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0, {1}, A, At A*
{1, a, b, aba, a8, aabbbab}
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(K,L) — KNL={u|lue K and uel}
Complementation:

L— A\L={uecA |ugl}

Product:
(K,L) — KL={uv|ue Kandvel}

Star:

L— L*={u---uy|u,...,u €L neNp}
the submonoid of A* generated by L
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Regular Languages

Rat(A*) is the smallest set of languages over A that has the emptyset and

the languages {a}, with a € A, and is closed under the operations of
union, product and star.
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Automaton A:

Words recognized by A:

1, a, aa, a°, a*, a°b, a*baba’b, ba, (ba)?, aba, (ab)?a, ...

L(A) = (a(ab)*)* + (ba)* + (ab)*a
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Words recognized by A are precisely the words that represent the multiples
of 3 on base 2, for instance 0, 00, 11, 0011, 1001, 1000110100.
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Automaton A:

0 1
Boror§
1 0

Words recognized by A are precisely the words that represent the multiples
of 3 on base 2, for instance 0, 00, 11, 0011, 1001, 1000110100.

L(A) = (0 + 1(01*0)*1)"
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A language L C A* is recognizable if it L = L(.A) for some finite
automaton.

Theorem (Kleene)

L C A* is recognizable if and only if it is rational.

Proposition

Rat(A*) is closed under intersection, complementation and quotients.

star-free

—

SF(A") is the smallest set of languages over A that has the emptyset and
the languages {a}, with a € A, and is closed under the boolean operations,
and product.
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Recognizability

A language L C A* is recognizable if it L = L(.A) for some finite
automaton.

Theorem (Kleene)

L C A* is recognizable if and only if it is rational.

Proposition

Rat(A*) is closed under intersection, complementation and quotients.

star-free

,—/\ .
SF(A") is the smallest set of languages over A that has the emptyset and

the languages {a}, with a € A, and is closed under the boolean operations,
and product.

Is there an algorithm to test whether a language belongs to SF(A*)?
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Transition monoid

Alphabet A = {a, b}
Automaton A:

The transitions of A can be defined by the following two binary relations

a — a= {11)(12)(23)( 1)}
b — b=1{(2,1),(3,2)}

Mario Branco (CAUL, Univ. Lisbon)

Pol. closure York - December 6, 2010 11 /37



Transition monoid

Alphabet A = {a, b}
Automaton A:

The transitions of A can be defined by the following two binary relations

a —
—

For words, for instance:

a=
b=

{@ D), (12) (2,3), (3, 1)}

{(2,1),

2)}

babba s babba = {(0,1), (
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The transitions of A can be defined by the following two binary relations

a —
—

For words, for instance:

babba s babba = {(0
a
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Transition monoid

Transition monoid of A: M(A) = {u | u € A*} with composition.
We have the morphism

p: A* — (M(A),0)

u +— u
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Transition monoid

Transition monoid of A: M(A) = {u | u € A*} with composition.
We have the morphism

p: A* — (M(A),0)

u +— u

and
ueL(A) < (v)pe (L)y
N~

finite set

A monoid M recognizes L C A* if there exist a morphism ¢: A* — M and
PCMst L= (Pl

uel < (u)peP
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Syntactic monoid

Proposition
For L C A*, TFAE:
@ L is recognized by a finite automaton, i.e. L is recognizable.

@ L is recognized by a finite monoid.
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Syntactic monoid

Proposition
For L C A*, TFAE:
@ L is recognized by a finite automaton, i.e. L is recognizable.

@ L is recognized by a finite monoid.

Let L C A*.
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Syntactic monoid

Proposition
For L C A*, TFAE:
© L is recognized by a finite automaton, i.e. L is recognizable.

@ L is recognized by a finite monoid.

Let L C A*.

Syntactic congruence of L, ~; on A*:

u~y v ifand only if Vx,y € A* (xuy €Lle xvy € L)
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Proposition
For L C A*, TFAE:
© L is recognized by a finite automaton, i.e. L is recognizable.

@ L is recognized by a finite monoid.

Let L C A*.

Syntactic congruence of L, ~; on A*:

u~y v ifand only if Vx,y € A* (xuy €Lle xvy € L)
Syntactic monoid of L: M(L) = A*/~,
Syntactic morphism of L: n: A* — M(L)
u o fuls,
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Syntactic monoid

Proposition
For L C A*, TFAE:
© L is recognized by a finite automaton, i.e. L is recognizable.

@ L is recognized by a finite monoid.

Let L C A,
Syntactic congruence of L, ~; on A*:
u~y v ifand only if Vx,y € A* (xuy €Lle xvy € L)
Syntactic monoid of L: M(L) = A*/~,
Syntactic morphism of L: n: A* — M(L)
u — [l

M(L) recognizes L, since L = (Ln)n~*.
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Syntactic monoid

Proposition
For L C A*, TFAE:
© L is recognized by a finite automaton, i.e. L is recognizable.

@ L is recognized by a finite monoid.

Let L C A*.

Syntactic congruence of L, ~; on A*:

u~y v ifand only if Vx,y € A* (xuy €Lle xvy € L)
Syntactic monoid of L: M(L) = A*/~,
Syntactic morphism of L: n: A* — M(L)
.
M(L) recognizes L, since L = (Ln)n~*.
M recognizes L <= M(L) is homomorphic image of a submonoid of M.
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Star-free languages

Is there an algorithm to test whether a language (given by an automaton
or by a rational expression) belongs to SF(A*)?
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Star-free languages

Is there an algorithm to test whether a language (given by an automaton
or by a rational expression) belongs to SF(A*)?

Examples of star-free languages over A = {a, b}:
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Star-free languages

Is there an algorithm to test whether a language (given by an automaton
or by a rational expression) belongs to SF(A*)?

Examples of star-free languages over A = {a, b}:

A=a+b,
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Star-free languages

Is there an algorithm to test whether a language (given by an automaton
or by a rational expression) belongs to SF(A*)?

Examples of star-free languages over A = {a, b}:

A=a+b, A=A\,
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Star-free languages

Is there an algorithm to test whether a language (given by an automaton
or by a rational expression) belongs to SF(A*)?

Examples of star-free languages over A = {a, b}:

A=a+b, A =A\0, {1}=A"\AA"
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Star-free languages

Is there an algorithm to test whether a language (given by an automaton
or by a rational expression) belongs to SF(A*)?

Examples of star-free languages over A = {a, b}:

A=a+b, A =A\0, {1}=A"\AA*" AbA*
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Star-free languages

Is there an algorithm to test whether a language (given by an automaton
or by a rational expression) belongs to SF(A*)?

Examples of star-free languages over A = {a, b}:

A=a+b, A =A\0, {1}=A"\AA*" AbA*
a* = A*\ A*bA*,
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Star-free languages

Is there an algorithm to test whether a language (given by an automaton
or by a rational expression) belongs to SF(A*)?

Examples of star-free languages over A = {a, b}:
A=a+tb, A=A\, {1}=A"\AA*, AbA",
a* = A"\ A*bA*,
(ab)* = A*\ (bA* + A*a+ A*aaA* + A*bbA*)
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Star-free languages

Is there an algorithm to test whether a language (given by an automaton

or by a rational expression) belongs to SF(A*)?

Examples of star-free languages over A = {a, b}:

A=a+b, A" =A*\0, {1} =A"\AA* A*DA*
a* = A"\ A*bA*,
(ab)* = A*\ (bA* + A*a+ A*aaA* + A*bbA*)
The answer is Yes.
Theorem (Schiitzenberger)
For L C A*, TFAE:
O L is star-free.
@ L is recognized by an aperiodic finite monoid.
© M(L) is finite and aperiodic .
N

its subgroups are trivial
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Star-free languages

Example:

On the alphabet A = {a, b},
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Star-free languages

Example:

On the alphabet A = {a, b},

a* and (ab)* are star-free,
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Star-free languages

Example:

On the alphabet A = {a, b},
a* and (ab)* are star-free,
but

(aa)* is not star-free, since M((aa)*) is not aperiodic.
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Variety of languages

Variety of languages V:

A — (A*)V
alphabet subset of Rat(A*)
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Variety of languages

Variety of languages V:

A — (A*)V
alphabet subset of Rat(A*)
such that

Q (A*)V is closed under finite union, finite intersection and
complementation.
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Variety of languages

Variety of languages V:

A — (A*)V
alphabet subset of Rat(A*)
such that

Q (A*)V is closed under finite union, finite intersection and
complementation.

@ (A*)V is closed under quotients: a~1L, La~! € (A*)V, for any
Le (A)V.
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Variety of languages

Variety of languages V:

A — (A*)V
alphabet subset of Rat(A*)
such that

Q (A*)V is closed under finite union, finite intersection and
complementation.

@ (A*)V is closed under quotients: a~1L, La~! € (A*)V, for any
Le (A)V.
© if ¢: A* — B* is a morphism and L € (B*)V, then Ly~1 € (A*)V
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Variety of languages

Variety of languages V:

A — (A*)V
alphabet subset of Rat(A*)
such that

Q (A*)V is closed under finite union, finite intersection and
complementation.

@ (A*)V is closed under quotients: a~1L, La~! € (A*)V, for any
Le (A)V.
© if ¢: A* — B* is a morphism and L € (B*)V, then Ly~1 € (A*)V

Rational languages form a variety of languages.
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such that

Q (A*)V is closed under finite union, finite intersection and
complementation.

@ (A*)V is closed under quotients: a~1L, La~! € (A*)V, for any
Le (A)V.
© if ¢: A* — B* is a morphism and L € (B*)V, then Ly~1 € (A*)V
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Variety of languages

Variety of languages V:

A — (A*)V
alphabet subset of Rat(A*)
such that

Q (A*)V is closed under finite union, finite intersection and
complementation.

@ (A*)V is closed under quotients: a~1L, La~! € (A*)V, for any
Le (A)V.
© if ¢: A* — B* is a morphism and L € (B*)V, then Ly~1 € (A*)V

Rational languages form a variety of languages.

Star-free languages form a variety of languages.
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|dentity

An identity or equation over an alphabet (finite or infinite) A is a formal
equality u = v, where u,v € A*.
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|dentity

An identity or equation over an alphabet (finite or infinite) A is a formal
equality u = v, where u,v € A*.

Examples: xy = yx, x = x2, xy = xyx (x and y are letters).
p y =Y.
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|dentity

An identity or equation over an alphabet (finite or infinite) A is a formal
equality u = v, where u,v € A*.

Examples: xy = yx, x = x2, xy = xyx (x and y are letters).

A monoid M satisfies an identity u = v if up = vy for every morphism
p: A = M.
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|dentity

An identity or equation over an alphabet (finite or infinite) A is a formal
equality u = v, where u,v € A*.

Examples: xy = yx, x = x2, xy = xyx (x and y are letters).

A monoid M satisfies an identity u = v if up = vy for every morphism
p: A = M.

Y — set of identities over A.
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|dentity

An identity or equation over an alphabet (finite or infinite) A is a formal
equality u = v, where u,v € A*.

Examples: xy = yx, x = x2, xy = xyx (x and y are letters).

A monoid M satisfies an identity u = v if up = vy for every morphism
p: A*¥ > M.

Y — set of identities over A.

[X] — class of all monoids that satisfy all identities of X.
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Variety of monoids

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images,
submonoids and arbitrary direct products are precisely the classes of
monoids of the form [X].
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Variety of monoids

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images,
submonoids and arbitrary direct products are precisely the classes of
monoids of the form [X].

|

Variety of monoids
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Variety of monoids

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images,
submonoids and arbitrary direct products are precisely the classes of
monoids of the form [X].

Variety of monoids

Examples:

The class of all monoids : [x = x].
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Variety of monoids

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images,
submonoids and arbitrary direct products are precisely the classes of
monoids of the form [X].

Variety of monoids

Examples:
The class of all monoids : [x = x].

The class of all commutative monoids (Vs, t € M, st = ts): [xy = yx].
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Variety of monoids

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images,
submonoids and arbitrary direct products are precisely the classes of
monoids of the form [X].

Variety of monoids

Examples:
The class of all monoids : [x = x].
The class of all commutative monoids (Vs, t € M, st = ts): [xy = yx].

The class of all idempotent monoids (Vs € M, s = s?): [x = x?].
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Variety of monoids

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images,
submonoids and arbitrary direct products are precisely the classes of
monoids of the form [X].

Variety of monoids

Examples:

The class of all monoids : [x = x].

The class of all commutative monoids (Vs, t € M, st = ts): [xy = yx].
The class of all idempotent monoids (Vs € M, s = s?): [x = x?].

The class of all idempotent and R-trivial monoids
(Vs,t € M, (s = s?, st = sts)): [x = x%, xy = xyx].
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Variety of monoids

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images,
submonoids and arbitrary direct products are precisely the classes of
monoids of the form [X].

Variety of monoids

Examples:

The class of all monoids : [x = x].

The class of all commutative monoids (Vs, t € M, st = ts): [xy = yx].
The class of all idempotent monoids (Vs € M, s = s?): [x = x?].

The class of all idempotent and R-trivial monoids
(Vs,t € M, (s = s?, st = sts)): [x = x%, xy = xyx].
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M-variety

M-variety: class of finite monoids closed under homomorphic images,
submonoids and finite direct products.
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M-variety

M-variety: class of finite monoids closed under homomorphic images,
submonoids and finite direct products.

Examples:

M - class of all finite monoids.
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M-variety

M-variety: class of finite monoids closed under homomorphic images,
submonoids and finite direct products.

Examples:
M - class of all finite monoids.
[Z] = [E] N M, for any set X of identities.
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M-variety

M-variety: class of finite monoids closed under homomorphic images,
submonoids and finite direct products.

Examples:
M - class of all finite monoids.
[Z] = [E] N M, for any set X of identities.

J1 - class of all finite idempotent and commutative monoids.
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M-variety

M-variety: class of finite monoids closed under homomorphic images,
submonoids and finite direct products.

Examples:

M - class of all finite monoids.

[Z] = [E] N M, for any set X of identities.

J1 - class of all finite idempotent and commutative monoids.

J - class of all finite J-trivial monoids.
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M-variety

M-variety: class of finite monoids closed under homomorphic images,
submonoids and finite direct products.

Examples:

M - class of all finite monoids.

[Z] = [E] N M, for any set X of identities.

J1 - class of all finite idempotent and commutative monoids.

J - class of all finite J-trivial monoids.

A - class of all finite aperiodic monoids M.
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M-variety

M-variety: class of finite monoids closed under homomorphic images,
submonoids and finite direct products.

Examples:

M - class of all finite monoids.

[Z] = [E] N M, for any set X of identities.

J1 - class of all finite idempotent and commutative monoids.

J - class of all finite J-trivial monoids.

A - class of all finite aperiodic monoids M.

LI - class of all finite locally trivial semigroups S
(Vs € S,e € E(S), ese =e).
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M-variety

M-variety: class of finite monoids closed under homomorphic images,
submonoids and finite direct products.

Examples:

M - class of all finite monoids.

[Z] = [E] N M, for any set X of identities.

J1 - class of all finite idempotent and commutative monoids.

J - class of all finite J-trivial monoids.

A - class of all finite aperiodic monoids M.

LI - class of all finite locally trivial semigroups S
(Vs € S,e € E(S), ese =e).
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Th. of Eilenberg

For each M-variety V and each finite alphabet A, let

(AW = {LCA"|Lis recognized by some monoid of V'}
= {LCA | ML) eV

Then V is a variety of languages.

Theorem (Eilenberg)

The correspondence V — V between the M-varieties and the varieties of
languages is bijective.
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Th. of Eilenberg

For each M-variety V and each finite alphabet A, let

(AW = {LCA"|Lis recognized by some monoid of V'}
= {LCA | ML) eV
Then V is a variety of languages.

Theorem (Eilenberg)

The correspondence V — V between the M-varieties and the varieties of
languages is bijective.

Thus

Theorem (Schiitzenberger)
For each alphabet A, (A*).A = SF(A*).
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Th. of Eilenberg

For each M-variety V and each finite alphabet A, let

(AW = {LCA"|Lis recognized by some monoid of V'}
= {LCA | ML) eV

Then V is a variety of languages.

Theorem (Eilenberg)

The correspondence V — V between the M-varieties and the varieties of
languages is bijective.

Thus

Theorem (Schiitzenberger)
For each alphabet A, (A*).A = SF(A*).

How to caracterize the M-varieties by identities?

Mario Branco (CAUL, Univ. Lisbon) Pol. closure York - December 6, 2010 20/ 37



Free profinite monoid

Mario Branco (CAUL, Univ. Lisbon) Pol. closure



Free profinite monoid

Alphabet A; u,v € A*.

A finite monoid M separates u and v if there exists a morphism
w: A* — M such that up # vo.
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Free profinite monoid

Alphabet A; u,v € A*.

A finite monoid M separates u and v if there exists a morphism
w: A* — M such that up # vo.

Example: The words ab and ab are separated by any non-trivial group,
but there is no idempotent monoid that separates them.
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Free profinite monoid

Alphabet A; u,v € A*.

A finite monoid M separates u and v if there exists a morphism

w: A* — M such that up # vo.

Example: The words ab and ab are separated by any non-trivial group,
but there is no idempotent monoid that separates them.

Let
r(u,v) = min{|M|: M separates u and v}
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Free profinite monoid

Alphabet A; u,v € A*.

A finite monoid M separates u and v if there exists a morphism
w: A* — M such that up # vo.

Example: The words ab and ab are separated by any non-trivial group,
but there is no idempotent monoid that separates them.

Let
r(u,v) = min{|M|: M separates u and v}
d(u,v) =2-r(uv)

with the conventions min() = —oco and 27°° = 0.
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Free profinite monoid

Alphabet A; u,v € A*.

A finite monoid M separates u and v if there exists a morphism
w: A* — M such that up # vo.

Example: The words ab and ab are separated by any non-trivial group,
but there is no idempotent monoid that separates them.

Let
r(u,v) = min{|M|: M separates v and v}
(. v) = 2-rlw)

with the conventions min ) = —oco and 27*° = 0.

e d(u,v)=0if and only if u=v.

e d(u,v)=d(v,u).

o d(u,w) < max{d(u,v),d(v,w)}.

o d(uv,w') < max{d(u,v),d(J,v")}.
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Free profinite monoid

Two words are “closed” if it is needed a "“big” monoid to separate them.
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Free profinite monoid

Two words are “closed” if it is needed a "“big” monoid to separate them.
Proposition

(A*, d) is a metric space and the multiplication A* x A* — A* is uniformly
continuous.

—

A* — topological completion of A*.
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Free profinite monoid

Two words are “closed” if it is needed a "“big” monoid to separate them.
Proposition

(A*, d) is a metric space and the multiplication A* x A* — A* is uniformly
continuous.

A+ — topological completion of A*.
Proposition

o A*isa compact and totally disconnected metric space.

o A* is dense in A*.

e Each morphism ¢: A* — M (M finite) can be extended in a unique
way to a continuous morphism ¢: A* 5 M.
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Free profinite monoid

Two words are “closed” if it is needed a "“big” monoid to separate them.

Proposition

(A*, d) is a metric space and the multiplication A* x A* — A* is uniformly
continuous.

A+ — topological completion of A*.
Proposition

o A*isa compact and totally disconnected metric space.

o A* is dense in A*.

e Each morphism ¢: A* — M (M finite) can be extended in a unique
way to a continuous morphism ¢: A* 5 M.

The multiplication on A* induces, in a natural way, an associative
multiplication on A*, which is continuous.
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Free profinite monoid
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Free profinite monoid

Proposition J

Let u € A*. The sequence (u™), is a Cauchy sequence in A*.
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Free profinite monoid

Proposition J

Let u € A*. The sequence (u™), is a Cauchy sequence in A*.

_ .
u“ = limu™ in A*.
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Free profinite monoid

Proposition

Let u € A*. The sequence (u™), is a Cauchy sequence in A*. J

_ Lo~
u“ = limu™ in A*.

Let M be a finite monoid.
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Free profinite monoid

Proposition

Let u € A*. The sequence (u™), is a Cauchy sequence in A*. J

U = limu™ in Z:
Let M be a finite monoid.

Let ¢: A* — M be a morphism and ¢: A* —» M be its continous
morphism extension.
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Free profinite monoid

Proposition

Let u € A*. The sequence (u™), is a Cauchy sequence in A*. J

U = limu™ in Z\*
Let M be a finite monoid.

Let ¢: A* — M be a morphism and ¢: A* — M be its continous
morphism extension.

((u@)™), converges in M (with the discrete topology).
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Free profinite monoid

Proposition

Let u € A*. The sequence (u™), is a Cauchy sequence in A*.

U = lim u in A*.

Let M be a finite monoid. .

Let ¢: A* = M be a morphism and ¢: A* — M be its continous
morphism extension.

((u@)™), converges in M (with the discrete topology).

Since M is finite, there exists k s.t. (u®)* = e, an idempotent.

It follows that if n > k, then (u@)™ = e, and so lim(u®)™ = e, the
idempotent power of up.
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Extension of identity

An identity or equation over an alphabet (finite) A is a formal equality
u = v, where u,v € A.
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Extension of identity

An identity or equation over an alphabet (finite) A is a formal equality
u = v, where u,v € A*.

Examples: xy = yx, x¥ =1, x¥yx¥ = x¥ (x and y are letters).
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Extension of identity

An identity or equation over an alphabet (finite) A is a formal equality
u = v, where u,v € A*.

Examples: xy = yx, x¥ =1, x¥yx¥ = x¥ (x and y are letters).

A finite monoid M satisfies an identity u = v if uy) = vy for every
continuous morphism ¢ : A* — M,
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Extension of identity

An identity or equation over an alphabet (finite) A is a formal equality
u = v, where u,v € A*.

Examples: xy = yx, x¥ =1, x¥yx¥ = x¥ (x and y are letters).
A finite monoid M satisfies an identity u = v if uy) = vy for every

continuous morphism ¢ : A* — M, i.e. up = v for every morphism
p: A* = M.

Examples:
M satisfies xy = yx if and only if Vs, t € M, st = ts.

A finite semigroup S satisfies x“yx“ = x“ if and only if
Vs e S,ec E(S), ese =e.
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Th. of Reiterman

Y — set of identities.
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Th. of Reiterman

Y — set of identities.

[X] — class of all finite monoids that satisfy all identities of X.
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Th. of Reiterman

> — set of identities.
[X] — class of all finite monoids that satisfy all identities of X.
Theorem (Reiterman)

The M-varieties are precisely the classes of monoids of the form [X]. J
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Th. of Reiterman

Y — set of identities.

[X] — class of all finite monoids that satisfy all identities of X.

Theorem (Reiterman) J

The M-varieties are precisely the classes of monoids of the form [X].

Examples:
J1 = [x = x2, xy = yx] - finite idempotent and commutative monoids.
A = [x¥ = x¥T1] - finite aperiodic monoids.

LI = [x“yx“ = x] — finite locally trivial semigroups.
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Positive variety of languages

Variety of languages V:

A — (A*)Y
alphabet subset of Rat(A*)
such that

@ (A*)V is closed under finite union, finite intersection and
complementation.

@ (A*)V is closed under quotients: a~1L, La~! € (A*)V, for any
L e (A)V.
O if p: A* — B* is a morphism and L € (B*)V, then Lo~! € (A*)V
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Variety of languages V:

A — (A*)V
alphabet subset of Rat(A*)
such that

Q (A*)V is closed under finite union, and finite intersection.

@ (A*)V is closed under quotients: a~1L, La~! € (A*)V, for any
Le (A9)V.
O if p: A* — B* is a morphism and L € (B*)V, then Lo~! € (A*)V
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Positive variety of languages V:

A — (A*)V
alphabet subset of Rat(A*)
such that
Q (A*)V is closed under finite union, and finite intersection.
@ (A*)V is closed under quotients: a~1L, La~! € (A*)V, for any
L e (A)V.
O if p: A* — B* is a morphism and L € (B*)V, then Lo~! € (A*)V
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Positive variety of languages

Positive variety of languages V:

A — (A*)V
alphabet subset of Rat(A*)
such that
Q (A*)V is closed under finite union, and finite intersection.

@ (A*)V is closed under quotients: a~1L, La~! € (A*)V, for any
Le (A9)V.

O if p: A* — B* is a morphism and L € (B*)V, then Lo~! € (A*)V

How to characterize these classes algebraically?
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Ordered monoid

Ordered monoid (M, <): monoid M equipped with a partial order <
compatible with the product:

s<t = rs<rtandsr<tr
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Ordered monoid

Ordered monoid (M, <): monoid M equipped with a partial order <
compatible with the product:

s<t = rs<rtandsr<tr

A monoid M recognizes L C A* if there exist a morphism ¢: A* — M and
PCMst L= (P
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Ordered monoid

Ordered monoid (M, <): monoid M equipped with a partial order <
compatible with the product:

s<t = rs<rtandsr<tr

An ordered monoid M recognizes L C A* if there exist a morphism
@: A* = Mand PC Mst. L= (P)y L.
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Ordered monoid

Ordered monoid (M, <): monoid M equipped with a partial order <
compatible with the product:

s<t = rs<rtandsr<tr

An ordered monoid M recognizes L C A* if there exist a morphism
¢: A* — M and an ordered ideal P of M s.t. L = (P)p~L.
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Ordered monoid

Ordered monoid (M, <): monoid M equipped with a partial order <
compatible with the product:

s<t = rs<rtandsr<tr

An ordered monoid M recognizes L C A* if there exist a morphism
¢: A* — M and an ordered ideal P of M s.t. L = (P)p~L.

Syntactic congruence of L, ~; on A*:

u~g v ifand only if Vx,y € A* (xvy € L& xuy € L)
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Ordered monoid

Ordered monoid (M, <): monoid M equipped with a partial order <
compatible with the product:

s<t = rs<rtandsr<tr

An ordered monoid M recognizes L C A* if there exist a morphism
¢: A* — M and an ordered ideal P of M s.t. L = (P)p~L.

Syntactic congruence of L, ~; on A*:

u~p v ifand only if Vx,y € A" (xvy € L = xuy € L)
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Ordered monoid

Ordered monoid (M, <): monoid M equipped with a partial order <
compatible with the product:

s<t = rs<rtandsr<tr

An ordered monoid M recognizes L C A* if there exist a morphism
¢: A* — M and an ordered ideal P of M s.t. L = (P)p~L.

Syntactic congruence of L, <; on A*:

u =, v ifand only if Vx,y € A* (xvy € L = xuy € L)
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Ordered monoid

Ordered monoid (M, <): monoid M equipped with a partial order <
compatible with the product:

s<t = rs<rtandsr<tr

An ordered monoid M recognizes L C A* if there exist a morphism
¢: A* — M and an ordered ideal P of M s.t. L = (P)p~L.

Syntactic preorder of L, <; on A*:

u =, v ifand only if Vx,y € A* (xvy € L = xuy € L)
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Ordered monoid

Ordered monoid (M, <): monoid M equipped with a partial order <
compatible with the product:

s<t = rs<rtandsr<tr
An ordered monoid M recognizes L C A* if there exist a morphism
@: A* — M and an ordered ideal P of M s.t. L= (P)p L.

Syntactic preorder of L, <; on A*:

u <, v ifand only if Vx,y € A* (xvy € L = xuy € L)

(M(L), <) is an ordered monoid, with

[ul~, <[V]~, ifand only if u=<; v
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Ordered monoid

Ordered monoid (M, <): monoid M equipped with a partial order <
compatible with the product:

s<t = rs<rtandsr<tr
An ordered monoid M recognizes L C A* if there exist a morphism
@: A* — M and an ordered ideal P of M s.t. L= (P)p L.
Syntactic preorder of L, <; on A*:
u <, v ifand only if Vx,y € A* (xvy € L = xuy € L)

(M(L), <) is an ordered monoid, with

[ul~, <[V]~, ifand only if u=<; v

(M(L), <) recognizes L.
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OM-variety

Morphism of ordered monoids ¢: (M, <) — (S, <): monoid morphism s.t.

s<t = sp<typ

OM-variety: class of finite monoids closed under homomorphic images,
submonoids and finite direct products.
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OM-variety

Morphism of ordered monoids ¢: (M, <) — (S, <): monoid morphism s.t.
s<t = sp <ty

OM-variety: class of finite monoids closed under homomorphic images,
submonoids and finite direct products.

Examples:
OM - class of all finite ordered monoids.
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OM-variety

Morphism of ordered monoids ¢: (M, <) — (S, <): monoid morphism s.t.
s<t = sp <ty
OM-variety: class of finite monoids closed under homomorphic images,

submonoids and finite direct products.

Examples:
OM - class of all finite ordered monoids.

Jf — class of all finite idempotent and commutative monoids with the
natural order.

Mario Branco (CAUL, Univ. Lisbon) Pol. closure York - December 6, 2010 28 / 37



OM-variety

Morphism of ordered monoids ¢: (M, <) — (S, <): monoid morphism s.t.
s<t = sp <ty
OM-variety: class of finite monoids closed under homomorphic images,

submonoids and finite direct products.

Examples:
OM - class of all finite ordered monoids.

Jf — class of all finite idempotent and commutative monoids with the
natural order.
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OM-varieties and languages

For each M-variety V and each finite alphabet A, let

(AW = {LCA"|Lis recognized by some monoid of V'}
= {LCA* | M(L)eV}
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OM-varieties and languages

For each OM-variety V and each finite alphabet A, let

(AW = {LCA"|Lis recognized by some ordered monoid of V}
= {LCA*|M(L)eV}

Mario Branco (CAUL, Univ. Lisbon) Pol. closure York - December 6, 2010 29 /37



OM-varieties and languages

For each OM-variety V and each finite alphabet A, let

(A*)V = {LC A*|Lis recognized by some ordered monoid of V}
— {LCA[(M(L), <) e V)
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OM-varieties and languages

For each OM-variety V and each finite alphabet A, let

(A*)V = {LC A*|Lis recognized by some ordered monoid of V}
— {LCA[(M(L), <) e V)

Then V is a positive variety of languages.

Theorem (Pin)

The correspondence V — V' between the OM-varieties and the positive
varieties of languages is bijective.
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Another extension of identity

An identity or equation over an alphabet (finite) A is a formal expression
u=voru<v, where u,v € A*.
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Another extension of identity

An identity or equation over an alphabet (finite) A is a formal expression
u=voru<v, where u,v € A*.

A finite monoid M satisfies an identity u = v if uy) = va) for every

continuous morphism : A M, i.e. up = v for every morphism
p: A* = M.
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Another extension of identity

An identity or equation over an alphabet (finite) A is a formal expression
u=voru<v, where u,v € A*.

A finite ordered monoid M satisfies an identity v < v if uy) < vi) for every
continuous morphism ¢ : A* — M, i.e. up < v for every morphism
p: A* = M.
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p: A* = M.

Mario Branco (CAUL, Univ. Lisbon) Pol. closure York - December 6, 2010 30/ 37



Another extension of identity

An identity or equation over an alphabet (finite) A is a formal expression
u=voru<v, where u,v € A*.

A finite ordered monoid M satisfies an identity v < v if uy) < vi) for every
continuous morphism ¢ : A* — M, i.e. up < v for every morphism
p: A* = M.

Theorem (Pin and Weil)

The OM-varieties are precisely the classes of ordered monoids of the form

[~].
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Another extension of identity

An identity or equation over an alphabet (finite) A is a formal expression
u=voru<v, where u,v € A*.

A finite ordered monoid M satisfies an identity v < v if uy) < vi) for every
continuous morphism ¢ : A* — M, i.e. up < v for every morphism

p: A* = M.

Theorem (Pin and Weil)

The OM-varieties are precisely the classes of ordered monoids of the form

[~].

Examples:

J7 =[x =x, xy = yx, x < 1] — class of all finite idempotent and
commutative monoids with the natural order.

LJ* = [x“yx* < x*] (semigroups).
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Other classes of languages

Variety of languages V:

A — (A*)VY
alphabet subset of Rat(A*)
such that

© (A*)V is closed under finite union, finite intersection and
complementation.

@ (A*)V is closed under quotients: a—1L, La~! € (A*)V, for any
L e (A

© if ¢: A* — B* is a morphism and L € (B*)V, then Lyp~1 € (A*)V
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Other classes of languages

Variety of languages V:

A — (A*)VY
alphabet subset of Rat(A*)
such that

© (A*)V is closed under finite union, finite intersection and
complementation.

@ (A*)V is closed under quotients: a~ 1L, La~—! € (A*)V, for any
Le (AY)V.

© if ¢: A* — B* is a morphism and L € (B*)V, then Lyp~1 € (A*)V
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Other classes of languages

Variety of languages V:

A — (A*)V
alphabet subset of Rat(A*)
such that

Q@ (A*)V is closed under finite union, and finite intersection.

@ (A*)V is closed under quotients: a~1L, La~! € (A*)V, for any
Le (A)V.
© if ¢: A* — B* is a morphism and L € (B*)V, then Lyp~1 € (A*)V
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Other classes of languages

Positive variety of languages V:

A — (A*)V
alphabet subset of Rat(A*)
such that

Q@ (A*)V is closed under finite union, and finite intersection.

@ (A*)V is closed under quotients: a~1L, La~! € (A*)V, for any
Le (A)V.
© if ¢: A* — B* is a morphism and L € (B*)V, then Lyp~1 € (A*)V
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Other classes of languages

Positive variety of languages V:

A — (A*)V
alphabet subset of Rat(A*)

such that
Q@ (A*)V is closed under finite union, and finite intersection.
@ (A*)V is closed under quotients: a~1L, La~! € (A*)V, for any
Le (A)V.
© if ¢: A* — B* is a morphism and L € (B*)V, then Lyp~1 € (A*)V

How to characterize algebraically the classes V satisfying the following?

O (A*)V is closed under finite union and finite intersection.
@ (A*)V is closed under quotients: a~1L, La~! € (A*)V, for any
L e (A
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Topological caracterization of the regularity

Proposition
Let L C A*.
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Topological caracterization of the regularity

Proposition
Let L C A*.
L is regular if and only if L is open.

Mario Branco (CAUL, Univ. Lisbon) Pol. closure



Topological caracterization of the regularity

Proposition
Let L C A*.
L is regular if and only if L is open.

Proposition (Gehrke, Grigorieff, Pin)
Let L C A* regular and u € A*. TFAE:
Q ucl.

Q@ o(u) € p(L), for every morphism ¢: A* — M, where M is a finite
monoid.

@ 7(u) € n(L), where n: A* — M(L) is the syntactic morphism of L.

v
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Satisfaction of an equation by a language

L C A* regular.
V = [X] OM-variety.
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Satisfaction of an equation by a language

L C A* regular.
V = [X] OM-variety.

LeAY <« M(L)eV
<= M(L) satisfies the equations of ¥
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Satisfaction of an equation by a language
L C A* regular.

V = [X] OM-variety.

LeAY <« M(L)eV
<= M(L) satisfies the equations of ¥

L C A* regular, u,v € A*.

L satisfies u < v if fj(u) < f(v), where n: A* — M(L) is the syntactic
morphism of L.
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Satisfaction of an equation by a language
L C A* regular.

V = [X] OM-variety.

LeAY <« M(L)eV
<= M(L) satisfies the equations of ¥

L C A* regular, u,v € A*.

L satisfies u < v if fj(u) < f(v), where n: A* — M(L) is the syntactic
morphism of L.

Notice that, by the previous proposition,
i) <A(v) = Vs,te M(L) (si(v)t € n(L) = sii(u)t € n(L))
= Ux,y €A (ﬁ(xvy) € n(L) = A(xuy) € n(L)>
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Lattice of language closed under quotients
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Lattice of language closed under quotients

How to characterize algebraically the classes V satisfying the following?

O (A*)V is closed under finite union and finite intersection.
Q@ (A*)V is closed under quotients: a~1L, La~! € (A*)V, for any
Le (A9V.
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Lattice of language closed under quotients

How to characterize algebraically the classes V satisfying the following?

O (A*)V is closed under finite union and finite intersection.

Q@ (A*)V is closed under quotients: a~1L, La~! € (A*)V, for any
Le (A9V.

Lattice of languages of A*: set of languages of A* closed under finite
union and finite intersection.
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Lattice of language closed under quotients

How to characterize algebraically the classes V satisfying the following?

O (A*)V is closed under finite union and finite intersection.

Q@ (A*)V is closed under quotients: a~1L, La~! € (A*)V, for any
Le (A)V.

Lattice of languages of A*: set of languages of A* closed under finite
union and finite intersection.

Theorem (Gehrke, Grigorieff, Pin)

A set L of languages of A* is a lattice of languages closed under quotients
if and gllly if, for some set ¥ of equations of the form u < v, with

u,v € A*, L is the set of the languages of A* that satisfy all equations
of 2.
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Let £ be a set of languages of A*.

Pol(L): the set of languages that are finite union of LgajLy - - a,L,, with
neNg, L e L, a_,'EA.
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Let £ be a set of languages of A*.
Pol(L): the set of languages that are finite union of LgajLy - - a,L,, with
neNg, L e L, a_,'EA.

Y(L): the set of equations of the form x“yx“ < x“, where x,y € A* are
such that the equations x = x2 and y < x are satisfied by L.
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Let £ be a set of languages of A*.

Pol(L): the set of languages that are finite union of LgajLy - - a,L,, with
neNg, L e L, a_,'EA.

Y(L): the set of equations of the form x“yx“ < x“, where x,y € A* are
such that the equations x = x2 and y < x are satisfied by L.

Theorem (BP)
If L is a lattice closed under quotients, then Pol(L) is defined by ¥.(L). }
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Pol(L)

Let £ be a set of languages of A*.

Pol(L): the set of languages that are finite union of LgajLy - - a,L,, with
neNg, L e L, a_,'EA.

Y(L): the set of equations of the form x“yx“ < x“, where x,y € A* are
such that the equations x = x2 and y < x are satisfied by L.

Theorem (BP)
If L is a lattice closed under quotients, then Pol(L) is defined by ¥.(L). J

’ How to prove it? ‘
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Proposition
If L is a lattice of languages, then Pol(L) satisfies ¥(L). J
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Proposition
If L is a lattice of languages, then Pol(L) satisfies ¥(L). J

T

Easier part
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Proposition
If L is a lattice of languages, then Pol(L) satisfies ¥(L). J
Easier part

L C A* regular.
Define

E = {(x,y) € A* x A* | L satisfies x = x2 and }’SX}

FiL = {(X,y) c A x A¥ | L satisfies x“yx* < xw}
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Pol(L)

Proposition
If L is a lattice of languages, then Pol(L) satisfies ¥(L). J

T

Easier part

L C A* regular.

Define
E = {(X,y) €A x A | L satisfies x = x? and y < x}
FL= {(x,y) € A" x A | L satisfies x“yx“ < x“’}
Proposition
E, and F; are clopen in A* x A*. J
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Proposition

Let L be a set of languages of A* and K be a regular language of A*.
TFAE:

Q K satisfies X(L).
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Proposition

Let L be a set of languages of A* and K be a regular language of A*.
TFAE:

Q K satisfies X(L).

@ Theset {Fx} U{E.| L€ L} isan open cover of A* x A*.
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Pol(L)

Proposition
Let L be a set of languages of A* and K be a regular language of A*.
TFAE:

Q K satisfies X(L).
Q Theset {Fx} U{E.| L€ L} isan open cover of A* x A*.

Proposition

Let L be a set of languages of A* and K be a regular language of A*.
If K satisfies X(L), there exists a finite subset F of L such that K
satisfies ¥(F).

Mario Branco (CAUL, Univ. Lisbon) Pol. closure York - December 6, 2010 37 /37



Pol(L)

Proposition
Let L be a set of languages of A* and K be a regular language of A*.
TFAE:

Q K satisfies X(L).
Q Theset {Fx} U{E.| L€ L} isan open cover of A* x A*.

Proposition

Let L be a set of languages of A* and K be a regular language of A*.
If K satisfies X(L), there exists a finite subset F of L such that K
satisfies ¥(F).

| Black board |
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