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What is an inverse semigroup?

Let S be a semigroup; s′ ∈ S is a generalised inverse for s ∈ S if

ss′s = s and s′ss′ = s′.

Call S an inverse semigroup if every element has precisely one
generalised inverse.

Equivalently, an inverse semigroup is a semigroup in which

1 every element has at least one generalised inverse;

2 idempotents commute with each other.



Why?

A partial bijection on a set X is a bijection A → B, where A ,B ⊆ X .
We compose partial transformations α, β (left→ right) on the
domain

domαβ = (imα ∩ dom β)α−1

and put x(αβ) = (xα)β, for x ∈ domαβ.

Let IX denote the collection of all partial bijections on X , under this
composition. Every α : A → B in IX has an inverse α−1 : B → A in
IX . In fact, IX is an inverse semigroup — the symmetric inverse
semigroup on X .

Idempotents in IX : partial identity transformations IA , A ⊆ X .
These commute: IA IB = IA∩B = IB∩A = IB IA .



The Wagner–Preston representation

Every inverse semigroup can be embedded in a symmetric inverse
semigroup.

Map s ∈ S to the partial transformation ρs ∈ IS with
dom ρs = Ss−1 and xρs = xs, for x ∈ dom ρs .



The Erlanger Programm

Felix Klein: every geometry may be regarded as the theory of
invariants of a particular group of transformations.

Groups←→ Geometries

Veblen and Whitehead:
“[the Erlanger Programm] ... supplied a principle of
classification by which it is possible to get a bird’s-eye
view of the relations between a large number of
important geometries.”



However...

Veblen and Whitehead:
“... long before the Erlanger Programm had been
formulated there were geometries in existence which did
not properly fall within its categories, namely the
Riemannian geometries.”

“There is, therefore, a strong tendency among
contemporary geometers to seek a generalization of the
Erlanger Programm which can replace it as a definition of
geometry by means of the group concept.”

Seek algebraic structure which would serve to describe the
symmetries of any geometry.



Veblen and Whitehead

The foundations of differential geometry (1932).



‘Axiomatising’ differential geometry

“Any mathematical science is a body of theorems
deduced from a set of axioms. A geometry is a
mathematical science.”

‘Axiomatisation’: abstract description of the structure of partial
homeomorphisms.



Pseudogroups

A pseudogroup Γ is a collection of partial homeomorphisms
between open subsets of a topological space such that Γ is closed
under composition and inverses, where we compose α, β ∈ Γ only
if im α = dom β.

Use pseudogroups of ‘regular’ (i.e., one-one) partial
homeomorphisms to classify ‘geometric objects’ (‘invariants’).

“[classification] in the spirit of the Erlanger Programm.”



‘Abstraction’ of pseudogroups

Look for abstract structure corresponding to pseudogroup, just as
abstract group corresponds to group of permutations.

But partially-defined operation difficult to work with, so first seek to
‘complete’ the operation in a pseudogroup.



Schouten and Haantjes

On the theory of the geometric object (1937).



A new composition

Compose partial transformations α, β only if imα ⊆ dom β.

But still not fully defined.

Moreover, don’t have such nice properties as (αβ)−1 = β−1α−1.



Stanisław Goła̧b

Über den Begriff der “Pseudogruppe von Transformationen”
(1939).



Clarifying pseudogroups

Goła̧b’s goal: to ‘tighten up’ the concept of a pseudogroup.

Now compose α, β if imα ∩ dom β , ∅.

But still partial!



Two types of pseudogroups

‘Pseudogruppen im weiteren Sinne’ G:

1 For any α ∈ G, domα is an open set.

2 For any α ∈ G and an open set S, α|S ∈ G.

3 Can compose α, β ∈ G only if imα ∩ dom β , ∅.

4 For any α ∈ G, a ∈ domα, there is an open set D ⊆ domα

and a transformation β ∈ G such that a ∈ D, dom β = Dα and
αβ = ID .

‘Pseudogruppen im engeren Sinne’ G:

Î Let α, β ∈ G and let S ⊆ domα ∩ dom β be and open set such
that α|S = β|S . Then α|domα∩dom β = β|domα∩dom β.

Ï Let α ∈ G and let T be an open set. Then there exists β ∈ G
such that domα ⊆ dom β, dom β ∩ T , ∅ and β|domα = α.



Two types of pseudogroups

‘Wide’ pseudogroup much the same as previous notions of
pseudogroup.

‘Narrow’ pseudogroups introduced because it is possible to
construct a group from any such:

Define equivalence relation R on G: αR β iff for any extensions α∗

of α and β∗ of β in G for which there exists a nonempty
S ⊆ domα∗ ∩ dom β∗, α∗|S = β∗|S .

In fact, R is a congruence and G/R is a group.

(R — minimum group congruence; ‘narrow’ pseudogroup ∼
E-unitary inverse semigroup.)



Incomplete composition

Have arrived at a composition which is almost fully defined: αβ
exists only if imα ∩ dom β , ∅.

It only remains to take account of the possibility of that
imα ∩ dom β = ∅.

To modern eyes, this is easy: in this case, put αβ = ε, the empty
transformation on X — this acts as a zero in IX .

Schein:
“It is interesting to compare the history of the integers.
Positive integers came first. Negative integers followed.
Zero came last (the number of objects in a set without
objects was the most difficult psychological step).”



Viktor Vladimirovich Wagner

Viktor Vladimiroviq Vagner (1908–1981).



Wagner and differential geometry

Added appendix ‘The theory of differential objects and the
foundations of differential geometry’ to Russian translation of
Veblen and Whitehead’s ‘The foundations of differential geometry’.

Develops rigorous theory of geometric objects, building on the
work of Goła̧b, et. al.

Pseudogroups of partial one-one transformations emerge as being
important.



Composition of partial transformations

‘On the theory of partial transformations’ (1952):

A partial transformation α on a set X may be expressed as a
binary relation:

{(x, y) ∈ domα × imα : xα = y} ⊆ X × X .

Then composition of partial transformations is a special case of
that of binary relations:

x (ρ ◦ σ) y ⇐⇒ ∃z ∈ X such that x ρ z and z σ y.

Since ∅ ⊆ X × X , the empty transformation now appears naturally
in the theory.



Semigroups of binary relations

Let B(A × A) be the semigroup of all binary relations on a set A .

B(A × A) is ordered by ⊂, which is compatible with composition.

Canonical symmetric transformation −1: x ρ−1 y ⇐⇒ y ρ x.

M(A × A): collection of all partial one-one transformations on A .

−1 and ⊂ may be expressed in terms of composition inM(A × A):

ρ2 = ρ−1
1 ⇐⇒ ρ1ρ2ρ1 = ρ1 and ρ2ρ1ρ2 = ρ2;

ρ1 ⊂ ρ2 ⇐⇒ ∃ρ such that ρ1ρρ1 = ρ1, ρ2ρρ2 = ρ2 and ρρ2ρ = ρ.



Generalised groups (1952)

First page: modern definition of an inverse semigroup, here called
a generalised group.

Theorem. Every symmetric semigroup of partial one-one
transformations of a set forms a generalised group with respect to
composition of partial transformations.

Theorem. Every generalised group may be represented as a
generalised group of partial one-one transformations.



Back to differential geometry

Let M be an n-dimensional differentiable manifold. Such a manifold
has a coordinate atlas A : a set of partial one-one transformations
from M into Rn. Each κ ∈ A represents a local system of
coordinates; κ(m) = (x1, x2, . . . , xn) ∈ Rn are the coordinates of
m ∈ M.

Apply a ternary operation to κ, λ, µ ∈ A :

[κ λ µ] = κ ◦ λ−1 ◦ µ.

More generally, we can apply such an operation to B(A ×B) — the
collection of all binary relations between sets A and B, i.e.,
subsets of A × B.



Abstract ternary operations

Let K be a set. We define an abstract ternary operation [· · ·] on K .

Call the operation pseudo-associative if

[[k1 k2 k3] k4 k5] = [k1 [k4 k3 k2] k5] = [k1 k2 [k3 k4 k5]] .

In this case, call K a semiheap.

A semiheap forms a heap if

[k1 k2 k2] = [k2 k2 k1] = k1.

B(A × B) forms a semiheap.



Generalised heaps

A semiheap K is a generalised heap if:

[[k k1 k1] k2 k2] = [[k k2 k2] k1 k1] ,

[k1 k1 [k2 k2 k ]] = [k2 k2 [k1 k1 k ]] ,

[k k k ] = k .

Let K(A × B) ⊆ B(A × B) be the collection of all partial one-one
transformations from a set A to a set B.

K(A × B) forms a generalised heap.

Every abstract generalised heap may be embedded in some
K(A × B).



Semigroups and semiheaps

Let S be a semigroup with involution: (s′)′ = s, (s1s2)′ = s′2s′1.

Define a ternary relation [s1 s2 s3] = s1s′2s3. S forms a semiheap
under this operation.

Let K be a semiheap. b ∈ K is a biunitary element if ∀k ∈ K

[k b b] = [b b k ] = k .

For any biunitary element b ∈ K , define a binary operation and
involution by

s1s2 = [s1 b s2] and s′ = [b s b].

Under these operations, K is a semigroup with involution.



Other types of semiheaps

semiheap ←→ semigroup

heap −→ group

generalised heap ←→ generalised group



Other types of semiheaps

semiheap ←→ semigroup

heap ←→ group

generalised heap ←→ generalised group



In terms of binary relations

Semiheap B(A × B) ←→ Semigroup B(A × A)

Generalised heap K(A × B) ←→ Generalised group K(A × A)



Gordon Preston

b. 1925.



Preston’s DPhil thesis

‘Some problems in the theory of ideals’ (Oxford, 1953).

Defines suitable notion of ‘ideal’ for universal algebras and obtains
analogues of results for ideals in rings.

Inverse semigroups appear in final chapter of thesis.

Inspired by a paper by David Rees.



David Rees and partial transformations

Studies partial one-one transformations of set; composes α, β only
if imα ∩ dom β , ∅.

Regular set of partial transformations Σ:

1 if α, β ∈ Σ, then αβ exists and belongs to Σ;

2 if α ∈ Σ, then α−1 ∈ Σ.

Defines ∼ on Σ by α ∼ β iff α, β have a common subtransformation.
Shows that G = Σ/ ∼ is a group.

In fact, Rees’ ∼ is Goła̧b’s R (i.e., σ, the minimum group
congruence).

Uses all this to provide (new?) proof that a commutative,
cancellative semigroup can be embedded in a group.



Preston’s mapping semigroups

Preston sought to axiomatise Rees’ regular sets of partial
transformations.

Let S be a semigroup with 0. For a ∈ S, denote by Ea the set of
idempotents e for which ea , 0. Call S a mapping semigroup if

M1. if s ∈ S, then there is at least one element e ∈ S for which
es = s and such that the equation sx = e has a solution
x ∈ S;

M2. if e, f are idempotents in S, then ef = fe;

M3. if a ∈ S and Ea , ∅, then there is at least one e ∈ Ea such that
ef = f and f2 = f together imply that either f = 0 or f = e.

A mapping semigroup S is a complete mapping semigroup if:

M4. if a, b ∈ S have the property that, for all x, y ∈ S, xay = 0 if
and only if xby = 0, then a = b.



Preston’s mapping semigroups

So mapping semigroups are certainly inverse semigroups — but
apparently with two extra conditions.

In fact, there is only one extra condition, since M3 is a
consequence of M1 and M2.

But M4 is independent of M1 and M2.

Don’t quite have a complete axiomatisation: an arbitrary inverse
semigroup with 0 need not satisfy M4.



Inverse semigroups

Inspired by Whitehead’s incorrect comments, Preston developed a
refined version of his work on mapping semigroups.

Defines inverse semigroups by M1 and M2, in series of 3 papers in
1954.

Quite ‘group-like’ in approach: introduces notion of ‘normal’ inverse
subsemigroup which is the ‘kernel’ of a congruence.



Inverse semigroups with minimal right
ideals

Second paper of 1954.

Studies ideals in inverse semigroups.

For example, shows that S =
⋃

e∈P SeS, where P ⊆ E(S) is the
collection of primitive idempotents of S.



Representations of inverse semigroups

Only paper of the three to deal with partial transformations.

Subtle difference: compose α, β in the usual way if
imα ∩ dom β , ∅; if imα ∩ dom β = ∅, define αβ = 0, for some
abstract symbol 0. Demand further that 02 = 0 and α0 = 0 = 0α.

Another subtle point to note: studies bijections α : A → A ′ and
β : B → B′, and considers whether or not A ′ ∩ B = C is empty.
Does not consider A ,B ,C, etc. to be subsets of some
all-containing set.



Wagner–Preston representation

‘Semigroup of (1-1) mappings’ is an inverse semigroup; every
inverse semigroup can be embedded in a semigroup of (1-1)
mappings.

Proves that M1 and M2 are independent.

(Completely simple semigroup satisfies M1 but not M2; but

a e f
a e e f
e e e f
f f f f

satisfies M2 but not M1, since a has no left identity.)



The connection is made...

At end of third paper: note thanking B. H. Neumann for drawing
Preston’s attention to a paper by E. S. Lyapin, citing Wagner...



Subsequent approaches to inverse
semigroups

1 proper/E-unitary inverse semigroups, etc.;

2 fundamental inverse semigroups and Munn representations;

3 inductive groupoids.



The End
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