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Aims & Objectives

An introduction to inverse semigroup theory

— Elementary definitions & theory

from the point of view of applications.

— Where we find these structures in
theoretical & practical computer science
other areas of mathematics
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A small corner of a big picture!

We will look at inverse semigroups & monoids:
A branch of abstract algebra / semigroup theory.
Introduced simultaneously & independently in 1950’s

Viktor Wagner (U.S.S.R.)
Gordon Preston (U.K.)

Theory developed separately, along two different tracks
USSR
U.S. & Europe

with minimal contact between the two sides.
Some degree of re-unification in 1990s
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A couple of references:
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Some -very- basic definitions

A semigroup is a set pS, ¨ q with an associative binary
operation ¨ : S ˆ S Ñ S. usually written as concatenation:

Given a P S and b P S, then ab P S.
apbcq “ pabqc for all a,b, c P S.

A monoid is a semigroup with an identity 1 P S satisfying

1a “ a “ a1 @ a P S

A group is a monoid where every a P S has an inverse a´1 P S

aa´1 “ 1 “ a´1a @ a P S
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Even more basic definitions

Simplest examples include free semigroups and monoids.

The free semigroup on a set X

X` is the set of all non-empty strings of symbols of X .

Composition is just concatenation of strings.

The free monoid X˚ also allows for the empty string λ.

Free semigroups / monoids have the expected universal
property ...
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New monoids from old

A congruence „ on a semigroup S is a
composition-preserving equivalence relation:

a „ b and x „ y ñ ax „ by

for all a,b, x , y P S.

Equivalence classes form the quotient semigroup S{ „.

Every semigroup (monoid) is a quotient of
some free semigroup (monoid).

There is no analogy of “normal subgroup” for monoids!
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A simple definition

Inverse monoids / semigroups have a ‘relaxed’ notion of
inverses:

Inverse semigroups: the definition

Every element a P S has a unique generalised inverse a; P S
satisfying

aa;a “ a and a;aa; “ a;

Axioms introduced independently by Wagner & Preston, based
on (different collections of) concrete examples.

Many examples are – even nowadays – not always
recognised as being inverse semigroups.
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Elementary properties

In an inverse semigroup S, the following are almost immediate:

1 pa;q; “ a, for all a P S.

2 pabq; “ b;a;, for all a,b P S.

3 e; “ e, for any idempotent e2 “ e.

(Special case: I; “ I, when S is a monoid).

4 aa; and a;a are both idempotent.

5 All idempotents commute:

e2 “ e and f 2 “ f ñ ef “ fe

peter.hines@york.ac.uk www.peterhines.info



A (well-known) class of examples!

All groups are (trivially) inverse monoids, but not vice versa.

Important
Even in a monoid, the conditions

aa;a “ a and a;aa; “ a;

do not imply that aa; is the identity.

Instead, aa; and a;a are both idempotent (i.e. e2 “ e).

The inverse semigroup axioms are strictly more general than
the group axioms.

How should we understand these axioms?
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A representation theorem or two

Cayley’s theorem (1854)
Every group has a representation as bijections on a set.

The Wagner-Preston theorem (1954)
Every inverse semigroup has a representation

as partial injections on a set.

Inverse semigroup theory is what happens when
we combine reversibility with partiality.

Historically, computer scientists have been more comfortable with partiality than mathematicians.
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How do partial functions compose?

Given partial functions f : X Ñ Y and g : Y Ñ Z , then gf pxq is
defined when

x is in the domain of f .
f pxq is in the domain of g.

Composing partial reversible functions

Partial function g Partial function f
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How do partial functions compose?

Given partial functions f : X Ñ Y and g : Y Ñ Z , then gf pxq is
defined when

x is in the domain of f .
f pxq is in the domain of g

Composing partial reversible functions

Partial function gf
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A misleading intuition

It is easy to convince ourselves that,
unless domains / images match exactly1,

1 The composites get progressively ‘less defined’
2 Long composites must tend towards the

nowhere-defined partial function 0.

Both of these intuitions are incorrect.

The reason why is best illustrated by example.

1In which case, everything reduces to group theory ...
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Some interesting partial injections

Partial injections defined on the odd and even numbers only:

Partial injection p Partial injection q
...

...
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2 n even,

K otherwise.
, qpnq “
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n´1
2 n odd,

K otherwise.
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Total inverses of partial injections

Their generalised inverses are globally defined injections:

p;pnq “ 2n q;pnq “ 2n ` 1
...

...

7 7 7 7
5 6 6 6
5 5 5 5
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ii
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Non-shrinking domains!

Observe:

domppq Ă dompp2q Ă dompp3q Ă dompp4q Ă dompp5q Ă . . .

Nevertheless, these are all countably infinite.

These two functions generate a representation of
the (inverse) polycyclic monoid P2 of Nivat & Perot (1972).
Specified by simple relations:

pp; “ I “ qq; and pq; “ 0 “ qp;

Also known as the logicians’ ‘dynamical algebra’
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A significant inverse monoid:

Given any set X , the polycyclic monoid PX , is the inverse
monoid with:

X as a generating set,
A zero 0 and an identity I,
the relations

xy; “

$

&

%

I x “ y

0 x ‰ y

A ‘one-sided version of the Kronecker delta’.

A relevant property

Provided |X | ą 1, there are no non-trivial congruences on PX .

Any quotient causes a collapse to a single element.
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The question of significance ...

What makes P2 a “significant” monoid ??

A useful criterion

When it is repeatedly re-discovered in different fields:

Logic & λ calculus The dynamical algebra

C˚ algebra & mathematical physics The Cuntz algebra

Automata theory Syntactic monoids of certain automata

Language theory The well-formed bracketing language

A range of areas Linguistics, Ring Theory, Tilings, Category
Theory, Foundations of Mathematics, . . .

peter.hines@york.ac.uk www.peterhines.info



Appearances in Computer Science

First seen as the ‘dynamical algebra’, of
“Local and Asynchronous β-reduction”
– V. Danos & L. Regnier (1992)

Models of untyped λ calculus, and hence computational
universality.

Later core to logical models — particularly those of J.-Y. Girard.

Let’s look at more ‘elementary’ applications ...
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Our starting point ...

Race Conditions
In parallel or multi-threaded computation:

“The behaviour of a system varies according to
the order in which individual operations from distinct
threads are processed’.’

The distinct behaviours may be:

desirable, undesirable, or unimportant.

A non-judgmental analysis:

The terms ‘desirable’ or ‘undesirable’ are subjective.

We study such conditions, without aiming to either cause or eliminate them!
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A practical application

“Hacking Starbucks for Unlimited Coffee”

https://sakurity.com/blog/2015/05/21/starbucks.html

Egor Homakov (@homakov)

Connecting to the same Starbucks personal account

simultaneously from two distinct browsers caused

a race condition among multiple

asynchronous processes for:

1 Check balance on card 1.
2 If sufficient funds, add funds to card 2.
3 Decrease funds on card 1.

Disclaimer:This bug has since been fixed!
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From hacking to algebra

Consider the free monoid over the set tA,C,Du
A – add funds to card 2.
C – check funds on card 1.
D – decrease funds on card 1.

Which particular strings of actions (submonoids of the free
monoid tA,C,Du˚) are:

1 Permitted by Starbucks servers?
2 Possible to create, using two distinct connections?
3 Profitable for Egor Homakov??
4 Fair to everyone concerned?

What we wish to find:
Tools to find intersections of such monoids,
and transformations (homomorphisms?) between them.
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Interleaving processes as shuffles

The mathematics of shuffling cards and interleaving
processes is of course identical.

Credit: Johnny Blood Photography

Card shuffles are very well-studied in combinatorics,
probability, representation theory, statistics, &c.

For some applications to C.S., we also need
their (inverse) semigroup theory.
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Why not something more “traditional”??

Combinatorics answers questions such as:
Given K decks of N cards, how many different ways

are there of shuffling them into a single stack of K ˆ N
cards?

The right tools for multi-threaded finite computational tasks
such as parallel matrix processing.

We need to consider the infinite setting
unbounded number of decks Arbitrarily many clients connected

to a server.
a never-ending stream of cards Non-terminating processes

(internet servers, again).
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How to shuffle two (possibly infinite) decks of cards

Riffle Shuffles

Cards from Deck A and Deck B are merged
into a single stack.

At each step, a single card is taken from the bottom
of either A or B, and placed on top of the stack.

Some important conventions:

The ordering of cards is preserved.

Every card from each deck ends up in the stack.
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Everything in order ...

Consider two copies of the natural numbers:

N Z N def .
“ N ˆ t0,1u

and give this a partial order by

pa, iq ď pb, jq iff a ď b and i “ j

We may only compare members of the same copy of N

p4,0q ď p7,0q
p3,1q ď p8,1q
p4,0q and p8,1q are incomparable.
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Hilbert’s well-ordered hotel ...

Shuffles of two infinite decks of cards
”

order-preserving injections

from NZ N to N.

How may we characterise (not count!) these?

An old result (P.M.H. — M.V. Lawson 1998)
Arbitrary injections from NZ N to N are in 1:1 correspondence
with (effective) representations of P2 on N.

What about the monotone (order-preserving) case?
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The infinitary setting

Every shuffle of two infinite decks corresponds to a point of Cantor
space C.

Formally, one-sided infinite strings over t0,1u,

c “ 0100101101 . . .

or equivalently, functions from N to t0,1u.
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The correspondence (computationally)

Operationally: Cantor points are descriptions of shuffles:

Given a Cantor point c : N Ñ t0,1u,

At the nth step, a card was taken from:
The first deck, when cpnq “ 0
The second deck, when cpnq “ 1

Caution!

We can also think of Cantor points as instructions,

but not all Cantor points arise from valid shuffles.
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An illustrative example

The perfect riffle shuffle:

Cards are alternately taken from each deck

This is modeled by the function φ : Nˆ t0,1u Ñ N given by

φpn, iq “ 2n ` i

The corresponding Cantor point is apnq “ n pmod 2q.

a “ 0101010101 . . .

The alternating Cantor point
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Which Cantor points are not shuffles?

Recall our two conditions:
1 The ordering of cards is preserved,
2 Every card is laid at some point.

Condition 1. is accounted for by monotonicity.

Condition 2. is automatically satisfied, simply because
φ : Nˆ t0,1u Ñ N is a globally defined function.

A consequence is that that the corresponding Cantor point is
balanced:

8
ÿ

i“0

cpiq “ 8 “

8
ÿ

i“0

p1´ cpiqq
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The correspondence (mathematically)

Given a shuffle of two infinite decks φ : Nˆ t0,1u Ñ N

consider its (global) inverse φ´1 : N Ñ Nˆ t0,1u.

For all n P N, we have a pair φ´1pnq “ pxn, inq P Nˆ t0,1u.

From shuffles to Cantor points
we define a Cantor point

cφ “ π2φ
´1 : N Ñ t0,1u P C

by projecting onto the second component cφpnq “ in P C

As φ is monotone, this Cantor point is enough to characterise φ.
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What about that other projection?

Does projecting onto the first component also characterise φ?

Definitely not There are uncountably many distinct shuffles
where such projections are identical.

However, taking two partial projections will work!
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Shuffles via inverse semigroup theory

Given the inverse of a shuffle φ´1 : N Ñ Nˆ t0,1u,

let us split the projection onto the first component
into two distinct monotone partial injections

pφpnq “

$

&

%

π1φ
´1pnq π2φ

´1pnq “ 0

undefined otherwise.

qφpnq “

$

&

%

π1φ
´1pnq π2φ

´1pnq “ 1

undefined otherwise.

These two partial injections are enough to characterise φ.
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Perhaps unsurprisingly ...

The generalised inverses of pφ and qφ are monotone injections,
and satisfy

pφp;φ “ I “ qφq;φ

qφp;φ “ 0 “ pφq;φ

Giving an effective representation of a two-generator polycyclic
monoid.
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From the Cantor point to the inverse monoid

Given a balanced Cantor point c : N Ñ t0,1u, we define partial
injections by:

Counting the number of 0s up to point n

p;cpnq “

$

’

&

’

%

´

řn
j“0 1´ cpjq

¯

´ 1 cpnq “ 0,

undefined otherwise.

Counting the number of 1s up to point n

q;cpnq “

$

’

&

’

%

´

řn
j“0 cpjq

¯

´ 1 cpnq “ 1,

undefined otherwise.
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Best illustrated by example ...

Consider the alternating Cantor point

a “ 01010101010101010 . . .

partial injection p;a partial injection q;a
...

...

7 7

**

7
6 6

ss

6
5 5

++

5
4 4

rr

4
3 3

,,

3
2 2
pp

2
1 1

..
1

0 0oo 0
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A correspondence

We have 1:1 mappings between:

Interleavings of two infinite streams of processes

Balanced points of Cantor space

Monotone effective representations of
2-generator polycyclic monoids

Is there any advantage to treating such things algebraically?
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Re-ordering processes

Given a sequence of ‘cards’

A0 A1 A2 A3 A4 A5 . . .

resulting from some (undesirable) shuffle, specified by
c : N Ñ t0,1u,
how can we re-order it

A5 A2 A3 A0 A1 A4 . . .

so it appears to have come from a (desirable) shuffle
d : N Ñ t0,1u

Nˆ t0,1u Shuffle c //

Shuffle d
**

N

??
��

N
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How to re-order shuffles

Some well-known semigroup theory

Given partial injections f ,g with:
disjoint domains
disjoint images

their set-theoretic union f Y g is also a partial injection.

Given shuffles c,d : N Ñ t0,1u, the result of c may be
re-arranged into the result of d by

p;dpc Y p;dqc : N Ñ N

— a globally defined bijection on N.
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Some computational caution ...

From a practical viewpoint:
Tasks cannot be re-ordered if they are processed

the instant they are received!

For re-arrangement to take place, they must first be held in a
buffer / queue.

How big does this need to be — how long a queue is
(computationally) acceptable?
What transformations on this buffer are needed?
Are there situations where no finite re-arrangement will
work?
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From balanced Cantor points to Young Tableaux

A traditional approach to (finite) shuffles is via Young Tableaux.

We derive infinitary versions from the algebra in a simple manner:

Consider the Cantor point c “ 1 0 1 0 1 0 1 1 0 0 . . . P C and
associated partial injections p;,q; : N Ñ N

n “ 0 1 2 3 4 . . .

p;pnq “ 1 3 5 8 9 . . .
q;pnq “ 0 2 4 6 7 . . .

An p8,8q Young tableau.

The obvious question:

What about standard Young tableaux?
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On to standard Young tableaux

In standard Young tableaux, the cells are well-ordered

both horizontally and vertically.

a b

c

a ď

ď

b

c

Horizonal ordering corresponds to monotonicity.

What about the vertical ordering?
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Some computer science motivation

Recall the motivation for studying Shuffles, as ordering of
processes.

Operations from thread A push data onto a stack.

Operations from thread B pop data off a stack.

What conditions would prevents us from trying to
read data from an empty stack?

... or indeed, transfer funds from an empty account?
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From combinatorics to semigroup theory

A (binary) ballot sequence is an element w P t0,1u˚ where,
for every prefix u of w ,

#1s in u ď #0s in u

Denote the set of all finite ballot sequences by Bt0,1u
— this forms a submonoid of t0,1u˚.

By contradiction: Consider v ,w P Bt0,1u such that vw R Bt0,1u. Then
there exists some prefix u of vw satisfying #0s in u ă #1s in u. As
v P Bt0,1u, u is not a prefix of v , so u “ vl , for some prefix l of w .
However, #0s in v ě #1s in v . Therefore, #1s in l ě #0s in l ,
contradicting the assumption that w P Bt0,1u.
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A deceptively simple monoid

Ballot sequences are well-studied in combinatorics – but also
make for interesting monoids!

Proposition The monoid of binary ballot sequences is not
finitely generated.

By contradiction: Assume a finite generating set G for
Bt0,1u ď t0,1u˚. As G is finite, the longest contiguous string of 1s in
any member of G is bounded by some finite K P N. No composite of
members of G can account for the ballot sequence 0K`11K`1.
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From the finite to the infinite:

A Cantor point c P C is ballot when every prefix is a member of
the Ballot monoid.

N
ÿ

j“0

cpjq ď

N
ÿ

j“0

cKpjq @ N P N

Denote the ballot Cantor points by B Ď C.

Our claim:

Shuffles described by ballot Cantor points
are precisely those whose Young tableaux are standard
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A quick outline:

Balanced ballot Cantor points

”

standard p8,8q Young tableaux

Let c P B be a balanced ballot Cantor point. This determines

a monotone representation of P2 as partial injections on N, and
hence an p8,8q Young tableau:

p;p0q p;p1q p;p2q p;p3q p;p4q . . .
q;p0q q;p1q q;p2q q;p3q q;p4q . . .

By the interpretation of ppnq and qpnq as ‘counting the 0s and 1s in a
prefix’, p;pnq ď q;pnq, so this is standard.
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An almost paradoxical point(!)

A balanced ballot point b P B satisfies:
ř8

j“0 bpjq “
ř8

j“0p1´ bpjqq
The total number of 0s and 1s is the same.

řN
j“0 bpjq ď

řN
j“0p1´ bpjqq.

Every prefix has at least as many 0s as 1s.

Imposing such conditions on finite strings results in an
uninteresting theory!

Finite balanced Ballot points are simply powers of p01q.

The free monoid on a single generator!
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The (balanced) Ballot Cantor points form

a subset of Cantor space;

We can draw a picture.
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Ballot Cantor points – the “fork factory”
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From semigroup theory to order theory

There are many different ways of ordering:
Cantor points in general,
Ballot points in particular.

The pointwise partial order:

Given Cantor points a,b : N Ñ t0,1u,

we use the pointwise partial ordering:

a ď b iff apnq ď bpnq @n P N

The Ballot points of Cantor space have a particularly neat form.
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The Ballot Scott domain

Key properties:

There is no top element & they are not closed under joins

pc _ dqpnq “ maxtcpnq,dpnqu.

They are closed under the meet, pc ^ dqpnq “ cpnqdpnq

There is a bottom element Kpnq “ 0, for all n P N.

The supremum of every chain c0 ď c1 ď c2 ď . . . is also in B

– chain-completeness ñ directed completeness, assuming
the axiom of choice (Iwamura’s Lemma).

There is a notion of finite support / compactness: c P B is

“finitary” iff
ř8

j“0 cpjq ă 8, and every element is the

supremum of a chain of such elements.
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Scott Domains in Theoretical Computer Science

Scott Domains ...

Introduced by Dana Scott (early 1970s) to model pure
untyped λ calculus

— and hence computational universality.

Also used for semantics of functional programming
languages, due to the existence of solutions
of arbitrary fixed-point equations.

This particular Scott domain is

a subset of Cantor space

related to standard Young tableaux.
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Back to our original motivation ...

Given C,D Ď N, the banker’s monoid WC,D

is a submonoid of the free monoid over `C Y´D.

Interpretation

For any c P C, and d P D,

`c is a deposit , ´d is a withdrawal.

Elements of WC,D are no-credit strings — those for which
the sum of every prefix is non-negative.

Taking C “ t2,4,6,8u and D “ t1,3,5,7u,

p`8qp´5qp`4qp´7qp`4qp´3q is a n.-c. string

p`6qp´5qp`2qp´5qp`8q is not a n.-c. string
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Reducing the complex to the simple

It is relatively straightforward to prove:
1 The Ballot monoid Bt0,1u is isomorphic to Wt1u,t1u.
2 For arbitrary C,D Ď N, there is an embedding

WC,D ãÑ Bt0,1u.
We may use the same structures to study

1 Race conditions for stacks
2 Similar for credits / debits of Starbucks cards ...
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Iterating shuffles

Hierarchical Shuffles

We shuffle two (infinite) decks of cards.

Either or both of these are the result of previous

shuffles of infinite decks of cards.
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Characterising iterated shuffles

We take the obvious step of drawing this as a binary tree:

Deck0 Deck1

Deck2 Deck3
Deck4

(As a slight simplification we assume the same shuffle at each step).
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The questions ...

What we would like to do:
1 Write down the appropriate bijection:

Nˆ t0,1, . . . , ku // N

2 Give the corresponding Young tableaux.
3 Ensure (when appropriate) these are standard tableaux.
4 Transform the result of one tree of shuffles into another.
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Very basic T.C.S. / algebra

A binary code is a subset A Ď t0,1u˚ such that
the submonoid generated by A is freely generated.

A simple example:
The set

L “ t00,01,10,110,111u Ď t0,1u˚

is a binary code.

Operationally: strings of elements of L can be split up, uniquely,
into elements of L.

11110000111001111

splits, uniquely, as

p111qp10qp00qp01qp110qp01qp111q
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A useful class of examples

A maximal prefix code is a subset A Ď t0,1u where:
1 Members of A are not prefixes of each other.
2 Every word of t0,1u˚ either:

is a prefix of some element of A,
has some element of A as a prefix.

Some elementary T.C.S.
There is a simple and well-known correspondence:

Complete binary trees
”

Maximal prefix codes
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Maximal prefix codes as binary trees

00 01 10
110 111

leaf-traversal ” lex-ordering
Assuming 0 ă 1, the leaf-traversal, and lexicographic ordering
coincide

t00 ď 01 ď 10 ď 110 ď 111u
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From codes to polycyclic monoids

Let’s label our tree branchings by tp;,q;u instead.

p;p; p;q;
q;p;

q;q;p; q;q;q;
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Fun & games with polycyclic monoids

(Maximal) Prefix codes correspond to embeddings:
Given a (maximal) prefix code L over tp;,q;u˚ ãÑ P2, then
for all u;, v; P L,

uv; “

$

&

%

I u “ v

0 u ‰ v

(A one-sided version of the Kronecker delta ...)

Giving us an embedding PL ãÑ P2.
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From prefixes to shuffles

Assume a representation of P2 based on the alternating Cantor
point a “ 01010101 . . .
(Equivalently, the perfect riffle shuffle ...)
We have

p;pnq “ 2n and q;pnq “ 2n ` 1

The max. prefix code

L “ tp;p; , p;q; , q;p; , q;q;p; , q;q;q;u

gives us a p8,8,8,8,8q Young tableau:
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The tableau in question:

n “ 0 1 2 3 4 . . .

p;p;pnq “ 0 4 8 12 16 . . .

p;q;pnq “ 2 6 10 14 18 . . .

q;p;pnq “ 1 5 9 13 17 . . .

q;q;p;pnq “ 3 11 19 27 31 . . .

q;q;q;pnq “ 7 15 23 31 39 . . .

This is not a standard Young tableau

What we have:
1 Every natural number
2 Ordered rows
3 Unordered columns
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The tableau in question:

n “ 0 1 2 3 4 . . .

p;p;pnq “ 0 4 8 12 16 . . .

p;q;pnq “ 2 6 10 14 18 . . .

q;p;pnq “ 1 5 9 13 17 . . .

q;q;p;pnq “ 3 11 19 27 31 . . .

q;q;q;pnq “ 7 15 23 31 39 . . .

This is not a standard tableau

What we have:
1 Every natural number
2 Ordered rows
3 Unordered columns
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The question of trees

For any balanced Ballot Cantor point, b P B,

the corresponding shuffle gives a standard p8,8q Young
tableau.

What were we thinking??

There is no reason to expect that

an arbitrary hierarchical iteration of such shuffles

should give a standard tableau.
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The right way to associate

The claim:

A neccessary & sufficient condition for a hierarchical shuffle to
give a standard tableaux is that:

the corresponding tree is right-associated.

0 1 0 10 11 0
10

110 111
0

10
110

1110 1111

t0,1u t0,10,11u t0,10,110,111u t0,10,110,1110,1111u
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From the finite to the infinite

Maximal prefix codes R Ď t0,1u need not be finite:

0
10

110
1110

11110 . . .

t0 ď 10 ď 110 ď 1110 ď 11110 ď . . .u

The unique right-associated, well-ordered, infinite prefix code.
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A worked example:

Let’s do this for the representation of P2 corresponding to the
shuffle determined by the alternating Cantor point

a “ 0010101010101 . . . P B

Following the same procedure:

Mapping prefix codes to polycyclic monoids

0 ÞÑ p; and 1 ÞÑ q;

where
p;pnq “ 2n and q;pnq “ 2n ` 1
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The infinite alternating shuffle

We get our p8,8,8, . . .q standard Young tableau.

n “ 0 1 2 3 4 5 . . .

p;pnq “ 0 2 4 6 8 10 . . .
q;p;pnq “ 1 5 9 13 17 21 . . .

pq2q;p;pnq “ 3 11 19 27 35 43 . . .

pq3q;p;pnq “ 7 23 39 55 71 87 . . .

pq4q;p;pnq “ 15 47 79 111 143 175 . . .
pq5q;p;pnq “ 31 94 159 223 287 351 . . .

...
...

...
...

...
...

...
. . .

A (Hilbert-hotel style) bijection from Nˆ N to N, that is

monotone in both variables:

pr , cq ÞÑ 2cp2r ` 1q ´ 1
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Not forgetting our motivation ...

This is derived from:

Alternating shuffles of decks of cards.

We start by shuffling two Decks A and B.

Deck B arose from shuffling Decks B1 and C.

Deck C arose from shuffling Decks C1 and D.

Deck D arose from shuffling Decks D1 and E .

...

Practically – is it easy / possible to perform this shuffle?
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Deep fractal structure ??

Play a card from the following decks, in order :

0 1 0 2 0 1 0 3 0

1 0 2 0 1 0 4 0 1

0 2 0 1 0 3 0 1 0

2 0 1 0 5 0 1 0 2

0 1 0 3 0 1 0 2 0 . . .

Question : How may we characterise this sequence?
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Deep fractal structure ??
Which deck do we play from, at each step?

Deck0 Deck1 Deck2 Deck3 Deck4

Step 1 ‚

Step 2 ‚

Step 3 ‚

Step 4 ‚

Step 5 ‚

Step 6 ‚

Step 7 ‚

Step 8 ‚

Step 9 ‚

Step 10 ‚

Step 11 ‚

Step 12 ‚

Step 13 ‚

Step 14 ‚

Step 15 ‚

Step 16 ‚
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This looks kind of familiar!

24 23 22 21 20

Step 1 1
Step 2 1 0
Step 3 1 1
Step 4 1 0 0
Step 5 1 0 1
Step 6 1 1 0
Step 7 1 1 1
Step 8 1 0 0 0
Step 9 1 0 0 1

Step 10 1 0 1 0
Step 11 1 0 1 1
Step 12 1 1 0 0
Step 13 1 1 0 1
Step 14 1 1 1 0
Step 15 1 1 1 1
Step 16 1 0 0 0 0
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Performing the perfect infinite riffle

A very simple rule

1 Count in binary ...

2 Which bit has changed from 0 to 1?

3 Play a card from that deck!
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We can do the same with any b P B
Each Balanced Ballot point determines a distinct:

p8,8,8, . . .q standard Young tableau.

shuffle of infinitely many decks of cards, satisfying:
“Number of cards played from Decki is always ě Number

of cards played from Decki`1”

bijection Nˆ N Ñ N monotone in both variables.

Using inverse semigroup theory

It is straightforward to describe the mappings between these:

Nˆ N
Φ monotone //

Ψ monotone
))

N

??

��
N

Exercise : What group do we get??
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From the infinite to the finite

Every balanced Ballot Cantor point determines an p8,8,8, . . .q

standard Young tableau. These are equivalent to:

Infinite inclusion-ordered chains of finite standard Young tableaux.

For the alternating Cantor point:

n=0 n=1 n=2 n=3 n=4 n=5

0 0

1

0 2

1

0 2

1

3

0 2 4

1

3

0 2 4

1 5

3

. . . just a complicated way of counting in binary!
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Transforming (finite) hierarchical shuffles

Let us fix some balanced Cantor point c P C

(We do not assume it is a Ballot point!)

Given trees Tree1,Tree2, both with k leaves,
how can we transform the result of one hierarchical shuffle into
the other?

Nˆ t0, . . . , k ´ 1u
Tree2

''

Tree1

ww
N

??
// N
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From prefix codes to groups (I)

Tree1 and Tree2 both determine k -element maximal prefix
codes over tp;,q;u. Call these

R “ tr ;0 , . . . , r
;

k´1u and S “ ts;0, . . . , s
;

k´1u

The required bijection is simply:

s;0r0 Y . . . s;j rj . . .Y . . . Y s;k´1rk´1

The intuition

Element rj maps the j th row of a Young tableau

to the whole of N

Element s;j maps the whole of N

to the j th row of another Young tableau.
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From prefix codes to groups (II)

For an arbitrary effective representation of P2,

The set of all such bijections (including varying k P N) is
closed under compositions and inverses.

Question: Which group is this?
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From prefix codes to groups (III)

This has already been shown, as a study in abstract algebra /
semigroup-theory, to be Thompson’s group F in

“The Polycyclic Monoids & The Thompson Groups”
M. Lawson, Comm. In Alg. (35) (2007)

A corollary
Each balanced Cantor point uniquely determines

a representation of F as bijections on N.

Does ‘anything special’ happen when we choose a Ballot point?
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About that group ...

A particularly ‘significant’ group:

Thompson’s group F

one of the best-known groups in mathematics

defined in 1965, as a potential counter-example to a
conjecture of von Neumann

a rich source of conjectures & counterexamples

has linear-time word problem

closely connected to both complexity and category theory

proposed (2004) as a platform for non-commutative
cryptography
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Time for a definition!

The group F was originally defined via representations.

Abstractly, it may be defined as the group with:
A countably infinite set of generators tx0, x1, x2, . . .u

Relations given by

x´1
k xnxk “ xn`1 for all k ă n

(Other presentations are possible, but
this is the most intuitive / natural)
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Some explicit calculations ...

To which tree re-arrangements do these correspond?

X0 performs:

0
10 11

ñ

00 01
1

X1 performs:

0
10

110 111

ñ

0

100 101
11

X2 performs:

0

10
110

1110 1111

ñ

0

10

1100 1101
111

X3 performs: . . .
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Taking things in order ...

Let us consider shuffles defined by a balanced ballot point.

For convenience, we again consider the alternating point:

a “ 010101010101 . . . P B

Important:
this is for illustration;

other balanced ballot points will do!

What is immediately noticeable?
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Some obvious points ...

Consider (the representation of) each generator as ‘mapping the
results of one (hierarchical) shuffle into another’.

Generator xj re-arranges the result of Sj into that of Tj ’.

Sj`1 is obtained by using the result of Sj as the 2nd deck in an
alternating shuffle (and similarly for Tj ` 1).

Each Sj is the unique hierarchical shuffle that gives a standard
p8,8, . . . ,8q Young tableau.

Each Sj is re-arranged into Tj by a single rotation or associator

‚
‚ ‚

ñ
‚ ‚

‚

on its final three leaves.
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Generators converge to the identity

Generator xj is the identity on the first j ´ 1 rows
of our p8,8, . . .q standard Young tableau:

n “ 0 1 2 3 4 5 . . .

p;pnq “ 0 2 4 6 8 10 . . .
q;p;pnq “ 1 5 9 13 17 21 . . .

pq2q;p;pnq “ 3 11 19 27 35 43 . . .

pq3q;p;pnq “ 7 23 39 55 71 87 . . .

pq4q;p;pnq “ 15 47 79 111 143 175 . . .
pq5q;p;pnq “ 31 94 159 223 287 351 . . .

...
...

...
...

...
...

...
. . .

limnÑ8pxnq “ IN

Formally, this is a point-wise limit:

@a P N , DT P N such that n ě T ñ xnpaq “ a

peter.hines@york.ac.uk www.peterhines.info



From rotations / associators to complexity (I)

The NP-intermediate class

The complexity class NPI is the class of problems that are:

in NP,

not in P,

not NP-complete.

Ladner’s Theorem (1975)

NPI is non-empty ðñ P ‰ NP
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Some (possibly) NPI problems

We cannot say, for certain, that any problem is in NPI.

Some ‘promising candidates’

Prime factorisation.
Deciding graph isomorphism.
Finding the ‘rotation distance’ between two trees.
Computing discrete logarithms, and related problems.

Ladner produced ‘highly artificial’ problems that are

guaranteed to be in NPI, provided P ‰ NP.

No ‘natural’ problems with the same property are known.
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The tree rotation distance problem

A rotation of binary trees is a local tree transformation of the
form:

A
B C

ô
A B

C

where A, B and C may be leaves or subtrees.

Sleator, Tarjan & Thurston (1988)
Any n-node tree can be transformed into any other n-node tree
using a maximum of 2n ´ 6 rotations.

Čulı́k and Wood’s problem (1982)
Given two trees, what is the shortest sequence of

rotations that will transform one into the other?
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The notion of rotation

Let us fix some (possibly Ballot) balanced Cantor point

A rotation, applied to a tree S, gives another tree T .

Together, this pair of trees determines an element of F .

The generators tX0,X1, . . .u are of this form.

Can we re-write Čulı́k and Wood’s problem
as a question about words in F?
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Significant previous work ...

“On the rotation distance between binary trees”
– P. Dehornoy (2009)

“ . . . introducing a partial action of F on trees and expressing the
rotation distance between two trees as the length of an element of F .

This approach easily leads to a lower bound. However, due to the
lack of control on the geometry of F , it seems difficult to obtain
higher lower bounds . . . . ”
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Partiality / lack of control??

Given a rotation:

A
B C

ð
A B

C

we get the same element of F , for arbitrary A, B and C.

Thinking semigroup-theoretically

Generators of F decompose into ‘more primitive’ operations :
Mapping rows between Young tableaux.
Splitting a single row into two.
Merging two rows into one.

We have a more ‘fine-grained’ control,
using inverse semigroups instead.
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What we are missing ...

We can take this further, but at some point, we are forced to
interpret as Category theory:

Coherence for associativity An entire field based on the
study of associators (rotations).

Higher categorical coherence Operads & related structures.

Symmetries of Polyhedra Associahedra, permutahedra, &c.
via group and inverse semigroup theory.

More at N.Y.C. category theory seminar, 10th of Feb., 2021
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