we can take z to lie in 〈a◦〉 for any a◦ ∈ B

lying in the L̃B-class of a. Finally, if a ∈ S, and x, y ∈ B with xa = ay,
then for any a∗ we have that xa = a(a∗ya∗). Thus in the definition of
(WIC) we may choose the y to lie in any given 〈a∗〉, and dually, the t
to lie in any given 〈a+〉.

In the case where B is a semilattice, (WIC) simplifies considerably.
Let U be a subset of idempotents of a semigroup S; it is easy to see
that for any e, f ∈ U , e L̃U f if and only if eL f . Hence if U = E is a

semilattice, there is at most one idempotent of E in each L̃E-class. Dual

remarks hold for the relation R̃U . Thus if S is weakly E-abundant for
a semilattice E, the elements a∗ and a+ for a ∈ S are uniquely defined;
such a semigroup is often referred to as weakly E-adequate. We can
thus define the ample condition (A) on S by:

ae = (ae)+a and ea = a(ea)∗

for all a ∈ S and e ∈ E.
Consider a weakly E-adequate semigroup S. If S satisfies (A) then it

is clear that S satisfies (WIC). On the other hand, if S satisfies (WIC),
a ∈ S and e ∈ E, then first observe that ae = a(a∗ea∗) = ta for some
t ∈ E. It follows that tae = ae and so t(ae)+ = (ae)+. Thus

(ae)+a = t(ae)+a = (ae)+ta = (ae)+ae = ae;

together with the dual argument we have that the ample identities
hold. Thus we have shown:

Lemma 2.5. [20] Let S be a weakly E-adequate semigroup. Then S
satisfies (WIC) if and only if S satisfies (A).

Any weakly E-adequate semigroup satisfying (A) and (C) is said to
be weakly E-ample.

The following lemma is an easy extension of Lemma 2.4.

Lemma 2.6. [4, Lemma 3.2] Let B be a band and let T be a B-full sub-
semigroup of a weakly B-abundant semigroup S. If S satisfies (WIC),
then so does T .

We end this section by showing that (WIC) is respected by strongly
admissible morphisms.

Lemma 2.7. [4, Lemma 3.3] Let B be a band and let S be a weakly
B-abundant semigroup and let θ : S → T be a strongly admissible
morphism from S onto a semigroup T . Then S has (WIC) with respect
to B if and only if T has (WIC) with respect to Bθ.
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3. Examples

The reader might well ask whether conditions (C) and (WIC) are
independent for finite weakly abundant semigroups with band of idem-
potents. Indeed they are, for a finite weakly abundant semigroup with
band of idempotents may satisfy neither, one, or both of conditions
(C) and (WIC), as we now demonstrate.

First we comment that any finite regular semigroup with band of
idempotents certainly satisfies (C) and (WIC); for a non-regular (in-
deed non-abundant) example we refer the reader to Example 6.4 of
[4].

In [11] we argue that the subset S = {α, β, α+, β+, βα, ε} of the
partial transformation monoid PT 3 on {1, 2, 3} is a semigroup that is
not abundant (but has further properties, which we need not mention
here), where ε is the empty transformation and α, β are given by

α =

(
1 2 3
× 1 1

)
, β =

(
1 2 3
× × 2

)
.

Here

α+ =

(
1 2 3
× 2 3

)
and β+ = (βα)+ =

(
1 2 3
× × 3

)
.

It is easy to check that the multiplication table of S is given by

α+ α β+ β βα ε

α+ α+ α β+ β βα ε
α ε ε ε ε ε ε
β+ β+ βα β+ β βα ε
β β βα ε ε ε ε
βα ε ε ε ε ε ε
ε ε ε ε ε ε ε

The idempotents of T = S1 form a semilattice E(T ) = {1, α+, β+, ε}.
It is clear that any finite monoid U with E(U) a semilattice is weakly
abundant, so that certainly T is weakly abundant. We see that α∗ =
1 = 1∗ so that α L̃ 1, but α2 = ε which is not L̃-related to α. Thus
(C) fails to hold. We also have that β+ ≤ α+ and β+α = βα, but
α(β+α)∗ = α(βα)∗ = α 1 = α, so that condition (A) also fails. By
Lemma 2.5, T 1 does not satisfy (WIC).

The semigroup of Example 2.2 of [7] is finite (weakly) abundant with
semilattice of idempotents, and, as pointed out in [7], does not satisfy
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(A) and hence does not satisfy (WIC). On the other hand, as it is
abundant, we automatically have that (C) holds.

It is easy to see that if S is the two element null semigroup with
an identity adjoined, then S is weakly abundant with semilattice of
idempotents, (C) fails, but (WIC) holds since S is commutative. For
a slightly more sophisticated example, with band of idempotents not a
semilattice, we have the following.

Example 3.1. Let S = {a, b, u, 0}, where {a, b} is a two element right
zero semigroup, {u, 0} is a two element null semigroup, and the binary
operation is completed by insisting that 0x = 0 = x0 for all x ∈ S, and

au = bu = u, ua = ub = 0.

Then S is a semigroup, and T = S1 is a finite weakly abundant semi-
group with band of idempotents E(T ) = {1, a, b, 0} which has (WIC)
but not (C).

Proof. It is easy to check that T is a semigroup,

a R̃ b R̃ u and u L̃ 1,

so that T is weakly abundant with band of idempotents as given. ¿From
u L̃ 1 we see (by multiplying with u on the right) that L̃ is not a right
congruence and so (C) fails.

On the other hand (WIC) holds. Clearly x1 = 1x and x0 = 0x for
any x ∈ E(T ). If x ∈ E(T ) and x ≤ a+, then, taking a+ = a, we have
that x = a or x = 0, which in either case commutes with a; dually for
x ≤ b+. If y ∈ E(T ) and y ≤ u+, then taking u+ = a we again have
that y = a or y = 0. In the first case, au = u = u1 and in the second,
0u = 0 = u0.

On the other hand, if x ∈ E(T ) and x ≤ a∗, then x ∈ {0, a} so that
again, x commutes with a; similarly if x ≤ b∗. Finally, any idempotent
is below u∗ = 1 in the natural partial order. We know that 1 and 0
commute with u, and

ua = ub = 0 = 0u,

completing our check that (WIC) holds. �

4. Finite weakly abundant semigroups with (C) and
subsemigroup of regular elements

For any semigroup S we denote the set of regular elements by Reg S.
We will be interested in semigroups in which Reg S forms a subsemi-
group.
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Theorem 4.1. [13, Result 7] In any semigroup S, Reg S forms a sub-
semigroup if and only if 〈E(S)〉 is regular.

This section is devoted to the proof of the following result.

Theorem 4.2. Let S be a finite weakly abundant semigroup with (C)
such that RegS is a subsemigroup. If S ∈ A ∨G, then H ⊆ µ.

Proof. We begin with a subsidiary lemma. The reader will find it useful

to bear in mind, that for a semigroup S and E ⊆ E(S), if a L̃ be for
some a, b ∈ S and e ∈ E, then as certainly (be)e = be, we have that

ae = a. Dually, if a R̃ eb, then ea = a.

Lemma 4.3. If S is a finite weakly abundant semigroup and ϕ : S → T
is a strongly admissible morphism from S onto T , then T is finite
weakly abundant. If Reg S is a subsemigroup of S, then RegT is a
subsemigroup of T .

Proof. It is well known that if e = aϕ ∈ E(T ), then as e = anϕ for all
n ∈ N, we have that e = fϕ for some f ∈ E(S), so that E(T ) = E(S)ϕ
and from Lemma 2.2, T is weakly abundant.

Suppose now that Reg S is a subsemigroup, and aϕ ∈ RegT . As ϕ
is onto, aϕ = aϕbϕaϕ for some a, b ∈ S. Hence aϕ = aϕ(ba)ϕ, so that
aϕ = aϕ(ba)nϕ for all n ∈ N. Choose n with (ba)n = g ∈ E(S). From

aϕ = (ag)ϕ and the fact that ϕ is strongly admissible, we have a H̃ ag
in S, and so a = ag = a(ba)n. Thus a is regular. The lemma now
follows easily. �

To prove Theorem 4.2, let S be a finite weakly abundant semigroup
with (C) such that Reg S is a subsemigroup, and suppose that S ∈
A ∨ G. Let T = S/µ, so that by Lemma 4.3 and Proposition 2.3,
T is weakly abundant with (C), is fundamental, and R = RegT is
a subsemigroup; by Lemma 2.4, R is fundamental. As A ∨ G is a
pseudovariety, R lies in A∨G, and as R is certainly regular, Proposition
1.6 of of [17] gives that H is a congruence on R = RegT . Since R is
fundamental we deduce that H is trivial on R and hence R and T
have only trivial subgroups. But T is finite and so by Proposition 3.4.2
of [15], H is trivial on T . Thus if a, b ∈ S and aH b in S, we have
that aµH bµ in T and so aµ = bµ, giving a µ b. Hence H ⊆ µ as
required. �

Since an abundant semigroup is weakly abundant with (C) and in

such a semigroup H∗ = H̃, we deduce the following.

Corollary 4.4. Let S be a finite abundant semigroup such that Reg S
is a subsemigroup. If S ∈ A ∨G, then H ⊆ µ.
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An abundant semigroup in which the idempotents generate a regular
subsemigroup, and which satisfies an appropriately defined idempotent
connected condition, is concordant [1]. From Theorem 4.1 Reg S is a
subsemigroup in any concordant semigroup S.

Corollary 4.5. [8, Proposition 2.1] If S is a finite concordant semi-
group in A ∨G, then H ⊆ µ.

5. The congruence δB

For convenience of reference we follow the pattern of established
terminology and say that a semigroup S is weakly bountiful if it is
weakly abundant, E(S) is a band, and it satisfies (WIC). We recall
that a semigroup S is bountiful if it is abundant, E(S) is a band, and
it is idempotent connected. As remarked in [4], an abundant semigroup
with band of idempotents is idempotent connected if and only if it has
(WIC). Thus a bountiful semigroup is weakly bountiful. The aim of this
section is to investigate for weakly bountiful semigroups the analogue of
the least inverse congruence on an orthodox semigroup. The approach
in the bountiful case was initiated in [3], where the appropriate relation
δ was introduced. It was later established in [24] and [12] that δ is
always a congruence on a bountiful semigroup.

Throughout this section B denotes a band, and E(e) the D-class of
e ∈ B; since B is a band we have that D = J , so that the sets E(e) are
partially ordered by the partial order associated with J . We consider
the relation δB for a weakly B-abundant semigroup S, soon specialising
to the case where and S has (WIC), so that if B = E(S), S is weakly
bountiful.

The relation δB is defined on S as follows:

a δB b if and only if a = ebf, b = gah for some e, f, g, h ∈ B.

Lemma 5.1. Let S be a weakly B-abundant semigroup. The following
conditions are equivalent:

(i) a δB b;
(ii) a = ebf and b = gah for some e ∈ E(b+), f ∈ E(b∗), g ∈ E(a+)

and h ∈ E(a∗);
(iii) E(a+)aE(a∗) = E(b+)bE(b∗).

Moreover, if a δB b, then

E(a+) = E(b+) and E(a∗) = E(b∗).

Proof. We first remark that for any a ∈ S, if

a R̃B a
+ R̃B a

†
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where a+, a† ∈ B, then certainly a+R a† in B, so that E(a+) = E(a†).
Consequently, E(a+) and dually, E(a∗), do not depend upon the choice
of a+, a∗.
(i) implies (ii). Since a δB b, there exist e, f, g, h ∈ B such that a = ebf
and b = gah. For any b+ we have a = eb+bf , so that eb+a = a. It
follows that eb+a+ = a+ and so in the semilattice B/D,

E(a+) = E(eb+a+) ≤ E(eb+) ≤ E(b+).

Together with the dual, we obtain that

E(a+) = E(eb+) = E(b+).

Thus we can assume that e, g ∈ E(a+) = E(b+). Dually, we can take
f, h ∈ E(a∗) = E(b∗).
(ii) implies (iii). If a, b, e, f, g, h are given as in (ii), then as above we
deduce E(a+) = E(b+) and E(a∗) = E(b∗). Hence

E(a+)aE(a∗) = E(b+)ebfE(b∗) ⊆ E(b+)bE(b∗),

so that, together with the opposite inclusion, we have shown that (iii)
holds.
(iii) implies (i). We have that

a = a+aa∗ ∈ E(a+)aE(a∗) = E(b+)bE(b∗),

so that a = ebf , and similarly b = gah, for some e, f, g, h ∈ B. �

In what follows the reader should bear in mind that for a band B,
two elements are D-related if and only if they are mutually inverse.

Corollary 5.2. Let S be a weakly B-abundant semigroup. For any
e, f ∈ B,

e δB f if and only if eD f.

Proof. Let e, f ∈ B. If eD f , then e = efe and f = fef , so that e δB f .
Conversely, if e δB f , then by Lemma 5.1, E(e+) = E(f+) and so eD f
as required. �

Armed with alternative descriptions of δB, we now show that if S
has (WIC), then it is a congruence, arguing as in [12]. Recall that a
congruence ρ on a semigroup S is idempotent pure if a ρ a2 implies that
a = a2 for all a ∈ S.

Lemma 5.3. Let S be a weakly B-abundant semigroup with (WIC).
Then the relation δB is an idempotent pure congruence on S such that

δB ∩ H̃B = ι.
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Proof. From Lemma 5.1 (iii), it is clear that δB is an equivalence. Sup-
pose now that a, b, c ∈ S with a δB b, and e, f, g, h ∈ B have been
chosen with e, g ∈ E(a+) = E(b+), f, h ∈ E(a∗) = E(b∗) such that
a = ebf, b = gah. Notice that for any b+ we have that eb+D b+ in
B, and as D is a semilattice congruence on B, c∗eb+D c∗b+ for any c∗.
Consequently,

ca = cebf
= cc∗eb+bf
= c(c∗eb+)(c∗b+)(c∗eb+)bf
= c(c∗eb+c∗)(b+c∗eb+)bf
= (xc)(by)f = x(cb)yf

for some x, y ∈ B, using (WIC). Similarly, cb = u(ca)v for some u, v ∈
B. It follows that ca δB cb so that δB is a left congruence. Dually, δB
is a right congruence.

To see that δB is idempotent pure, suppose now that a δB a
2. Using

Lemma 5.1 we know that a2 = uav for some u ∈ E(a+) and v ∈ E(a∗).
Now

a2 = a+a2a∗

= a+(uav)a∗

= (a+ua+)a(a∗va∗)
= a+aa∗

= a

as required.

Finally, if a (H̃B ∩ δB) b, then a+b = b and ba∗ = b since aH̃Bb so
that, with e, f ∈ B as above, we have

a = ebf
= a+(ebf)a∗

= (a+ea+)b(a∗fa∗)
= a+ba∗

= b

,

so that H̃B ∩ δB = ι. �

Corollary 5.4. Let S be a weakly B-abundant semigroup with (WIC).
Then S is a subdirect product of S/µB and S/δB.

Proposition 5.5. Let S be a weakly B-abundant semigroup with (WIC).
The natural morphism

δ\B : S → S/δB

is admissible. Consequently, S/δB is weakly B-adequate where B =

Bδ\B. Further, S/δB satisfies the ample identities (A). If S has (C)
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with respect to B, then S/δB has (C) with respect to B and is therefore
weakly B-ample.

Proof. We remark first that by Corollary 5.2, B is isomorphic to B/D
and hence is a semilattice.

Let a ∈ S and suppose that a R̃B e where e ∈ B. Then ea = a, so
certainly in S/δB, eδB aδB = aδB.

On the other hand suppose that f ∈ B and fδB aδB = aδB. Then
fa δB a so that a = gfah for some g, h ∈ B. It follows that gfa = a
and so gfe = e. Consequently, eD fe so that by Corollary 5.2, e δB fe

and fδB eδB = eδB. Thus aδB R̃B eδB.

It follows that if a, b ∈ S and a R̃B b, then (since there certainly exists

an idempotent e ∈ B with a R̃B e R̃B b), aδB R̃B bδB in S/δB. Together

with the dual argument, we have shown that δ\B is admissible. It is then
clear that S/δB is weakly B-abundant, hence weakly B-adequate as B
is a semilattice.

We now argue that condition (A) holds for S/δB. Suppose now that
aδB, eδB ∈ S/δB, where e ∈ B. Since S has (WIC), a(a∗ea∗) = fa for
some f ∈ B. Now

aδB eδB = (aa∗)δB eδB
= aδB a

∗δB eδB a
∗δB

= (a(a∗ea∗))δB
= (fa)δB
= fδB aδB.

Together with the dual argument, we have shown that S/δ satisfies
(WIC) with respect to the semilattice B; then Lemma 2.5 gives that
condition (A) holds.

Suppose now that S satisfies condition (C) with respect to B; we
show that S/δ satisfies condition (C) with respect to B. To this end,

let a, b, c ∈ S with aδ R̃B bδ. Choose a+, b+ and notice that as δ\B is
admissible,

a+δB R̃B aδB R̃B bδB R̃B b
+δB.

Recalling that B is a semilattice, we have that a+δB = b+δB; Corol-
lary 5.2 gives that a+D b+ in B. Consequently, there exists e ∈ B with

a+R eL b+ in B. We know that R̃B is a left congruence on S, and
a+ R̃B e, so that

ca R̃B ca
+ R̃B ce = ceb+ R̃B ceb.

Admissibility of δ\B gives that in S/δB,

(ca)δB R̃B (ceb)δB.
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Examining (ceb)δB, and making use of the fact that B is a semilattice,
we have

(ceb)δB = cδB eδB bδB
= cδB eδB (b+b)δB
= cδB eδB b

+δB bδB
= cδB (b+δB eδB b

+δB) bδB
= cδB (b+eb+b)δB.

But S has (WIC), so that (b+eb+)b = bf for some f ∈ B. We now have

(ca)δB R̃B cδB(bf)δB = (cb)δB fδB.

It follows that for any g ∈ B, if gδB (cb)δB = (cb)δB , then gδB (ca)δB =
(ca)δB. Together with the argument reversing the roles of a and b, we
have shown that

cδB aδB = (ca)δB R̃B (cb)δB = cδB bδB ,

so that R̃B is a left congruence. Dually, L̃B is a right congruence so
that S/δB has (C) (with respect to B). �

At the beginning of this section we claimed that δB is the analogue
of the least inverse congruence on an orthodox semigroup. That is, if
γ is a congruence on a weakly B-abundant semigroup S with (WIC)
such that S/γ is weakly Bγ\-ample, then δB ⊆ γ. Indeed, we can show
rather more than this.

Proposition 5.6. Let S be a weakly B-abundant semigroup with (WIC).
Let ρ be a congruence on S such that Bρ\ is a semilattice. Then δB ⊆ ρ.

Proof. Let a, b ∈ S and suppose that a δB b. By Lemma 5.1, a = ebf
for some e ∈ E(a+) = E(b+), f ∈ E(a∗) = E(b∗). We have that
b+ρ, b∗ρ ∈ Bρ\, which is a semilattice, and so

aρ = (ebf)ρ
= (eb+bb∗f)ρ
= eρ b+ρ bρ b∗ρ fρ
= (b+ρ eρ b+ρ)bρ(b∗ρ fρ b∗ρ)
= (b+eb+)ρ bρ (b∗fb∗)ρ
= b+ρ bρ b∗ρ
= (b+bb∗)ρ
= bρ,

so that δB ⊆ ρ as claimed. �

The reader might ask when the morphism δ\B is strongly admissible,
for a weakly B-abundant semigroup with (WIC). From Lemma 2.2, this

is equivalent to δB = ker δ\B ⊆ H̃B and so from Lemma 5.3, to δB = ι.
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The final result of this section follows immediately from Proposition 5.6
and Corollary 5.2.

Corollary 5.7. Let S be a weakly B-abundant semigroup with (WIC).
Then δB is trivial if and only if B is a semilattice.

6. The least unipotent congruence

One ingredient in the proof of our main result, Theorem 8.13, is the
congruence δ examined in Section 5. Another important constituent is
the existence of finite covers of a special kind for finite weakly bounti-
ful semigroups, given in Proposition 8.1. To explain their nature, we
must now discuss the least unipotent monoid congruence on a weakly
bountiful semigroup; of course, if our semigroup is finite, this will be
the least group congruence.

To construct the cover in Proposition 8.1 we make use of the existence
of covers for weakly adequate semigroups with (A), and to contruct
these, must call upon existing results in the one-sided case. With this in
mind, we are obliged here to have a rather general discussion concerning
unipotent congruences on semigroups from classes wider than those we
have so far considered.

Let S be a semigroup. We say that a congruence τ on S is a unipo-
tent (monoid) congruence if S/τ is unipotent, that is, has exactly one
idempotent (and S/τ is a monoid).

The proof of the next lemma is clear.

Lemma 6.1. Let S be a semigroup with E(S) 6= ∅. Then a congruence
ρ is unipotent if and only if for all a, b ∈ S

a ρ a2, b ρ b2 implies that a ρ b.

Consequently, there exists a least unipotent congruence σ on S.

For a semigroup S with E(S) 6= ∅ we will always denote the least
unipotent congruence on S by σ. Clearly, e σ f for any e, f ∈ E(S).

As hinted above, we must now introduce the one-sided versions of
weakly adequate semigroups with (A). Let S be a semigroup with semi-
lattice of idempotents. We say that S is weakly left adequate if every

R̃-class contains a (necessarily unique) idempotent. We again denote

the unique idempotent in the R̃-class of a ∈ S by a+. For a weakly
left adequate semigroup S, we say that S satisfies condition (AL) if
ae = (ae)+a for all a ∈ S, e ∈ E(S). Weakly right adequate semi-
groups and condition (AR) are defined dually. Clearly a semigroup is
both weakly left and weakly right adequate with (AL) and (AR) if and
only if S is weakly adequate with (A).
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Lemma 6.2. Let S be a weakly left (or right) adequate semigroup with
(AL) (or (AR). Then σ is the least monoid unipotent congruence on
S.

Proof. Fix an e ∈ E(S), so that eσ = fσ for all f ∈ E(S). Let a ∈ S.
From a+a = a we have that

eσ aσ = a+σ aσ = (a+a)σ = aσ

and using (AL),

aσ eσ = (ae)σ = ((ae)+a)σ = (ae)+σ aσ = aσ.

Consequently, σ is a unipotent monoid congruence, and clearly then is
the least such. �

A weakly left adequate semigroup with (AL) is (in the terminology
of [2]) wlqa, and so from Proposition 2.4 of that article we have the
following closed form for σ.

Proposition 6.3. [2] Let S be a weakly left adequate semigroup satis-
fying (AL). Then for any a, b ∈ S,

a σ b if and only if ea = eb for some e ∈ E(S).

Dually, the relation σ on a weakly right adequate semigroup with
(AR) is given by the rule that a σ b if and only if af = bf for some
f ∈ E(S). Thus we deduce:

Corollary 6.4. Let S be a weakly adequate semigroup with (A). Then
for any a, b ∈ S,

a σ b⇔ ea = eb for some e ∈ E(S)⇔ af = bf for some f ∈ E(S).

Let S be a weakly B-abundant semigroup with (WIC) (so that if
E(S) = B, then S is weakly bountiful). Since every a ∈ S has a left
and a right idempotent identity, it is clear that σ is the least unipotent
monoid congruence on S. Following [20] in the bountiful case, we define
the relation τ on S by the rule that for any a, b ∈ S,

a τ b if and only if ea = bf for some e, f ∈ B.

Proposition 6.5. Let S be weakly B-abundant with (WIC). Then the
relation τ is a congruence on S. If B = E(S), so that S is weakly
bountiful, then τ = σ.

Proof. Let a ∈ S. Then for any a+, a∗ we have that a+a = aa∗, so that
τ is reflexive.
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Suppose now that a τ b, so that ea = bf for some e, f ∈ B. Then
(a+ea+)a = a+bf , so that by (WIC) we have that ag = a+bf for some
g ∈ B. Again by (WIC),

agb∗ = a+b(b∗fb∗) = a+hb

for some h ∈ B. Thus b τ a and τ is symmetric.
If a, b, c ∈ S and a τ b τ c, then

ea = bf and gb = ch

for some e, f, g, h ∈ B. Now

(ge)a = g(ea) = g(bf) = (gb)f = (ch)f = c(hf)

so that a σ c and τ is transitive.
It is clear that all idempotents of B are τ -related. We remark that

for any a ∈ S and e ∈ B we have that

a+(ea) = (a+ea+)a = af

for some f ∈ B, so that a τ ea and dually, a τ ae.
To show that τ is a left congruence, suppose that a, b, c ∈ S and

a τ b. By the remark above,

c∗a τ a τ b

and so ec∗a = bf for some e, f ∈ B. Hence cec∗a = cbf , giving
c(c∗ec∗)a = cbf and so by (WIC), hca = cbf for some h ∈ B. Dually,
τ is a right congruence and hence a congruence.

From comments above, we have that eτ is the identity of S/τ , for any
e ∈ B. Suppose now that a τ a2. Then ea = a2f , for some e, f ∈ B.
From ea = a2(a∗fa∗), we may assume that f ≤ a∗, so that by (WIC)
we have that af = ya for some y ∈ B. We know that yea τ a, moreover,

(yea)2 = (yea)(yea)
= yea ya2f
= ye(aya)af
= ye(a2f)af
= ye(ea)af
= yea2f
= yeea
= yea

so that yea is idempotent. Consequently, if S is weakly bountiful, then
yea ∈ E = E(S) and so aτ = (yea)τ is the identity of S/τ , and S/τ is
unipotent.
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Finally, if ρ is any congruence on S such that e ρ f for all e, f ∈ B
and eρ is the identity of S/ρ, then if a, b ∈ S and ea = bf for some
e, f ∈ B, we have

aρ = (eρ)(aρ) = (ea)ρ = (bf)ρ = (bρ)(fρ) = bρ,

so that a ρ b and τ ⊆ ρ. Thus if S is weakly bountiful, τ = σ. �

We remark that Corollary 6.4 is also a consequence of Proposi-
tion 6.5.

7. Covers

A semigroup S is E-unitary if for any a ∈ S, e, ea ∈ E(S) implies
that a ∈ E(S). The one-sidedness of this definition is only apparent,
since in an E-unitary semigroup, if e, ae ∈ E(S), then a ∈ E(S). An
(E-unitary)cover of a weakly bountiful semigroup S is an (E-unitary)
weakly bountiful semigroup T together with a surjective admissible
morphism ψ : T → S which maps E(T ) isomorphically onto E(S); ψ
is called a covering morphism. We show in the next section that any
weakly bountiful semigroup has an E-unitary weakly bountiful cover
T for which σ ∩ µ = ι. The existence of T is the final cornerstone in
the proof of Theorem 8.13. To construct T we must first prove the
existence of finite proper covers of finite weakly adequate semigroups
satisfying (A), where a weakly left adequate semigroup with (AR) is

left proper if σ ∩ R̃ = ι, a weakly right adequate semigroup with (AL)

is right proper if σ ∩ L̃ = ι and weakly adequate semigroup with (A)
is proper if it is both left and right proper. Our argument is inspired
by the approach of [9] using (A,B)-categories - to make our argument
self-contained we present the result using a direct approach.

Let S be a weakly left adequate semigroup. We may regard S as an
algebra of type (2, 1), where the unary operation is a 7→ a+.

Proposition 7.1. [2] Let S be a finite weakly left adequate semigroup
with (AL). Then there is a finite left proper weakly left adequate semi-
group T with (AL) and an idempotent separating (2, 1)-morphism ϕ
from T onto S.

Proof. The cover T of S constructed in Theorem 3.8 of [2] has the
property that if E(S) is a semilattice, then so is E(T ). �

Suppose now that S is a finite weakly adequate semigroup with (A).
Let T and ϕ be as in Proposition 7.1. Notice that if e ∈ E(S), then as
ϕ is onto,

e = aϕ = (aϕ)+ = a+ϕ
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for some a ∈ T . Thus, ϕ maps E(T ) isomorphically onto E(S). Of
course, we can also invoke the dual of that proposition, to guarantee
the existence of a right proper, weakly right adequate semigroup U
with (AR) together with an idempotent separating (2, 1)-morphism ψ
from U onto S, where in this case the unary operation is a 7→ a∗.

Let G = T/σ and H = U/σ, so that both G and H are finite
unipotent monoids, that is, both G and H are finite groups.

We have the following diagram

T

↙↙
η
↘↘
ϕ

U

↙↙
ψ
↘↘
κ

G ←−◦
θ1

S −→◦
θ2

H

where η and κ are the canonical epimorhisms.
Let θ1 = ϕ−1η and θ2 = ψ−1κ. From the remark following Proposi-

tion 7.1, it is easy to see that θ1 and θ2 are relational morphisms from
S to G and from S to H, respectively. That is, for i = 1, 2, for all
s, t ∈ S sθi 6= ∅, (sθi)(tθi) ⊆ (st)θi and 1 ∈ eθi for any e ∈ E(S).

We now remark that any unipotent monoid is weakly adequate with
(A), so that certainly any group is weakly adequate with (A). In a
natural fashion we may regard weakly adequate semigroups as algebras
of type (2, 1, 1). With this signature, it is easy to write down quasi-
identities axiomatising the class of weakly adequate semigroups with
(A). Thus this class is a quasi-variety, and as such it is closed under
subalgebra and direct product.

We now let

P = {(g, s, h) : g ∈ sθ1, h ∈ sθ2} ⊆ G× S ×H.

Since θ1 and θ2 are relational morphisms, it is clear that P is a sub-
semigroup of G× S ×H. Also, for any (g, s, h) ∈ P we have that

(g, s, h)+ = (g+, s+, h+) = (1, s+, 1) ∈ P

so that P is closed under +. Dually, P is closed under ∗, so that P is
a (2, 1, 1)-subalgebra of G × S ×H and is thus weakly adequate with
(A). Clearly

E(P ) = {(1, e, 1) : e ∈ E(S)},

so that if θ : P → S is the projection onto the second co-ordinate, θ is
an idempotent separating (2, 1, 1)-morphism onto S.

The semigroup P is proper. For, if (g, s, h) (σ ∩ R̃) (k, t, `), then

(1, s+, 1) = (g, s, h)+ = (k, t, `)+ = (1, t+, 1)
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and by Corollary 6.4,

(1, e, 1)(g, s, h) = (1, e, 1)(k, t, `)

for some e ∈ E(S). Hence s+ = t+, g = k, h = ` and es = et. We
also know that g ∈ sθ1 ∩ tθ1. Thus there exists p, q ∈ T such that
pϕ = s, pη = qη = g and qϕ = t. Since ker η = σ we have that p σ q.
Now

p+ϕ = (pϕ)+ = s+ = t+ = (qϕ)+ = q+ϕ,

as ϕ is a (2, 1)-morphism. Since ϕ is idempotent separating, we have

that p+ = q+ and hence p R̃ q in T . But T is left proper, so we deduce
that p = q and hence s = t. Thus P is left proper. Together with the
dual argument, we have shown that P is proper.

We say that a cover for a weakly adequate semigroup S with (A) is a
weakly adequate semigroup U with (A), together with an idempotent
separating (2, 1, 1)-morphism from U onto S (the reader may check that
this definition is consistent with that for a cover of a weakly bountiful
semigroup). We have thus proved the following result.

Theorem 7.2. Let S be a finite weakly adequate semigroup with (A).
Then S has a finite proper cover.

The proof of Proposition 7.2 can also be invoked to prove the exis-
tence of a (finite) proper cover with (A) and (C) of a (finite) weakly
adequate semigroup with (A) and (C). For this, we need the existence
of suitable covers in the one-sided case, guaranteed by [11] and [10].
The gap is in the infinite case with condition (A) but without (C).

8. The main theorem

We are now in a position to prove our main result, which states that
if S is a finite weakly bountiful semigroup with H ⊆ µ, then S ∈ A∨G.

We show that any weakly bountiful semigroup has an E-unitary
cover on which σ ∩ µ = ι; the corresponding result for bountiful semi-
groups is proven in [8]. We know that σ ∩ µ = ι holds for all orthodox
semigroups by [17, Lemma 2.2], and so our result is simply a gen-
eralisation of the existence of E-unitary orthodox covers for orthodox
semigroups due independently to McAlister [17], Szendrei [21] and Tak-
izawa [23].

The proof of the following theorem, follows that of [8], itself inspired
by that in [17] for orthodox semigroups. But there are subtle differ-
ences, most notably that we are not assuming condition (C).

Theorem 8.1. Let S be a finite weakly bountiful semigroup. Then S
has a finite E-unitary cover T such that σ ∩ µ = ι on T .
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We start with the construction of T , and then in a series of lemmas
show that T has the desired properties.

Let S be a finite weakly bountiful semigroup; we denote the band
E(S) by B. From Proposition 5.5 we have that S/δ is weakly E(S)δ\-
adequate with (A); but S is finite, and so E(S/δ) = E(S)δ\. Thus S/δ
is weakly adequate with (A). Proposition 5.5 also says that that δ\ is
admissible. Consequently, for any s ∈ S and s+, s∗ since we have that

s+ R̃ s L̃ s∗

it follows that

s+δ R̃ sδ L̃ s∗δ.

But S/δ is weakly adequate, and so

s+δ = (sδ)+ and s∗δ = (sδ)∗.

By Theorem 7.2, S/δ has a finite proper cover V (where by definition
V is weakly adequate with (A)) with (2, 1, 1) covering morphism α.
Let

T = {(sµ, v) ∈ S/µ× V : vα = sδ}.

The following scheme may help the reader.

SS/µ S/δ

V

sδ = vα

v

s

µ\ δ\

α

sµ

Be warned: to say that a pair (sµ, v) of S × V lies in T is to say
that sµ = tµ for some t with tδ = vα. It is easy to see that T is
a subsemigroup of the direct product S/µ × V . We also note here
that from Lemma 2.2 and Proposition 2.3, the morphism µ\ is strongly
admissible and S/µ is weakly B-abundant and B-fundamental, where
B = Bµ\ is isomorphic to B. But as S is finite, E(S/µ) = B, so that
S/µ is fundamental weakly abundant with band of idempotents B;
moreover, by Lemma 2.7, S/µ has (WIC). Thus S/µ is a fundamental,
weakly bountiful semigroup.
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Lemma 8.2. Let (sµ, v), (tµ, w) ∈ T , where sδ = vα and tδ = wα.
Then

s R̃ t if and only if sµ R̃ tµ

and
if s R̃ t then v R̃w.

The dual statement holds for L̃.

Proof. The first statement is clear from the fact that µ\ is strongly
admissible.

Suppose now that s R̃ t. Then as δ\ is admissible,

vα = sδ R̃ tδ = wα.

Now as α is a (2, 1, 1)-morphism, we have that

v+α = (vα)+ = (wα)+ = w+α.

But α is idempotent separating, so we deduce that v+ = w+ and hence
that v R̃w. �

Lemma 8.3. The idempotents of T are given by

E(T ) = {(eµ, v) ∈ S/µ× E(V ) : e ∈ B and vα = eδ}

and form a band isomorphic to B.

Proof. If e ∈ B and v ∈ E(V ) with vα = eδ, then clearly, (eµ, v) ∈
E(T ).

On the other hand, if (sµ, v) ∈ T is idempotent, where sδ = vα,
then (sµ)2 = sµ and v2 = v. From the latter we have (sδ)2 = sδ so
that s δ s2 and by Lemma 5.3, s is idempotent.

Since B and E(V ) are subsemigroups of S and V respectively, it
follows easily that E(T ) is a subsemigroup of T .

Define θ : E(T ) → B by (eµ, v)θ = e, where e ∈ B, v ∈ E(V )
and eδ = vα. Suppose now that (eµ, v), (fµ, w) ∈ E(T ) with e, f ∈
B, v, w ∈ E(V ), and eδ = vα, fδ = wα. If (eµ, v) = (fµ, w), then
e (µ ∩ δ) f so that e = f by Lemma 5.3, and θ is well defined. On
the other hand if (eµ, v)θ = (fµ, w)θ, that is, if e = f , then from

Lemma 8.2, we certainly have that v R̃w and so v = w, giving that θ
is one-one. For any e ∈ B we have that eδ is idempotent in S/δ, so
that putting eδ = uα we have that eδ = (eδ)+ = (uα)+ = u+α. Hence
(eµ, u+) ∈ E(T ) and (eµ, u+)θ = e. It now follows easily that θ is an
isomorphism. �

Lemma 8.4. Let (sµ, u) ∈ T where sδ = uα. Then for any s+, s∗,

(s+µ, u+) R̃ (sµ, u) L̃ (s∗µ, u∗).
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Proof. We have that α is a (2, 1, 1)-morphism and so

u+α = (uα)+ = (sδ)+ = s+δ.

Hence (s+µ, u+) and dually, (s∗µ, u∗) lie in T .
Clearly

(s+µ, u+)(sµ, u) = (sµ, u) = (sµ, u)(s∗µ, u∗).

Further, if (eµ, v)(sµ, u) = (sµ, u), where e ∈ B, v ∈ E(V ) and eδ =

vα, then eµ sµ = sµ and vu = u. Consequently, es µ s and so as µ ⊆ H̃
we have from a remark following the statement of Theorem 4.2 that
es = s. Now es+ = s+ and vu+ = u+, from which

(eµ, v)(s+µ, u+) = (s+µ, u+)

and so (sµ, u) R̃ (s+µ, u+). Dually, (sµ, u) L̃ (s∗µ, u∗). �

Corollary 8.5. The semigroup T is weakly abundant.

It is now easy to describe R̃ and L̃ in T .

Lemma 8.6. Let (sµ, u), (tµ, v) ∈ T where sδ = uα and tδ = vα.
Then

(sµ, u) R̃ (tµ, v) if and only if s R̃ t

and dually,

(sµ, u) L̃ (tµ, v) if and only if s L̃ t.

Proof. From Lemma 8.4 we have that

(sµ, u) R̃ (tµ, v) if and only (s+µ, u+) R̃ (t+µ, v+).

If (s+µ, u+) R̃ (t+µ, v+), then

((s+t+)µ, u+v+) = (t+µ, v+) and ((t+s+)µ, v+u+) = (s+µ, u+),

and as µ is idempotent separating we deduce that s+t+ = t+ and

t+s+ = s+, giving that s+ R̃ t+ and so s R̃ t as required.

Conversely, if s R̃ t, then s+ R̃ t+, so that s+µ R̃ t+µ and by Lemma 8.2,
u+ R̃ v+, whence u+ = v+. Therefore (s+µ, u+) R̃ (t+µ, v+), complet-
ing the proof of the lemma. �

Lemma 8.7. The semigroup T is weakly bountiful.

Proof. It remains only to show that T has condition (WIC). To this
end, let (sµ, u) ∈ T with sδ = uα. By Lemma 8.2 and Lemma 8.6 we

have that the idempotents in the R̃-class of (sµ, u) are precisely those

elements (s+µ, u+) where s R̃ s+.
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Now choose (s+µ, u+) and let (eµ, v) ∈ E(T ) with e ∈ B, v ∈ E(V )
and eδ = vα, and suppose that (eµ, v) ≤ (s+µ, u+). Then

(s+µ, u+)(eµ, v) = (eµ, v) = (eµ, v)(s+µ, u+).

Using the fact that µ is idempotent separating, we have

s+e = e = es+ and u+v = v.

We are assuming that S has (WIC), and so, as e ≤ s+, we know that
es = sf for some f ∈ B.

Since α is a (2, 1, 1)-morphism from V onto S/δ, there is an idempo-
tent w in V with wα = fδ so that (fµ, w) ∈ E(T ).

Now

(vu)α = vαuα = eδsδ = (es)δ = (sf)δ = sδfδ = uαwα = (uw)α.

As α preserves ∗ and is one-one on E(V ), we get (vu)∗ = (uw)∗. Hence,
since V is weakly adequate with (A), and by Lemma 2.1, we have

vu = u(vu)∗ = u(uw)∗ = u(uw)∗w = uw(uw)∗ = uw.

Consequently,
(eµ, v)(sµ, u) = (sµ, u)(fµ, w).

Together with the dual argument, we have shown that T has (WIC)
and hence is weakly bountiful. �

We must now make an observation concerning the relationship be-
tween the properties of being proper and of being E-unitary, for a
weakly adequate semigroup with (A).

Lemma 8.8. Let W be a proper weakly adequate semigroup with (A).
Then W is E-unitary.

Proof. Observe that if a ∈ W, e ∈ E(W ) and ae ∈ E(W ), then a e =

(ae)e, so that a σ ae σ a∗. Then a (σ∩L̃) a∗ and so a = a∗ ∈ E(W ). �

The converse of Lemma 8.8 is not true, as demonstrated in Example
3 of [5].

Lemma 8.9. The semigroup T is E-unitary.

Proof. Let (sµ, u) ∈ T where sδ = uα, and let (eµ, v) ∈ E(T ) where
e ∈ B, v ∈ E(V ) and eδ = vα. Suppose that (sµ, u)(eµ, v) ∈ E(T ).
Then uv ∈ E(V ) and so u ∈ E(V ) since V is proper and hence E-
unitary by Lemma 8.8.

We now have that sδ is an idempotent of S/δ and so, by Lemma 5.3,
s is idempotent. Thus (sµ, u) ∈ E(T ) and it follows that T is E-
unitary. �
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For the next lemma we use the characterisation of µ as the largest

congruence contained in H̃ as detailed in [14].

Lemma 8.10. [14, Proposition 1.5.10] Let ρ be an equivalence relation
on a semigroup S and let ρ[ denote the largest congruence contained in
ρ. Then for any a, b ∈ S,

a ρ[ b if and only if for all x, y ∈ S1, xay ρ xby.

Lemma 8.11. The semigroup T has the property that σ ∩ µ = ι.

Proof. Let (sµ, u), (tµ, v) ∈ T with sδ = uα and tδ = vα. Suppose
that (sµ, u)µ (tµ, v) in T . Recalling that µ is the largest congruence

contained in H̃ we have from Lemma 8.6 that s H̃ t. Now pick any
c, d ∈ S. Since α is onto, we can find x, y ∈ V with cδ = xα and
dδ = yα, so that (cµ, x), (dµ, y) ∈ T . We have that in T ,

(cµ, x)(sµ, u)(dµ, y) H̃ (cµ, x)(tµ, v)(dµ, y),

and so
((csd)µ, xuy) H̃ ((ctd)µ, xvy)

whence from Lemma 8.6, csd H̃ ctd in S. Together with a similar ar-
gument in case c or d is an adjoined identity, we have shown that s µ t

in S, and so sµ = tµ. It follows from Lemma 8.2 that u H̃ v.
We now make the stronger assumption that (sµ, u) (µ∩ σ) (tµ, v) in

T . Therefore
(eµ, k)(sµ, u) = (tµ, v)(fµ, h)

for some idempotents (eµ, k), (fµ, h) ∈ T . Hence ku = vh = (vh)+v,
whence (multiplying both sides of our equation on the left by k(vh)+)
u σ v in V . But V is proper, so we may deduce that u = v. Thus σ ∩ µ
is trivial on T . �

The proof of Theorem 8.1 is completed by the next lemma, in which
we extend the domain of the morphism θ in the proof of Lemma 8.3.

Lemma 8.12. The mapping θ : T → S given by (sµ, u)θ = s, where
sδ = uα is a well defined admissible morphism onto S which maps
E(T ) isomorphically onto E(S).

Proof. Let (sµ, u), (tµ, v) ∈ T with sδ = uα and tδ = vα. If (sµ, u) =
(tµ, v), then from s µ t and

sδ = uα = vα = tδ

we have that s (H̃ ∩ δ) t and so s = t by Lemma 5.3. Thus θ is well
defined. It is clear that θ is a homomorphism. If s ∈ S, then, since
α is surjective, there is an element v ∈ V such that vα = sδ, so that
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(sµ, v) ∈ T and θ is surjective. We have seen in Lemma 8.3 that
θ|E(T ) : E(T )→ B is an isomorphism. That θ is (strongly) admissible
is immediate from Lemma 8.6. �

Having proved Theorem 8.1, it is now easy to prove our main result.

Theorem 8.13. If S is a finite weakly bountiful semigroup with H ⊆ µ,
then S ∈ A ∨G.

Proof. Let T be a finite E-unitary cover of S with µ∩σ = ι and covering
map θ :T → S, the existence of which is guaranteed by Theorem 8.1.
Since µ ∩ σ = ι, it follows that T can be embedded (as a subdirect
product) in T/µ × T/σ. Since T/σ is unipotent and finite, we have
T/σ ∈ G.

From Proposition 3.6 of [15] we have that any subgroup G of S/µ is
the image of a subgroup H of S. Since H ⊆ He for some e ∈ B, and
H ⊆ µ, it follows that S/µ has only trivial subgroups, and hence by
Proposition 4.2 of [15], S/µ ∈ A.

We claim that T/µ ∼= S/µ. To see this, suppose that (sµ, u), (tµ, v) ∈
T with sδ = uα and tδ = vα. If (sµ, u)µ (tµ, v) in T , then we have
seen in the proof of Lemma 8.11 that s µ t.

Conversely, suppose that s µ t. Then s H̃ t so that by Lemma 8.6,

(sµ, u) H̃ (tµ, v). Moreover, for any (cµ, x), (dµ, y) ∈ T , with cδ = xα

and dδ = yα, we note that csd H̃ ctd and so again by Lemma 8.6,

(cµ, x)(sµ, u)(dµ, y) H̃ (cµ, x)(tµ, v)(dµ, y);

completing the argument with c or d being an adjoined identity gives
that (sµ, u)µ (tµ, v) in T .

We have shown that for any (sµ, u), (tµ, v) ∈ T with sδ = uα and
tδ = vα,

(sµ, u)µ (tµ, v) in T if and only if s µ t in S.

Thus ψ : T/µT → S/µS given by (sµS, u)µTψ = sµS, where sδ = uα,
is an isomorphism. Consequently, T/µ ∈ A and thus S ∈ A∨G, since
S divides T/µ× T/σ. �

We now put together Theorems 4.2 and 8.13.

Corollary 8.14. Let S be a finite weakly bountiful semigroup with (C).
Then S ∈ A ∨G if and only if H ⊆ µ.

As commented at the beginning of Section 5, a bountiful semigroup
is weakly bountiful, and by remarks in Section 4, H̃ = H∗ on such a
semigroup. We can thus deduce the following result from [8].

Corollary 8.15. [8] If S is a finite bountiful semigroup, then S ∈ A∨G
if and only if H ⊆ µ.
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