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Abstract

Margolis and Meakin use the Cayley graph of a group presentation to
construct E-unitary inverse monoids [11]. This is the technique we refer
to as graph ezpansion. In this paper we consider graph expansions of
unipotent monoids, where a monoid is unipotent if it contains a unique
idempotent. The monoids arising in this way are E-unitary and belong
to the quasivariety of weakly left ample monoids. We give a number of
examples of such monoids. We show that the least unipotent congruence
on a weakly left ample monoid is given by the same formula as that for
the least group congruence on an inverse monoid and we investigate the
notion of proper for weakly left ample monoids.

Using graph expansions we construct a functor F'¢ from the category
U of unipotent monoids to the category PWLA of proper weakly left
ample monoids. The functor F¢ is an ezpansion in the sense of Birget
and Rhodes [2]. If we equip proper weakly left ample monoids with
an extra unary operation and denote the corresponding category by
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448 GOMES AND GOULD

PWLAD? then, regarded as a functor U - PWLA?, F¢ is a left adjoint
of the functor F* : PWLA? — U that takes a proper weakly left ample
monoid to its greatest unipotent image.

Our main result uses the covering theorem of [8] to construct free
weakly left ample monoids.

1 Introduction

This paper uses graph erpansions to study a class of monoids called weakly
left ample. We arrive at this class by considering the relation R, defined on a
monoid M by the rule that a R b if and only if a and b have the same set of
idempotent left identities [12]. _

A monoid M is left semiadequate if every R-class contains an idempotent
and E(M) is a semilattice. It is easy to see that in a left semiadequate monoid
the idempotent in the R-class of a € M is unique; we denote this element by
at.

We say that a left semiadequate monoid M is weakly left ample if R is a
left congruence and

ae = (ae)ta (AL)

for all a € M and e € E(M).

The class of weakly left ample monoids contains all inverse monoids but
much more besides. For example, any unipotent monoid S is weakly left ample,
as is any Bruck-Reilly extension BR(S, 6), for any endomorphism 8 of S. Let
T be a monoid such that E(T) is a semilattice. It is easy to check that if T is
a semilattice of unipotent monoids, then it is a strong semilattice of unipotent
monoids, and E(T) is central in T; it is then clear that T is weakly left ample.

For a further example of a weakly left ample monoid we consider a submon-
oid N of the monoid M of partial endomorphisms of F, where F is a free right
S-set over a unipotent monoid S on a non-empty set . The S-set F is the
disjoint union U;¢; ;S where {z; : ¢ € I} is a set in one-one correspondence
with I. The monoid S acts on the right of F in the obvious way. The monoid
M of partial endomorphisms of F consists of all those maps a : G — F, where
G is an S-subset of F, such that (ys)a =yasforally€e Gand s€ S. Let N
be the subset of M given by

N={0,I}U{a € M : dom a = z;S, im a C z;S for some 4,5 € I}

where @ is the empty map and I the identity map or F. The set NV is closed
under partial composition and so is a submonoid of M. The proof of the
following straightforward lemma is left to the reader.

Lemma 1.1 With notation as above, the submonoid N of M is weakly left
ample. Moreover, N is isomorphic to the Brandt semigroup with adjoined
identity B'(S, I).
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We mention that while the examples above satisfy the left-right dual prop-
erty of being weakly right ample, this is not always the case; see for example
Proposition 3.6 of [6].

Results for E-unitary, that is, proper, inverse monoids have been success-
fully extended to wider classes, in particular, to E-dense monoids [5]. This
paper may be viewed as another with the same goal. Here we do not insist
that our monoids be E-dense, but rather that the relation R behaves remotely
like the relation R. On the other hand we impose the condition that they
are proper, which in this context is a stronger condition than that of being
E-unitary.

This paper concentrates on graph ezpansions; the graph expansion of a
unipotent monoid is proper weakly left ample. The basic philosophy of this
paper and also of [7] and [8], is that weakly left example monoids are related to
(and determined by) unipotent monoids in a way analogous to that in which
inverse monoids are related to groups.

In Section 2 we show that the least unipotent congruence o on a weakly
left ample monoid M is given by the rule that

a o b if and only if ea = eb for some e € E(M),

that is, o has the same description as the least group congruence on an inverse
monoid. Analagously to the concept for inverse monoids, we say that a weakly
left ample monoid is proper if o N R=u¢

By a monoid presentation we mean a triple (X, f, S) where X isa set, Sisa
monoid and f : X — S is a function such that X f generates S as a monoid. As
shown in [9] one can use the Cayley graph of a monoid presentation to construct
monoids which we call graph expansions. In Section 3 we show that, given a
monoid presentation (X, f, S), the corresponding graph expansion M(X, f, S)
is weakly left ample if and only if S is unipotent. In this case, M(X, f, S) is
proper and, in terminology introduced in Section 4, M(X, f, S) is the initial
object in a suitable category PLA(X, f, S) of X-generated proper weakly left
ample monoids having maximum unipotent image S. This latter result is
analogous to Theorem 2.2 of [11], in which Margolis and Meakin show that
the corresponding category of X-generated proper (E-unitary) inverse monoids
with maximum group image G has an initial object, constructed from the
Cayley graph of the group presentation of G with set of generators X; we
remark that Ash gives an alternative construction of the initial object in [1].

In Section 4 we define the categories U and U(X) (where X is a set)
of unipotent monoids and of X-generated unipotent monoids. We introduce
the categories PWLA® and PWLA(X) of proper weakly left ample mon-
oids. To define the former, we equip proper weakly left ample monoids with
an extra unary operation; the latter is the category of X-generated proper
weakly left ample monoids. We use graph expansions to construct functors



450 GOMES AND GOULD

F¢:U — PWLA® and F§ : U(X) » PWLA(X). The functors F* and
F§ are expansions and are left adjoints of functors F° : PWLA® — U and
F% : PWLA(X) — U(X), respectively, which in each case take a proper
weakly left ample monoid to its maximum unipotent image.

In the final section we show that if . : X — X* is the natural embedding,
then M(X, ¢, X*) is the free weakly left ample monoid on (a set in one to one
correspondence with) X.

Throughout the paper we consider weakly left ample monoids as algebras of
type (2,1,0) where the unary operation is a — a*. We also consider unipotent
monoids and monoid morphisms. As remarked earlier, a unipotent monoid
is weakly left ample. The potential ambiguity never arises, in view of the
following lemma.

Lemma 1.2 Let S be a unipotent monoid. A subset X of S is a set of gener-
ators of S as an algebra of type (2,0) if and only if it is a set of generators of S
as an algebra of type (2,1,0). A subset T of S is a submonoid of S if and only
if it is a (2,1,0)-subalgebra. Further, a function ¢ from a weakly left ample
monoid M to S is a monoid morphism, that is, a (2,0)-morphism, if and only
if it is a morphism where S is regarded as a weakly left ample monoid, that is,
a (2,1,0)-morphism.

The proof of Lemma 1.2 is exactly analogous to that of Lemma 2.3 of [10].
Indeed, once some basics are established, the proofs of many of our results
follow those in [9] or [10]. Whenever this is the case we omit the argument.

Finally in this introduction we remark that for any monoid M, it is easy
to see that if a € M and e € E(M), then a R e if and only if ea = a and for
any e € E(M)

fa = a implies fe =e.

Thus if E(M) is a semilattice, a R e if and only if e is the minimum element
in the set of idempotent left identities of a (see [12]).

2 The least unipotent congruence o

We follow standard terminology by referring to a congruence p on a monoid
M as a II congruence, where II is a property defined for monoids, if M/p has
property II.

For any monoid M the relation & is defined by the rule that

a @ b if and only if ea = eb for some e € E(M).

Of course, 7 will not, in general, be a congruence. However, & has the property
that it is contained in every unipotent congruence on M and hence in o, where
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o is the least unipotent congruence on M. If M is an inverse monoid, then o is
in fact the least group congruence on M and it is well known (13] that 0 = @.
Analogously, if M is a weakly left ample monoid and R = R*, then o is the
least right cancellative congruence on M and again, o0 = 7 [3]. Recall that the
relation R* is defined by the rule that elements a,b of M are R*-related if and
only if they are R-related in a monoid containing M. A weakly left ample
monoid in which R = R* is called left ample (formerly, left type A).

In our first result we show that for ¢ = 7 it is enough that M be weakly
left ample.

Lemma 2.1 Let M be o weakly left ample monoid. Then 0 =G. That is, the
least unipotent congruence o on M is given by the rule that

a o b if and only if ea = eb for some e € E(M).

Proof In view of the remarks preceding the lemma, it is enough to show that
the relation 7 is a congruence and M/ is unipotent.

Since M is a monoid with semilattice of idempotents E(M), it is easy to
see that 7 is an equivalence. Clearly 7 is right compatible. If a,b,c € M and
a T b, then ea = eb for some e € E(M) and so cea = ceb. Using condition
(AL) we have (ce)*ca = (ce)*cb, so that ca @ cb and 7 is left compatible. Thus
T is a congruence on M.

Certainly all idempotents of M lie in the same d-class as 1. Suppose now
that a € M and a7 is idempotent in M/7. Hence a 7 a? so that ea = ea® for
some e € E(M). Consider the element eae. Using (AL) we have

(eae)? = e(ae)ae = e((ae)ta)ae
and so
(eae)? = (ae)Tea’e = (ae)eae = e(ae)*ae = eae.

Thus eae € E(M). Notice also that from eae = e(ae)*a we have that g(eae) =
ga where g = eae(ae)t € E(M). Hence

adeaed 1

and M/7 is unipotent, as required.

_We recall from the introduction that a weakly left ample monoid is proper
if RNo = .. As o = . on any unipotent monoid S, certainly S is proper.
On the other hand any Brandt extension B!(S,I) cannot be proper, as @ is
universal on any semigroup with zero.

As previously remarked, any Bruck-Reilly extension BR(S,8) of S is also
weakly left ample. It is not hard to show that BR(S, ) is proper if and only
if 6 is one-one. If T is a monoid and a semilattice E(T) of unipotent monoids
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Te,e € E(T), then again T is weakly left ample. As mentioned in the previous
section, T is a strong semilattice of the monoids T,. An easy argument shows
that T is proper if and only if the connecting homomorphisms are one-one.
Further examples of proper weakly left ample monoids emerge in the course of
this paper and [8]. In particular, free weakly left ample monoids are proper.
For an inverse monoid, being proper is the same as being E-unitary. In
the general case a proper weakly left ample monoid M is E-unitary but the
converse is not true [3]. Note that if M is E-unitary then E(M) is a o-class.
The proof of the next lemma is analogous to that in the left ample case.

Lemma 2.2 [9] Let M be a proper weakly left ample monoid. If a,b € M,
then a o b if and only if b*a = a*b.

The results of this section are essentially for semigroups (see [8]). However,
for the remainder of the paper the requirement that we deal with monoids is
more crucial.

3 Graph expansions

We begin this section by recalling from [9] the construction of the graph ex-
pansion M(X, f,S) of a monoid presentation (X, f,.S).

For the purposes of this paper a graph ' consists of two sets V = V(I
(the vertices of T') and E = E(T) (the edges of T'), together with two maps
(written on the left), i : E — V and t : E — V. The maps i and ¢ are the
wnitial and terminal maps, respectively. We may represent e € F with i(e) = v
and t(e) = v’ by

e

0
!

v v
A path from a vertex v to a vertex w is a finite sequence of edges ey, ..., e,
with
i(er) = v, ter) =i(ea), t(e2) =i(e3), ...,t(en) =w

and we write this as

_ €1 _ €2 . _ €n _

(2 w

There is also an empty path I, from any vertex v to itself. A graph I is v-rooted,
where v € V, if for all w € V there is a path from v to w. A subgraph A of
I" consists of a subset V(A) of V(I') and a subset E(A) of E(I') such that for
any e € E(A),i(e),t(e) € V(A). Clearly any path determines a subgraph; it is
convenient at times to use the same notation for a path and the corresponding
subgraph.
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A graph morphism 0 from a graph I to a graph I consists of two functions,
each denoted by 6, from V(I') to V(I') and from E(T') to E(I"), such that for
any e € E(T),

i(e)d = i(ef) and t(e)d = t(ed).
Clearly such a # maps subgraphs to subgraphs and paths to paths.

A monoid S acts on a graph ' (on the left) if V and F are left S-sets and
i and t are left S-maps, that is, i(se) = si(e) and t(se) = st(e) for all s € S
and e € E. Note that if S acts on I, then the action of any s € S is a graph
morphism so that if A is a subgraph of I', then so is sA.

Our interest here is in the Cayley graph I' = I'(X,, f, S) of a monoid present-
ation (X, f,S). Here V(I') = S and

ET) = {(s,z,s(zf)) : s € S,z € X}

where i(s,z,s(zf)) = s and t(s,z,s(zf)) = s(zf). We may write the edge
(s,z,s(zf)), or the corresponding subgraph, as

x
. L]

s s(zf)

The monoid S acts on I’ where for s € S,v € V, (t,z,t(zf)) € E we have
sv=sv, s.(tzt(zf)) = (st,z,st(zf)).
The graph ezpansion M = M(X, f,S) of (X, f,S) is given by
M = {(A,s): Ais a finite 1-rooted subgraph of T" and 1,s € V(A)}.
We define a multiplication on M by
(A, 8)(Z,t) = (AU I, st).
The following is easy to check.

Lemma 3.1 With M = M(X, f,S) and multiplication as above, M is a
monoid with identity (e;,1).

In [11] Margolis and Meakin use an analogous construction to study proper
(i.e. E-unitary) inverse monoids. In [9] it is shown that M(X, f,S) is left
ample, indeed proper left ample, if and only if S is right cancellative. Right
cancellative monoids are, of course, unipotent; the converse is far from true.

Proposition 3.2 Let (X, f,S) be a monoid presentation. Then the following
conditions are equivalent:

(i) S is unipotent;

(1)) M(X, f,S) is weakly left ample; _

(i1) R is a left congruence on M(X, f,S) and every R-class contains an
idempotent. '
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Proof Suppose first that S is unipotent. If A is a finite 1-rooted subgraph of
T, then (A,1) € M = M(X, f,S) and clearly (A, 1) is idempotent. Moreover
any idempotent of M must have this form. It is then easy to see that E(M)is
a semilattice. If (A, s) € M then (A, s)R(A, 1) so that M is left semiadequate
and (A, s)* = (A, 1). It follows that for any (A, s), (E,t) € M, (4, s) R (1)
if and only if A = £. It is then easy to check that R is a left congruence. That
condition (AL) holds is exactly as in Proposition 3.3 of [10].

That (ii) implies (iii) is by definition. It remains to prove that (iii) implies
(i). Suppose then that (iii) holds and that S is not unipotent.

Choose e € E(S)\{1}. Since (X f) = S, there exist 71, Z2,...,Zn € X,n 21
such that e = (z,f)(z2f)...(zo f). We may assume that n is minimum, so that
the subgraph A of T’

(31 T2 s

1 nf (@)@ (@f) . (anf) =

has no loops.

Let ¢ be any vertex of A, so that (A,t) € M. We claim that (A, t) R (A1),

We know that (A, 1) is idempotent and clearly (A,1)(A,t) = (A, t). Sup-
pose now that (£, f) is idempotent and (E, f)(A,t) = (A,t). Since (T, f) is
idempotent, we have that ¥ = XU fX so that f C X, and from the fact that
(%, f) is a left identity for (A,t) we have that & C A. If f # 1, then as fis
a vertex of £, ¥ must contain a non-trivial path from 1 to f and as fX C %,
¥ must contain a loop with vertex f. But then A contains a loop. From this
contradiction we deduce that f = 1. Then

(£,1)(8,1) = (SUA,1) = (A, 1)

so that by the remarks at the end of the introduction, (A, ?) R (A,1). Since t
was any vertex of A, we certainly have that (A, e) R (A,1).

Put ®© = AUeA. Then O is a finite 1-rooted subgraph of I' and has
vertices including 1 and e. Moreover, e® C © so that both (©,1) and (©,€)
are idempotents of M. Since by assumption R is a left congruence,

(©,1)(A,e) R (0,1)(A, 1),

that is, (©,e) R (©,1). But (©,e) is a left identity for its R-class and so
(©,€)(©,1) = (6,1) and e = 1, a contradiction. Thus S is unipotent.
The remainder of the proofs of the results in this section is exactly as in

[9).

Proposition 3.3 Let (X, f,S) be a monoid presentation of a unipotent mon-
0id S. Then M = M(X, f,S) is a proper weakly left ample monoid. Further,
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,(Z,t) €M,

€ E(M) zf and only if s =1;
(i1) (&, 5)* =
(13) (A, 8) R (T,1) zf and only if A =%;
() (A, s) o (Z,t) if and only if s = t.

For any monoid presentation (X, f,S) it is clear that

r L
=1

zf
is a 1-rooted subgraph of I" and (I'z,zf) € M. We define 7o : X = M by
z7;m = (Ty, zf).

Proposition 3.4 Let (X, f,S) be a monoid presentatzon of a umpotent mon-
0id S. Then M =< X1u >. Further, defining o’y : M = S by (A, s)aly = s
we have that o* is an onto morphism with kernel oaq and the following diagram
commutes X

™™ f

M S

Tha
In terminology defined in Section 4 the next result says that if S is unipo-
tent, then the pair (7aq(x,s,5), M(X, f,S)) is an initial object in the category
PWLA(X, f, S).

Proposition 3.5 Let (X, f,S) be a monoid presentation of a unipotent mon-
oid S. Suppose that N is a proper weakly left ample monoid and N = (Xh)
for some function h: X — N. In addition suppose that

X

N S

N

commutes, where a?v : N = S is a morphism with kernel on. Then there is a
morphism 6 : M = M(X, f,S) = N such that
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X
M N
0

4 The categories PWLA(X) and PWLA®

If A is a class of algebras of fixed type then we denote by A the corresponding
category of algebras and morphisms. Thus, if &/ denotes the class of unipotent
monoids and PWLA the class of proper weakly left ample monoids (regarded
as algebras of type (2,1,0)), then the corresponding categories are U and
PWLA. In view of Lemma 1.2, U may be regarded as a full subcategory of
PWLA.

Using the techinque of graph expansions we construct a functor F*: U —
PWLA. Suppose that S € Ob U, that is, S is a unipotent monoid. The
triple (S, Is, S) is certainly a monoid presentation of S, where Is : S — S is
the identity map. We put SF¢ = M(S, Is, S). By Proposition 3.3, M(S, Is, S)
is a proper weakly left ample monoid so that F is a function from Ob U to
Ob PWLA.

Suppose now that S,7 € Ob U and §: S — T is in Mory(S,T). We first
define a map ¢' : I'(S, Is, S) = I'(T, I, T) by

commutes.

v = v
for any vertex v of I'(S, Is, S) and
(s, x, sz)8' = (36, 26, s0z6)

for any edge (s, z, sz) of ['(S, Is, S). Clearly ¢' is a graph morphism so that
as remarked in Section 3, ' maps subgraphs to subgraphs and paths to paths,
indeed as 160 = 1, #' maps 1-rooted subgraphs to 1-rooted subgraphs. Thus we
can define 0F* to be 6¢ where 08¢ : SF¢ — TF* is given by

(4, 5)0° = (A, s0).
For any subgraph A of I'(S, Is, S) and s € S,
(s-A) =3s60-A6'.

Using Proposition 3.3 it is now easy to see that
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0° € MOTPWLA(SFC, TFe)

and that F° defined in this manner is a functor from U to PWLA.

In fact, F® is an ezpansion in the sense of Birget-Rhodes [2]. Regarding U
as a subcategory of PWLA, we need to show that for any S € Ob U there is
an onto morphism ns € Morpwra (SF¢, S) such that for each § € Mory(S, T)
the square

06

SF* TF¢

ns nr

S—T
0
commutes; further, if 8 is onto then so also is 6F°. Defining ns by (4, s)ns = s,
it is immediate that 7s is an onto monoid morphism so that by Lemma 1.2,
ns € Morpwra (SF¢,S). For any § € Mory(S,T) and any (4, s) € SF®,

(Av 3)067’7' = (Aal7 SG)TIT =s0 = (Av 3)7’50

so that the above square commutes. Suppose now that 6 is onto. For any
t € T we have t = s for some s € S so that
t s6 s
*r—— @ * ——@ o
(4 tt)=(1 56250 = (1 59)0%

Recall from Proposition 3.4 that

t

(37 {t):teT}

is a set of generators of TF*®, so that 6° is onto and we have proved:
Proposition 4.1 The functor F¢: U — PWLA is an expansion.

We now define in the obvious way a functor F* : PWLA — U. The
action of F” on objects is given by MF° = M/o for any M € Ob PWLA.
By definition of o, the monoid M/o is unipotent. For # € Morpwra (M, N)
put 0F7 = §° where [m]6° = [m#f)]. In view of the description of § in Lemma
2.1, 67 is well defined. Clearly F° is a functor from PWLA to U.

We would like to say that F* is a left adjoint of F°. Unfortunately, this
is not strictly true and we now present two approaches to remedying this
situation. The first is analogous to that in [11] for X-generated proper inverse
monoids and that in [9] for X-generated proper left ample monoids; the idea
is to fix a set of generators for the monoids under consideration. The second
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parallels the alternative approach in [10] for proper left ample monoids, where
the trick is to regard proper left ample monoids as possessing an extra unary
operation. The category constructed in this way includes the category F of
weakly left FA monoids and (2,1, 1,0)-morphisms, defined in the forerunner
(7] to this paper. The category F arose from Szendrei ezpansions of unipotent
monoids.

Let X be a set and A a class of algebras of a given fixed type. Then A(X)
is the category which has objects pairs (f, A) where A € A, f : X — A and
(X f) = A; a morphism in A(X) from (f, A) to (g, B) is an algebra morphism
0 : A — B such that

X

A 2 B
commutes. As remarked in [9], if such a @ exists, it is unique and must be
onto. It is easy to check that A(X) is a category. Again using Lemma 1.2 we
may, if we wish, regard U(X) as a full subcategory of PWLA(X).
Let (X, f,S) be a monoid presentation of a unipotent monoid S. The full
subcategory PWLA(X, f,S) of PWLA(X) has as objects those (g, M) € Ob
PWLA(X) such that the diagram

X

S

Th
commutes, where afw is a morphism with kernel os. As previously remarked,
afw must be onto, so that S is the maximum unipotent image of M. As os
is the identity relation on S it is clear that (f,S) € Ob PWLA(X, f,S). If
(9, M) € Ob PWLA(X, f, S), then o’ : M — S is the unique morphism in
Morpwra(x)((9, M), (f,S)), so that (f, S) is a terminal objectin PWLA(X, f, S).
Proposition 3.5 translates as the following.

Theorem 4.2 Let (X, f,S) be a monoid presentation of a unipotent monoid
S. Then the pair (Ta(x.5,s), M(X, f,S)) is an initial object in the category
PWLA(X, £, S).

Following the approach of [9] we define a functor F§ : U(X) - PWLA(X).
Suppose that (f, S) is an object in U(X). From Proposition 3.4 we know that



GRAPH EXPANSIONS OF UNIPOTENT MONOIDS 459

(Trmx,1,8), M(X, f,S)) is an object in PWLA(X). We put
(f1 S)F;’ = (TM(X,f,S)1 M(X7 f; S))'

If (g, T) is another object in U(X) and 8 € Mory(x)((f,S),(g,T)), then we
define a map, denoted by 6", from I'(X, f,S) to I'(X, g,T) by the obvious
action on vertices and action on edges given by

(s,z,s(zf))0" = (s0, z, sbzg).
Then 6" is a graph morphism and
0% : M(X, f,8) = M(X,9,T)
defined by
(A, s)0% = (AG", s0)
is a (2,1, 0)-morphism such that

0% € Morpwracx)((Tmx,1.5), M(X, £,9)), (Tmix,0.1) M(X, 9,T)).

We now put §F% = 6%. Then F% : U(X) — PWLA(X) is a functor. Indeed,
exactly as in [9], we have

Proposition 4.3 The functor F§ : U(X) - PWLA(X) is an ezpansion.

We now construct a functor F§ : PWLA(X) — U(X). The action of F
on objects is given by

(fs M)F%, = (foly, M/om)

where 05‘\,, : M — M/o)y is the natural morphism. Suppose now that (f, M)
and (g, N) are objects in PWLA(X) and 8 € Morpwra(x)((f, M), (g, N)).
Define 0% : M/oy — N/fo, by [m]0% = [mf]. Then 0% is well defined and
indeed 8% € Moryx)((foly, M/ou), (9o, N/on)) and we put 6F% = 6%.
Clearly F¢ is a functor from PWLA(X) to U(X). As in [9] we have the
desired result.

Theorem 4.4 The functor Fg is a left adjoint of the functor Fg.

An alternative approach, introduced in [10] for the special case of right
cancellative and proper left ample monoids, does not involve specific generating
sets and allows us to consider the entire category U and ‘almost’ the entire
category PWLA. However we lose by being forced to consider proper weakly
left ample monoids as algebras of type (2,1,1,0), as follows.

The category PWLA? has as objects proper weakly left ample monoids
given an added unary operation ° such that for any proper weakly left ample
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monoid M

(i) mom° forallme M
and

(ii) {m° : m € M} is a transversal of the o-classes of M.

The morphisms of PWLAZ® are the morphisms between objects regarded as
algebras of type (2,1,1,0).

As o is trivial on a unipotent monoid S, the only way S can be made into
an object of PWLAUZ is if s° = s for all s € S. For an arbitrary proper weakly
left ample monoid there are of course many choices for °.

With the right choice of ° for SFe, the functor F* may be regarded as a
functor from U to PWLAZ®. For a unipotent monoid S define ° on SF*° by

S
(Z,8)° =3 sl ,8).
As in [10], F¢ is then a functor from U to PWLA®. Of course, F’ may be
viewed as a functor from PWLAZ® to U. For the proof of the last result of
this section, see [10].

Theorem 4.5 Regarded as functors between U and PWLA?, F¢ is a left
adjoint of F°.

5 Free weakly left ample monoids

The class WLA of weakly left ample monoids, although it fails to be a variety,
is a quasivariety of algebras of type (2, 1,0). By definition it is axiomatised by
the set

{lz=1=11, (zy)z=z(2y),

(@ =zAy’=y) =y =yz,

(III+)2 =gzt ztz=z (@P=zAzy=19) =2yt =9,
=yt = (2x)t = (ay)*, 2° =z = yz = (yz)"y}

of quasi-identities. Thus free weakly left ample monoids exist. The aim of this

final section is to show that graph expansions can be used to construct the
free objects in this quasivariety.

Let N be a subalgebra of a weakly left ample monoid M. Since WLA is
a quasivariety and a* always denotes the idempotent in the R-class of a, it

follows that for all a,b € N
aR bin N if and only if a Rbin M.

The class PWLA of proper weakly left ample monoids is the subquasivari-
ety of WLA determined by the quasi-identity
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(zt=ytAL2=zA2z=2y) > T =Y.

We emphasize that consequently, a subalgebra N of a proper weakly left ample
monoid M is proper. Moreover from Lemma 2.2,

aMﬂ(NxN) =ON-
At this stage we require a result from a predecessor of this paper, [8].

Theorem 5.1 [8] Let S be a weakly left ample monoid. Then S has a proper
weakly left ample cover. That is, there is a proper weakly left ample monoid P
and an idempotent separating morphism ¢ from P onto S.

Theorem 5.2 Let X be a set and let . : X — X* be the canonical embedding.
Let M = M(X,t,X*). Then pr : X = M is an embedding and M is the
free weakly left ample monoid on X1p.

Proof Certainly 7o : X — M is an embedding.

Suppose that M is a weakly left ample monoid and ¢ : X — M is a
function. By Theorem 5.1, there is a proper weakly left ample monoid P and
an onto morphism ¢ : P — M. For each z € X choose p, € P such that
p:¢ = xg. Let h : X — P be given by zh = p, and let Q@ = (Xh). By
the remarks at the beginning of this section, @ is a proper weakly left ample
monoid.

Put S = Q/oq so that S is unipotent and S = Qag = (Xh)ag = (Xhaz).
Thus (X, hauq, S) is a monoid presentation and we let N be the proper weakly
left ample monoid given by N’ = M(X, haz, S).

Denote by @ the extension of hag? : X — S to a morphism 6 : X* — S. We
have that (¢, X*), (haz,,S) € Ob U(X) and

X
/ \h\‘g
X S
0

commutes, so that 8§ € Moryx)((t, X‘),(haz,S)). From Section 4, 6% €
Morpwra(x)((Tm, M), (7w, N)) so that 6% : M — N is a morphism and

X
M o N

X
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commutes. Notice now that (h,Q) is an object in PWLA(X, haz, S) and by
Theorem 4.2 A is the initial object in this category. Thus there is a morphism
¥ : N = Q such that

X

(7% h

N m Q

commutes. Regarding 8% as a morphism from M to P we have that 65v¢ :
M — M is a morphism and for any z € X,

Mm% V$ = TTNYd = Th = p.¢ = 79

so that

™

M M
%¥¢

commutes as required.

Remark that since M = M(X,, X*) is a graph expansion of a right can-
cellative monoid, it follows from Proposition 3.3 of [9] that M is left ample.
Indeed, M is the free left ample monoid on X7x4.
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